期刊文献+
共找到13,378篇文章
< 1 2 250 >
每页显示 20 50 100
Distributed asynchronous double accelerated optimization for ethylene plant considering delays
1
作者 Ting Wang Zhongmei Li Wenli Du 《Chinese Journal of Chemical Engineering》 2025年第2期245-250,共6页
Considering the complexity of plant-wide optimization for large-scale industries, a distributed optimization framework to solve the profit optimization problem in ethylene whole process is proposed. To tackle the dela... Considering the complexity of plant-wide optimization for large-scale industries, a distributed optimization framework to solve the profit optimization problem in ethylene whole process is proposed. To tackle the delays arising from the residence time for materials passing through production units during the process with guaranteed constraint satisfaction, an asynchronous distributed parameter projection algorithm with gradient tracking method is introduced. Besides, the heavy ball momentum and Nesterov momentum are incorporated into the proposed algorithm in order to achieve double acceleration properties. The experimental results show that the proposed asynchronous algorithm can achieve a faster convergence compared with the synchronous algorithm. 展开更多
关键词 Asynchronous distributed optimization Plant-wide optimization Heavy ball Nesterov Inequality constraints
在线阅读 下载PDF
Gradient-free distributed online optimization in networks
2
作者 Yuhang Liu Wenxiao Zhao +2 位作者 Nan Zhang Dongdong Lv Shuai Zhang 《Control Theory and Technology》 2025年第2期207-220,共14页
In this paper,we consider the distributed online optimization problem on a time-varying network,where each agent on the network has its own time-varying objective function and the goal is to minimize the overall loss ... In this paper,we consider the distributed online optimization problem on a time-varying network,where each agent on the network has its own time-varying objective function and the goal is to minimize the overall loss accumulated.Moreover,we focus on distributed algorithms which do not use gradient information and projection operators to improve the applicability and computational efficiency.By introducing the deterministic differences and the randomized differences to substitute the gradient information of the objective functions and removing the projection operator in the traditional algorithms,we design two kinds of gradient-free distributed online optimization algorithms without projection step,which can economize considerable computational resources as well as has less limitations on the applicability.We prove that both of two algorithms achieves consensus of the estimates and regrets of\(O\left(\log(T)\right)\)for local strongly convex objective,respectively.Finally,a simulation example is provided to verify the theoretical results. 展开更多
关键词 distributed optimization Online convex optimization Gradient-free algorithm Projection-free algorithm
原文传递
Exploring Optimization Strategies for Island Power Grid Line Layout Oriented Towards Large-Scale Distributed Renewable Energy Integration
3
作者 Zhenhuan Song Wenxin Liu 《Proceedings of Business and Economic Studies》 2025年第4期495-502,共8页
The construction of island power grids is a systematic engineering task.To ensure the safe operation of power grid systems,optimizing the line layout of island power grids is crucial.Especially in the current context ... The construction of island power grids is a systematic engineering task.To ensure the safe operation of power grid systems,optimizing the line layout of island power grids is crucial.Especially in the current context of large-scale distributed renewable energy integration into the power grid,conventional island power grid line layouts can no longer meet actual demands.It is necessary to combine the operational characteristics of island power systems and historical load data to perform load forecasting,thereby generating power grid line layout paths.This article focuses on large-scale distributed renewable energy integration,summarizing optimization strategies for island power grid line layouts,and providing a solid guarantee for the safe and stable operation of island power systems. 展开更多
关键词 Island power grid Line layout optimization strategy distributed renewable energy LARGE-SCALE
在线阅读 下载PDF
Design and optimization of steam power systems in industrial parks based on the distributed steam turbine system
4
作者 Lingwei Zhang Ziyuan Cui Yufei Wang 《Chinese Journal of Chemical Engineering》 2025年第1期259-272,共14页
