Characterized by special morphologic,geographic,hydrologic,and societal behaviors,the water resources management of the Mediterranean catchment often shows a higher level of complexity including security issues of wat...Characterized by special morphologic,geographic,hydrologic,and societal behaviors,the water resources management of the Mediterranean catchment often shows a higher level of complexity including security issues of water supply,inundation risks,and environment management under the perspective of climate change.To have a comprehensive understanding of the Mediterranean water-cycle system,a deterministic distributed hydrologic modeling approach has been developed and presented in this study based on an application in the Var catchment(2800 km^(2))located at the French Mediterranean region.A 1D and 2D coupled model of MIKE SHE and MIKE 11 has been set up under a series of hypotheses to represent the whole hydrologic and hydrodynamic processes including rainfall-runoff,snow-melting,channel flow,overland flow,and the water exchange between land surface and unsaturated/saturated zones.The developed model was first calibrated with 4 years daily records from 2008 to 2011,then to be validated and further run within hourly time interval to produce detailed representation of the catchment water-cycle from 2012 to 2014.The deterministic distributed modeling approach presented in this study is able to represent its complicated water-cycle and used for supporting the decision‐making process of the water resources management of the catchment.展开更多
In Pakistan,the solar analogue has been addressed but its surface geographical parameterization has given least attention.Inappropriate density of stations and their spatial coverage particularly in difficult peripher...In Pakistan,the solar analogue has been addressed but its surface geographical parameterization has given least attention.Inappropriate density of stations and their spatial coverage particularly in difficult peripheral national territories,little or no solar radiation data,non-satisfactory sunshine hours data,and low quality of ground observed cloud cover data create a situation in which the spatial modeling of Extraterrestrial Solar Radiation(ESR) and its ground parameterization got sufficient scope.The Digital Elevation Model (DEM) input into Geographic Information System (GIS) is a compatible tool to demonstrate the spatial distribution of ESR over the rugged terrains of the study domain.For the first time,distributed modeling of ESR is done over the rugged terrains of Pakistan,based on DEM and ArcGIS..Results clearly depict that the complex landforms profoundly disrupt the zonal distribution of ESR in Pakistan.The screening impact of topography is higher on spatial distribution of ESR in winter and considerably low in summer.The combined effect of topography and latitude is obvious.Hence,the model was further testified by plotting Rb (ratio of ESR quantity over rugged terrain against plane surface) against azimuth at different latitudes with different angled slopes.The results clearly support the strong screening effect of rugged terrain through out the country especially in Himalayas,Karakoram and Hindukush (HKH),western border mountains and Balochistan Plateau.This model can be instrumental as baseline geospatial information for scientific investigations in Pakistan,where substantial fraction of national population is living in mountainous regions.展开更多
Due to the influences of local topographical factors and terrain inter-shielding, calculation of direct solar radiation (DSR) quantity of rugged terrain is very complex. Based on digital elevation model (DEM) data...Due to the influences of local topographical factors and terrain inter-shielding, calculation of direct solar radiation (DSR) quantity of rugged terrain is very complex. Based on digital elevation model (DEM) data and meteorological observations, a distributed model for calculating DSR over rugged terrain is developed. This model gives an all-sided consideration on factors influencing th a resolution of 1 km × 1 km for thDSR. Using the developed model, normals of annual DSR quantity wie Yellow River Basin was generated, with DEM data as the general characterization of terrain. Characteristics of DSR quantity influenced by geographic and topographic factors over rugged terrain were analyzed thoroughly. Results suggest that: influenced by local topographic factors, i.e. azimuth, slope and so on, and annual DSR quantity over mountainous area has a clear spatial difference; annual DSR quantity of sunny slope (or southern slope) of mountains is obviously larger than that of shady slope (or northern slope). The calculated DSR quantity of the Yellow River Basin is provided in the same way as other kinds of spatial information and can be employed as basic geographic data for relevant studies as well.展开更多