Steam power systems(SPSs)in industrial parks are the typical utility systems for heat and electricity supply.In SPSs,electricity is generated by steam turbines,and steam is generally produced and supplied at multiple ... Steam power systems(SPSs)in industrial parks are the typical utility systems for heat and electricity supply.In SPSs,electricity is generated by steam turbines,and steam is generally produced and supplied at multiple levels to serve the heat demands of consumers with different temperature grades,so that energy is utilized in cascade.While a large number of steam levels enhances energy utilization efficiency,it also tends to cause a complex steam pipeline network in the industrial park.In practice,a moderate number of steam levels is always adopted in SPSs,leading to temperature mismatches between heat supply and demand for some consumers.This study proposes a distributed steam turbine system(DSTS)consisting of main steam turbines on the energy supply side and auxiliary steam turbines on the energy consumption side,aiming to balance the heat production costs,the distance-related costs,and the electricity generation of SPSs in industrial parks.A mixed-integer nonlinear programming model is established for the optimization of SPSs,with the objective of minimizing the total annual cost(TAC).The optimal number of steam levels and the optimal configuration of DSTS for an industrial park can be determined by solving the model.A case study demonstrates that the TAC of the SPS is reduced by 220.6×10^(3)USD(2.21%)through the arrangement of auxiliary steam turbines.The sub-optimal number of steam levels and a non-optimal operating condition slightly increase the TAC by 0.46%and 0.28%,respectively.The sensitivity analysis indicates that the optimal number of steam levels tends to decrease from 3 to 2 as electricity price declines. 展开更多
关键词 Industrial parks Steam power systems distributed steam turbine system Mixed-integer nonlinear programming optimization ENTHALPY
在线阅读 下载PDF
A Review of AI-Driven Optimization Technologies for Distributed Photovoltaic Power Generation Systems
5
作者 Nanting Li 《Journal of Electronic Research and Application》 2025年第5期132-142,共11页
The rapid development of artificial intelligence(AI)technology,particularly breakthroughs in branches such as deep learning,reinforcement learning,and federated learning,has provided powerful technical tools for addre... The rapid development of artificial intelligence(AI)technology,particularly breakthroughs in branches such as deep learning,reinforcement learning,and federated learning,has provided powerful technical tools for addressing these core bottlenecks.This paper provides a systematic review of the research background,technological evolution,core systems,key challenges,and future directions of AI technology in the field of distributed photovoltaic power generation system optimization.At the same time,this paper analyzes the current technical bottlenecks and cutting-edge response strategies.Finally,it explores fusion innovation directions such as quantum-classical hybrid algorithms and neural symbolic systems,as well as business model expansion paths such as carbon finance integration and community energy autonomy. 展开更多
关键词 AI optimization distributed photovoltaic systems Virtual power plant coordination Community energy autonomy
在线阅读 下载PDF
A Comprehensive Review of Sizing and Allocation of Distributed Power Generation:Optimization Techniques,Global Insights,and Smart Grid Implications
6
作者 Abdullrahman A.Al-Shamma’a Hassan M.Hussein Farh +4 位作者 Ridwan Taiwo Al-Wesabi Ibrahim Abdulrhman Alshaabani Saad Mekhilef Mohamed A.Mohamed 《Computer Modeling in Engineering & Sciences》 2025年第11期1303-1347,共45页
Optimal sizing and allocation of distributed generators(DGs)have become essential computational challenges in improving the performance,efficiency,and reliability of electrical distribution networks.Despite extensive ... Optimal sizing and allocation of distributed generators(DGs)have become essential computational challenges in improving the performance,efficiency,and reliability of electrical distribution networks.Despite extensive research,existing approaches often face algorithmic limitations such as slow convergence,premature stagnation in local minima,or suboptimal accuracy in determining optimal DG placement and capacity.This study presents a comprehensive scientometric and systematic review of global research focused on computer-based modelling and algorithmic optimization for renewable DG sizing and placement.It integrates both quantitative and qualitative analyses of the scholarly landscape,mapping influential research domains,co-authorship structures,the articles’citation networks,keyword clusters,and international collaboration patterns.Moreover,the study classifies and evaluates the most prominent objective functions,key computational models and optimization algorithms,DG technologies,and strategic approaches employed in the field.The findings reveal that advanced algorithmic frameworks substantially enhance network stability,minimize real power losses,and improve voltage profiles under various operational constraints.This review serves as a foundational resource for researchers and practitioners,highlighting emerging algorithmic trends,modelling innovations,and data-driven methodologies that can guide future development of intelligent,optimization-based DG integration strategies in smart distribution systems. 展开更多
关键词 Systematic and scientometric global trends distributed generation sizing and allocation multiobjectives modelling and algorithmic optimization
在线阅读 下载PDF
Privacy Distributed Constrained Optimization Over Time-Varying Unbalanced Networks and Its Application in Federated Learning
7
作者 Mengli Wei Wenwu Yu +2 位作者 Duxin Chen Mingyu Kang Guang Cheng 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期335-346,共12页
This paper investigates a class of constrained distributed zeroth-order optimization(ZOO) problems over timevarying unbalanced graphs while ensuring privacy preservation among individual agents. Not taking into accoun... This paper investigates a class of constrained distributed zeroth-order optimization(ZOO) problems over timevarying unbalanced graphs while ensuring privacy preservation among individual agents. Not taking into account recent progress and addressing these concerns separately, there remains a lack of solutions offering theoretical guarantees for both privacy protection and constrained ZOO over time-varying unbalanced graphs.We hereby propose a novel algorithm, termed the differential privacy(DP) distributed push-sum based zeroth-order constrained optimization algorithm(DP-ZOCOA). Operating over time-varying unbalanced graphs, DP-ZOCOA obviates the need for supplemental suboptimization problem computations, thereby reducing overhead in comparison to distributed primary-dual methods. DP-ZOCOA is specifically tailored to tackle constrained ZOO problems over time-varying unbalanced graphs,offering a guarantee of convergence to the optimal solution while robustly preserving privacy. Moreover, we provide rigorous proofs of convergence and privacy for DP-ZOCOA, underscoring its efficacy in attaining optimal convergence without constraints. To enhance its applicability, we incorporate DP-ZOCOA into the federated learning framework and formulate a decentralized zeroth-order constrained federated learning algorithm(ZOCOA-FL) to address challenges stemming from the timevarying imbalance of communication topology. Finally, the performance and effectiveness of the proposed algorithms are thoroughly evaluated through simulations on distributed least squares(DLS) and decentralized federated learning(DFL) tasks. 展开更多
关键词 Constrained distributed optimization decentralized federated learning(DFL) differential privacy(DP) time-varying unbalanced graphs zeroth-order gradient
在线阅读 下载PDF
Distributed stochastic model predictive control for energy dispatch with distributionally robust optimization
8
作者 Mengting LIN Bin LI C.C.ECATI 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期323-340,共18页
A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer... A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved. 展开更多
关键词 distributed stochastic model predictive control(DSMPC) distributionally robust optimization(DRO) islanded multi-microgrid energy dispatch strategy
在线阅读 下载PDF
Reactive Power Optimization Model of Active Distribution Network with New Energy and Electric Vehicles 被引量:1
9
作者 Chenxu Wang Jing Bian Rui Yuan 《Energy Engineering》 2025年第3期985-1003,共19页
Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power o... Considering the uncertainty of grid connection of electric vehicle charging stations and the uncertainty of new energy and residential electricity load,a spatio-temporal decoupling strategy of dynamic reactive power optimization based on clustering-local relaxation-correction is proposed.Firstly,the k-medoids clustering algorithm is used to divide the reduced power scene into periods.Then,the discrete variables and continuous variables are optimized in the same period of time.Finally,the number of input groups of parallel capacitor banks(CB)in multiple periods is fixed,and then the secondary static reactive power optimization correction is carried out by using the continuous reactive power output device based on the static reactive power compensation device(SVC),the new energy grid-connected inverter,and the electric vehicle charging station.According to the characteristics of the model,a hybrid optimization algorithm with a cross-feedback mechanism is used to solve different types of variables,and an improved artificial hummingbird algorithm based on tent chaotic mapping and adaptive mutation is proposed to improve the solution efficiency.The simulation results show that the proposed decoupling strategy can obtain satisfactory optimization resultswhile strictly guaranteeing the dynamic constraints of discrete variables,and the hybrid algorithm can effectively solve the mixed integer nonlinear optimization problem. 展开更多
关键词 Active distribution network new energy electric vehicles dynamic reactive power optimization kmedoids clustering hybrid optimization algorithm
在线阅读 下载PDF