Combustion kinetics of the hydrochar was investigated using a multi-Gaussian-distributed activation energy model(DAEM)to ex-pand the knowledge on the combustion mechanisms.The results demonstrated that the kinetic par...Combustion kinetics of the hydrochar was investigated using a multi-Gaussian-distributed activation energy model(DAEM)to ex-pand the knowledge on the combustion mechanisms.The results demonstrated that the kinetic parameters calculated by the multi-Gaussian-DAEM accurately represented the experimental conversion rate curves.Overall,the feedstock combustion could be divided into four stages:the decomposition of hemicellulose,cellulose,lignin,and char combustion.The hydrochar combustion could in turn be divided into three stages:the combustion of cellulose,lignin,and char.The mean activation energy ranges obtained for the cellulose,lignin,and char were 273.7-292.8,315.1-334.5,and 354.4-370 kJ/mol,respectively,with the standard deviations of 2.1-23.1,9.5-27.4,and 12.1-22.9 kJ/mol,re-spectively.The cellulose and lignin contents first increased and then decreased with increasing hydrothermal carbonization(HTC)temperature,while the mass fraction of char gradually increased.展开更多
Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electro...Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electrochemical energy storage system. A novel failure prediction modeling method of lithium ion battery based on distributed parameter estimation and single particle model is proposed in this work. Lithium ion concentration in the anode of lithium ion battery is an unmeasurable distributed variable. Failure prediction system can estimate lithium ion concentration online, track the failure residual which is the difference between the estimated value and the ideal value. The precaution signal will be triggered when the failure residual is beyond the predefined failure precaution threshold, and the failure countdown prediction module will be activated. The remaining time of the severe failure threshold can be estimated by the failure countdown prediction module according to the changing rate of the failure residual. A simulation example verifies that lithium ion concentration in the anode of lithium ion battery can be estimated exactly and effectively by the failure prediction model. The precaution signal can be triggered reliably, and the remaining time of the severe failure can be forecasted accurately by the failure countdown prediction module.展开更多
Biological invasions,driven mainly by human activities,pose significant threats to global ecosystems and economies,with fungi and fungal-like oomycetes playing a pivotal role.Ink disease,caused by Phytophthora cinnamo...Biological invasions,driven mainly by human activities,pose significant threats to global ecosystems and economies,with fungi and fungal-like oomycetes playing a pivotal role.Ink disease,caused by Phytophthora cinnamomi and P.×cambivora,is a growing concern for sweet chestnut stands(Castanea sativa)in Europe.Since both pathogens are thermophilic organisms,ongoing climate change will likely exacerbate their impact.In this study,we applied species distribution modeling techniques to identify poten-tial substitutive species for sweet chestnut in the light of future climate scenarios SSP126 and SSP370 in southern Switzerland.Using the presence-only machine learning algorithm MaxEnt and leveraging occurrence data from the global dataset GBIF,we delineated the current and projected(2070-2100)distribution of 28 tree species.Several exotic species emerged as valuable alternatives to sweet chestnut,although careful consideration of all potential ecological consequences is required.We also identified several native tree species as promising substitutes,offering ecological benefits and potential adaptability to climatic conditions.Since species diversification fosters forest resilience,we also determined communities of alternative species that can be grown together.Our findings represent a valuable deci-sion tool for forest managers confronted with the challenges posed by ink disease and climate change.Given that,even in absence of disease,sweet chestnut is not a future-proof tree species in the study region,the identified species could offer a pathway toward resilient and sustainable forests within the entire chestnut belt.展开更多
A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncer...A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.展开更多
A distributed capacitance model for monolithic inductors is developed to predict the equivalently parasitical capacitances of the inductor.The ratio of the self-resonant frequency (f SR) of the differential-driven sym...A distributed capacitance model for monolithic inductors is developed to predict the equivalently parasitical capacitances of the inductor.The ratio of the self-resonant frequency (f SR) of the differential-driven symmetric inductor to the f SR of the single-ended driven inductor is firstly predicted and explained.Compared with a single-ended configuration,experimental data demonstrate that the differential inductor offers a 127% greater maximum quality factor and a broader range of operating frequencies.Two differential inductors with low parasitical capacitance are developed and validated.展开更多
The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is...The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is designed in which each UAV only shares the information with its neighbors, and the obtained local Finite-Horizon Optimal Control Problem(FHOCP) can be solved by swarm intelligent optimization algorithm.Then, a VTG approach is developed and integrated into the distributed MPC scheme to achieve trajectory tracking and obstacle avoidance.Further, an event-triggered mechanism is proposed to reduce the computational burden for UAV formation control, which takes into consideration the predictive state errors as well as the convergence of cost function.Numerical simulations show that the proposed VTG-based distributed MPC scheme is more computationally efficient to achieve formation control of multiple UAVs in comparison with the traditional distributed MPC method.展开更多
The distributed-power electric multiple units(EMUs)are widely used in high-speed railway.Due to the structural characteristic of mutual-coupled power units in EMUs,each power unit is set as an agent.Combining with the...The distributed-power electric multiple units(EMUs)are widely used in high-speed railway.Due to the structural characteristic of mutual-coupled power units in EMUs,each power unit is set as an agent.Combining with the traction/brake characteristic curve and running data of EMUs,a subtractive clustering method and pattern classification algorithm are adopted to set up a multi-model set for every agent.Then,the multi-agent model is established according to the multi-agent network topology and mutual-coupled constraint relations.Finally,we adopt a smooth start switching control strategy and a multi-agent distributed coordination control algorithm to ensure the synchronous speed tracking control of each agent.Simulation results on the actual CRH380A running data show the effectiveness of the proposed approach.展开更多
The paper proposes a new swarm intelligence-based distributed Model Predictive Control(MPC)approach for coordination control of multiple Unmanned Aerial Vehicles(UAVs).First,a distributed MPC framework is designed and...The paper proposes a new swarm intelligence-based distributed Model Predictive Control(MPC)approach for coordination control of multiple Unmanned Aerial Vehicles(UAVs).First,a distributed MPC framework is designed and each member only shares the information with neighbors.The Chaotic Grey Wolf Optimization(CGWO)method is developed on the basis of chaotic initialization and chaotic search to solve the local Finite Horizon Optimal Control Problem(FHOCP).Then,the distributed cost function is designed and integrated into each FHOCP to achieve multi-UAV formation control and trajectory tracking with no-fly zone constraint.Further,an event-triggered strategy is proposed to reduce the computational burden for the distributed MPC approach,which considers the predicted state errors and the convergence of cost function.Simulation results show that the CGWO-based distributed MPC approach is more computationally efficient to achieve multi-UAV coordination control than traditional method.展开更多
The objective of this study is to quantitatively evaluate Tropical Rainfall Measuring Mission (TRMM) data with rain gauge data and further to use this TRMM data to drive a Dis- tributed Time-Variant Gain Model (DT...The objective of this study is to quantitatively evaluate Tropical Rainfall Measuring Mission (TRMM) data with rain gauge data and further to use this TRMM data to drive a Dis- tributed Time-Variant Gain Model (DTVGM) to perform hydrological simulations in the semi-humid Weihe River catchment in China. Before the simulations, a comparison with a 10-year (2001-2010) daily rain gauge data set reveals that, at daily time step, TRMM rainfall data are better at capturing rain occurrence and mean values than rainfall extremes. On a monthly time scale, good linear relationships between TRMM and rain gauge rainfall data are found, with determination coefficients R2 varying between 0.78 and 0.89 for the individual stations. Subsequent simulation results of seven years (2001-2007) of data on daily hydro- logical processes confirm that the DTVGM when calibrated by rain gauge data performs better than when calibrated by TRMM data, but the performance of the simulation driven by TRMM data is better than that driven by gauge data on a monthly time scale. The results thus suggest that TRMM rainfall data are more suitable for monthly streamfiow simulation in the study area, and that, when the effects of recalibration and the results for water balance components are also taken into account, the TRMM 3B42-V7 product has the potential to perform well in similar basins.展开更多