Multi-Stage Voltage Control Optimization Strategy for Distribution Networks Considering Active-Reactive Co-Regulation of Electric Vehicles
10
作者 Shukang Lyu Fei Zeng +3 位作者 Huachun Han Huiyu Miao Yi Pan Xiaodong Yuan 《Energy Engineering》 EI 2025年第1期221-242,共22页
The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the exis... The high proportion of uncertain distributed power sources and the access to large-scale random electric vehicle(EV)charging resources further aggravate the voltage fluctuation of the distribution network,and the existing research has not deeply explored the EV active-reactive synergistic regulating characteristics,and failed to realize themulti-timescale synergistic control with other regulatingmeans,For this reason,this paper proposes amultilevel linkage coordinated optimization strategy to reduce the voltage deviation of the distribution network.Firstly,a capacitor bank reactive power compensation voltage control model and a distributed photovoltaic(PV)activereactive power regulationmodel are established.Additionally,an external characteristicmodel of EVactive-reactive power regulation is developed considering the four-quadrant operational characteristics of the EVcharger.Amultiobjective optimization model of the distribution network is then constructed considering the time-series coupling constraints of multiple types of voltage regulators.A multi-timescale control strategy is proposed by considering the impact of voltage regulators on active-reactive EV energy consumption and PV energy consumption.Then,a four-stage voltage control optimization strategy is proposed for various types of voltage regulators with multiple time scales.Themulti-objective optimization is solved with the improvedDrosophila algorithmto realize the power fluctuation control of the distribution network and themulti-stage voltage control optimization.Simulation results validate that the proposed voltage control optimization strategy achieves the coordinated control of decentralized voltage control resources in the distribution network.It effectively reduces the voltage deviation of the distribution network while ensuring the energy demand of EV users and enhancing the stability and economic efficiency of the distribution network. 展开更多
关键词 Electric vehicle(EV) distribution network multi-stage optimization active-reactive power regulation voltage control
在线阅读 下载PDF
Topological optimization of metamaterial absorber based on improved estimation of distribution algorithm
11
作者 TAO Shifei LIU Beichen +2 位作者 LIU Sixing WU Fan WANG Hao 《Journal of Systems Engineering and Electronics》 2025年第3期634-641,共8页
An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and sa... An improved estimation of distribution algorithm(IEDA)is proposed in this paper for efficient design of metamaterial absorbers.This algorithm establishes a probability model through the selected dominant groups and samples from the model to obtain the next generation,avoiding the problem of building-blocks destruction caused by crossover and mutation.Neighboring search from artificial bee colony algorithm(ABCA)is introduced to enhance the local optimization ability and improved to raise the speed of convergence.The probability model is modified by boundary correction and loss correction to enhance the robustness of the algorithm.The proposed IEDA is compared with other intelligent algorithms in relevant references.The results show that the proposed IEDA has faster convergence speed and stronger optimization ability,proving the feasibility and effectiveness of the algorithm. 展开更多
关键词 METAMATERIAL topological optimization estimation of distribution algorithm
在线阅读 下载PDF
An Optimization Method for Reducing Losses in Distribution Networks Based on Tabu Search Algorithm
12
作者 Jiaqian Zhao Xiufang Gu +1 位作者 Xiaoyu Wei Mingyu Bao 《Journal of Electronic Research and Application》 2025年第2期181-190,共10页
With the continuous growth of power demand and the diversification of power consumption structure,the loss of distribution network has gradually become the focus of attention.Given the problems of single loss reductio... With the continuous growth of power demand and the diversification of power consumption structure,the loss of distribution network has gradually become the focus of attention.Given the problems of single loss reduction measure,lack of economy,and practicality in existing research,this paper proposes an optimization method of distribution network loss reduction based on tabu search algorithm and optimizes the combination and parameter configuration of loss reduction measure.The optimization model is developed with the goal of maximizing comprehensive benefits,incorporating both economic and environmental factors,and accounting for investment costs,including the loss of power reduction.Additionally,the model ensures that constraint conditions such as power flow equations,voltage deviations,and line transmission capacities are satisfied.The solution is obtained through a tabu search algorithm,which is well-suited for solving nonlinear problems with multiple constraints.Combined with the example of 10kV25 node construction,the simulation results show that the method can significantly reduce the network loss on the basis of ensuring the economy and environmental protection of the system,which provides a theoretical basis for distribution network planning. 展开更多
关键词 distribution network Loss reduction measures ECONOMY optimization model Tabu search algorithm
在线阅读 下载PDF
Multi-Timescale Optimization Scheduling of Distribution Networks Based on the Uncertainty Intervals in Source-Load Forecasting
13
作者 Huanan Yu Chunhe Ye +3 位作者 Shiqiang Li He Wang Jing Bian Jinling Li 《Energy Engineering》 2025年第6期2417-2448,共32页
With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation ... With the increasing integration of large-scale distributed energy resources into the grid,traditional distribution network optimization and dispatch methods struggle to address the challenges posed by both generation and load.Accounting for these issues,this paper proposes a multi-timescale coordinated optimization dispatch method for distribution networks.First,the probability box theory was employed to determine the uncertainty intervals of generation and load forecasts,based on which,the requirements for flexibility dispatch and capacity constraints of the grid were calculated and analyzed.Subsequently,a multi-timescale optimization framework was constructed,incorporating the generation and load forecast uncertainties.This framework included optimization models for dayahead scheduling,intra-day optimization,and real-time adjustments,aiming to meet flexibility needs across different timescales and improve the economic efficiency of the grid.Furthermore,an improved soft actor-critic algorithm was introduced to enhance the uncertainty exploration capability.Utilizing a centralized training and decentralized execution framework,a multi-agent SAC network model was developed to improve the decision-making efficiency of the agents.Finally,the effectiveness and superiority of the proposed method were validated using a modified IEEE-33 bus test system. 展开更多
关键词 Renewable energy distribution networks source-load uncertainty interval flexible scheduling soft actor-critic algorithm optimization model
在线阅读 下载PDF
Energy Optimization Strategy for Reconfigurable Distribution Network withHigh Renewable Penetration Based on Bald Eagle Search Algorithm
14
作者 Jian Wang Hui Qi +2 位作者 Lingyi Ji Zhengya Tang Hui Qian 《Energy Engineering》 2025年第11期4635-4651,共17页
This paper proposes a cost-optimal energy management strategy for reconfigurable distribution networks with high penetration of renewable generation.The proposed strategy accounts for renewable generation costs,mainte... This paper proposes a cost-optimal energy management strategy for reconfigurable distribution networks with high penetration of renewable generation.The proposed strategy accounts for renewable generation costs,maintenance and operating expenses of energy storage systems,diesel generator operational costs,typical daily load profiles,and power balance constraints.A penalty term for power backflow is incorporated into the objective function to discourage undesirable reverse flows.The Bald Eagle Search(BES)meta-heuristic is adopted to solve the resulting constrained optimization problem.Numerical simulations under multiple load scenarios demonstrate that the proposed method effectively reduces operating cost while preventing power backflow and maintaining secure operation of the distribution network. 展开更多
关键词 Reconfigurable distribution networks energy optimization management bald eagle search algorithm
在线阅读 下载PDF
A Deep Reinforcement Learning with Gumbel Distribution Approach for Contention Window Optimization in IEEE 802.11 Networks
15
作者 Yi-Hao Tu Yi-Wei Ma 《Computers, Materials & Continua》 2025年第9期4563-4582,共20页
This study introduces the Smart Exponential-Threshold-Linear with Double Deep Q-learning Network(SETL-DDQN)and an extended Gumbel distribution method,designed to optimize the Contention Window(CW)in IEEE 802.11 networ... This study introduces the Smart Exponential-Threshold-Linear with Double Deep Q-learning Network(SETL-DDQN)and an extended Gumbel distribution method,designed to optimize the Contention Window(CW)in IEEE 802.11 networks.Unlike conventional Deep Reinforcement Learning(DRL)-based approaches for CW size adjustment,which often suffer from overestimation bias and limited exploration diversity,leading to suboptimal throughput and collision performance.Our framework integrates the Gumbel distribution and extreme value theory to systematically enhance action selection under varying network conditions.First,SETL adopts a DDQN architecture(SETL-DDQN)to improve Q-value estimation accuracy and enhance training stability.Second,we incorporate