A dynamic model of a helical gear rotor system is proposed.Firstly,a generally distributed dynamic model of a helical gear pair with tooth profile errors is developed.The gear mesh is represented by a pair of cylinder...A dynamic model of a helical gear rotor system is proposed.Firstly,a generally distributed dynamic model of a helical gear pair with tooth profile errors is developed.The gear mesh is represented by a pair of cylinders connected by a series of springs and the stiffness of each spring is equal to the effective mesh stiffness.Combining the gear dynamic model with the rotor-bearing system model,the gear-rotor-bearing dynamic model is developed.Then three cases are presented to analyze the dynamic responses of gear systems.The results reveal that the gear dynamic model is effective and advanced for general gear systems,narrow-faced gear,wide-faced gear and gear with tooth profile errors.Finally,the responses of an example helical gear system are also studied to demonstrate the influence of the lead crown reliefs and misalignments.The results show that both of the lead crown relief and misalignment soften the gear mesh stiffness and the responses of the gear system increase with the increasing lead crown reliefs and misalignments.展开更多
In recent years,Meloidogyne enterolobii has emerged as a major parasitic nematode infesting many plants in tropical or subtropical areas.However,the regions of potential distribution and the main contributing environm...In recent years,Meloidogyne enterolobii has emerged as a major parasitic nematode infesting many plants in tropical or subtropical areas.However,the regions of potential distribution and the main contributing environmental variables for this nematode are unclear.Under the current climate scenario,we predicted the potential geographic distributions of M.enterolobii worldwide and in China using a Maximum Entropy(MaxEnt)model with the occurrence data of this species.Furthermore,the potential distributions of M.enterolobii were projected under three future climate scenarios(BCC-CSM2-MR,CanESM5 and CNRM-CM6-1)for the periods 2050s and 2090s.Changes in the potential distribution were also predicted under different climate conditions.The results showed that highly suitable regions for M.enterolobii were concentrated in Africa,South America,Asia,and North America between latitudes 30°S to 30°N.Bio16(precipitation of the wettest quarter),bio10(mean temperature of the warmest quarter),and bio11(mean temperature of the coldest quarter)were the variables contributing most in predicting potential distributions of M.enterolobii.In addition,the potential suitable areas for M.enterolobii will shift toward higher latitudes under future climate scenarios.This study provides a theoretical basis for controlling and managing this nematode.展开更多
In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Nort...In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Northwest China, the authors use the routine hydrometric data to create a distributed monthly model with some conceptual parameters, coupled with GIS and RS tools and data. The model takes sub-basin as the minimal confluent unit, divides the main soils of the basin into 3 layers, and identifies the vegetation types as forest and pasture. The data used in the model are precipitation, air temperature, runoff, soil weight water content, soil depth, soil bulk density, soil porosity, land cover, etc. The model holds that if the water amount is greater than the water content capacity, there will be surface runoff. The actual evaporation is proportional to the product of the potential evaporation and soil volume water content. The studied basin is Heihe mainstream mountainous basin, with a drainage area of 10,009 km 2 . The data used in this simulation are from Jan. 1980 to Dec. 1995, and the first 10 years' data are used to simulate, while the last 5 years' data are used to calibrate. For the simulation process, the Nash-Sutcliffe Equation, Balance Error and Explained Variance is 0.8681, 5.4008 and 0.8718 respectively, while for the calibration process, 0.8799, -0.5974 and 0.8800 respectively. The model results show that the futuristic runoff of Heihe river basin will increase a little. The snowmelt, glacier meltwater and the evaportranspiration will increase. The air temperature increment will make the permanent snow and glacier area diminish, and the snowline will rise. The vegetation, especially the forest in Heihe mountainous watershed, could lead to the evapotranspiration decrease of the watershed, adjust the runoff process, and increase the soil water content.展开更多