a Gumbel distribution-driven exploration mechanism,forming SETL-DDQN(Gumbel),which employs the extreme value theory to promote diverse action selection,replacing the conventional-greedy exploration that undergoes early convergence to suboptimal solutions.Both models are evaluated through extensive simulations in static and time-varying IEEE 802.11 network scenarios.The results demonstrate that our approach consistently achieves higher throughput,lower collision rates,and improved adaptability,even under abrupt fluctuations in traffic load and network conditions.In particular,the Gumbel-based mechanism enhances the balance between exploration and exploitation,facilitating faster adaptation to varying congestion levels.These findings position Gumbel-enhanced DRL as an effective and robust solution for CW optimization in wireless networks,offering notable gains in efficiency and reliability over existing methods. 展开更多
关键词 Contention window(CW)optimization extreme value theory Gumbel distribution IEEE 802.11 networks SETL-DDQN(Gumbel)
在线阅读 下载PDF
Energy-Saving Distributed Flexible Job Shop Scheduling Optimization with Dual Resource Constraints Based on Integrated Q-Learning Multi-Objective Grey Wolf Optimizer 被引量:2
16
作者 Hongliang Zhang Yi Chen +1 位作者 Yuteng Zhang Gongjie Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1459-1483,共25页
The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worke... The distributed flexible job shop scheduling problem(DFJSP)has attracted great attention with the growth of the global manufacturing industry.General DFJSP research only considers machine constraints and ignores worker constraints.As one critical factor of production,effective utilization of worker resources can increase productivity.Meanwhile,energy consumption is a growing concern due to the increasingly serious environmental issues.Therefore,the distributed flexible job shop scheduling problem with dual resource constraints(DFJSP-DRC)for minimizing makespan and total energy consumption is studied in this paper.To solve the problem,we present a multi-objective mathematical model for DFJSP-DRC and propose a Q-learning-based multi-objective grey wolf optimizer(Q-MOGWO).In Q-MOGWO,high-quality initial solutions are generated by a hybrid initialization strategy,and an improved active decoding strategy is designed to obtain the scheduling schemes.To further enhance the local search capability and expand the solution space,two wolf predation strategies and three critical factory neighborhood structures based on Q-learning are proposed.These strategies and structures enable Q-MOGWO to explore the solution space more efficiently and thus find better Pareto solutions.The effectiveness of Q-MOGWO in addressing DFJSP-DRC is verified through comparison with four algorithms using 45 instances.The results reveal that Q-MOGWO outperforms comparison algorithms in terms of solution quality. 展开更多
关键词 distributed flexible job shop scheduling problem dual resource constraints energy-saving scheduling multi-objective grey wolf optimizer Q-LEARNING
在线阅读 下载PDF
A Distributed Ant Colony Optimization Applied in Edge Detection 被引量:1
17
作者 Min Chen 《Journal of Computer and Communications》 2024年第8期161-173,共13页
With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, le... With the rise of image data and increased complexity of tasks in edge detection, conventional artificial intelligence techniques have been severely impacted. To be able to solve even greater problems of the future, learning algorithms must maintain high speed and accuracy through economical means. Traditional edge detection approaches cannot detect edges in images in a timely manner due to memory and computational time constraints. In this work, a novel parallelized ant colony optimization technique in a distributed framework provided by the Hadoop/Map-Reduce infrastructure is proposed to improve the edge detection capabilities. Moreover, a filtering technique is applied to reduce the noisy background of images to achieve significant improvement in the accuracy of edge detection. Close examinations of the implementation of the proposed algorithm are discussed and demonstrated through experiments. Results reveal high classification accuracy and significant improvements in speedup, scaleup and sizeup compared to the standard algorithms. 展开更多
关键词 distributed System Ant Colony optimization Edge Detection MAPREDUCE SPEEDUP
在线阅读 下载PDF
Online distributed optimization with stochastic gradients:high probability bound of regrets
18
作者 Yuchen Yang Kaihong Lu Long Wang 《Control Theory and Technology》 EI CSCD 2024年第3期419-430,共12页
In this paper,the problem of online distributed optimization subject to a convex set is studied via a network of agents.Each agent only has access to a noisy gradient of its own objective function,and can communicate ... In this paper,the problem of online distributed optimization subject to a convex set is studied via a network of agents.Each agent only has access to a noisy gradient of its own objective function,and can communicate with its neighbors via a network.To handle this problem,an online distributed stochastic mirror descent algorithm is proposed.Existing works on online distributed algorithms involving stochastic gradients only provide the expectation bounds of the regrets.Different from them,we study the high probability bound of the regrets,i.e.,the sublinear bound of the regret is characterized by the natural logarithm of the failure probability's inverse.Under mild assumptions on the graph connectivity,we prove that the dynamic regret grows sublinearly with a high probability if the deviation in the minimizer sequence is sublinear with the square root of the time horizon.Finally,a simulation is provided to demonstrate the effectiveness of our theoretical results. 展开更多
关键词 distributed optimization Online optimization Stochastic gradient High probability
原文传递
Random gradient-free method for online distributed optimization with strongly pseudoconvex cost functions
19
作者 Xiaoxi Yan Cheng Li +1 位作者 Kaihong Lu Hang Xu 《Control Theory and Technology》 EI CSCD 2024年第1期14-24,共11页
This paper focuses on the online distributed optimization problem based on multi-agent systems. In this problem, each agent can only access its own cost function and a convex set, and can only exchange local state inf... This paper focuses on the online distributed optimization problem based on multi-agent systems. In this problem, each agent can only access its own cost function and a convex set, and can only exchange local state information with its current neighbors through a time-varying digraph. In addition, the agents do not have access to the information about the current cost functions until decisions are made. Different from most existing works on online distributed optimization, here we consider the case where the cost functions are strongly pseudoconvex and real gradients of the cost functions are not available. To handle this problem, a random gradient-free online distributed algorithm involving the multi-point gradient estimator is proposed. Of particular interest is that under the proposed algorithm, each agent only uses the estimation information of gradients instead of the real gradient information to make decisions. The dynamic regret is employed to measure the proposed algorithm. We prove that if the cumulative deviation of the minimizer sequence grows within a certain rate, then the expectation of dynamic regret increases sublinearly. Finally, a simulation example is given to corroborate the validity of our results. 展开更多
关键词 Multi-agent system Online distributed optimization Pseudoconvex optimization Random gradient-free method
原文传递
Distributed Stochastic Optimization with Compression for Non-Strongly Convex Objectives
20
作者 Xuanjie Li Yuedong Xu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期459-481,共23页
We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization p... We are investigating the distributed optimization problem,where a network of nodes works together to minimize a global objective that is a finite sum of their stored local functions.Since nodes exchange optimization parameters through the wireless network,large-scale training models can create communication bottlenecks,resulting in slower training times.To address this issue,CHOCO-SGD was proposed,which allows compressing information with arbitrary precision without reducing the convergence rate for strongly convex objective functions.Nevertheless,most convex functions are not strongly convex(such as logistic regression or Lasso),which raises the question of whether this algorithm can be applied to non-strongly convex functions.In this paper,we provide the first theoretical analysis of the convergence rate of CHOCO-SGD on non-strongly convex objectives.We derive a sufficient condition,which limits the fidelity of compression,to guarantee convergence.Moreover,our analysis demonstrates that within the fidelity threshold,this algorithm can significantly reduce transmission burden while maintaining the same convergence rate order as its no-compression equivalent.Numerical experiments further validate the theoretical findings by demonstrating that CHOCO-SGD improves communication efficiency and keeps the same convergence rate order simultaneously.And experiments also show that the algorithm fails to converge with low compression fidelity and in time-varying topologies.Overall,our study offers valuable insights into the potential applicability of CHOCO-SGD for non-strongly convex objectives.Additionally,we provide practical guidelines for researchers seeking to utilize this algorithm in real-world scenarios. 展开更多
关键词 distributed stochastic optimization arbitrary compression fidelity non-strongly convex objective function
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部