In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use ...In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use of predictive arguments with a twofold aim:1)Promptly detect malicious agent behaviors affecting normal system operations;2)Apply specific control actions,based on predictive ideas,for mitigating as much as possible undesirable domino effects resulting from adversary operations.Specifically,the multi-agent system is topologically described by a leader-follower digraph characterized by a unique leader and set-theoretic receding horizon control ideas are exploited to develop a distributed algorithm capable to instantaneously recognize the attacked agent.Finally,numerical simulations are carried out to show benefits and effectiveness of the proposed approach.展开更多
The Miyun Reservoir is the most important water source for Beijing Municipality, the capital of China with a population of more than 12 million. In recent decades, the inflow to the reservoir has shown a decreasing tr...The Miyun Reservoir is the most important water source for Beijing Municipality, the capital of China with a population of more than 12 million. In recent decades, the inflow to the reservoir has shown a decreasing trend, which has seriously threatened water use in Beijing. In order to analyze the influents of land use and cover change (LUCC) upon inflow to Miyun Reservoir, terrain and land use information from remote sensing were utilized with a revised evapotranspiration estimation formula; a water loss model under conditions of human impacts was introduced; and a distributed monthly water balance model was established and applied to the Chaobai River Basin controlled by the Miyun Reservoir. The model simulation suggested that not only the impact of land cover change on evapotranspiration, but also the extra water loss caused by human activities, such as the water and soil conservation development projects should be considered. Although these development projects were of great benefit to human and ecological protection, they could reallocate water resources in time and space, and in a sense thereby influence the stream flow.展开更多
A grid and Green-Ampt based (Grid-GA)distributed hydrologic physical model was developed for flood simulation and forecasting in semi-humid and semi-arid basin. Based on topographical information of each grid cell e...A grid and Green-Ampt based (Grid-GA)distributed hydrologic physical model was developed for flood simulation and forecasting in semi-humid and semi-arid basin. Based on topographical information of each grid cell extracted fi'om the digital elevation model (DEM) and Green-Ampt infiltration method, the Grid-GA model takes into consideration the redistribution of water content, and consists of vegetation and root interception, evapotranspiration, runoff generation via the excess infiltration mechanism, runoff concentration, and flow routing. The downslope redis- tribution of soil moisture is explicitly calculated on a grid basis, and water exchange among grids within runoff routing along the river drainage networks is taken into consideration. The proposed model and Xin'anjiang model were ap- plied to the upper Lushi basin in the Luohe River, a tributary of the Yellow River, with an area of 4 716 km2 for flood simulation. Results show that both models perform well in flood simulation and can be used for flood forecasting in semi-humid and semi-arid region.展开更多
Ecological niche modeling has emerged as an useful tool in the investigation of the phylogeographic histories of species or communities in a region. The high biodiversity (oftentimes cryptic), and complex geography ...Ecological niche modeling has emerged as an useful tool in the investigation of the phylogeographic histories of species or communities in a region. The high biodiversity (oftentimes cryptic), and complex geography and geological history of Southeast Asia particularly call for multipronged approaches in phylogeographic investigations. Past studies have focused on taxa that are associated with lowland rainforests, which is the dominant natural vegetation type. Here, we combine published phylogenetic data, ecological niche modeling and paleo-climate models to reveal potential drivers of divergence in two open-forest bird species, the oriental magpie-robin Copsychus saularis and Coppersmith barbet Megalaima haemacephala. In spite of broad overlap in current distributions, there are subtle differences in their climatic niches, which result in different responses to past climatic changes. For C saularis, both Last Glacial Maximum climate models indicated that the entire Sundaland was climati- cally suitable, while phylogenetic analyses found divergent eastern and western Sundaland lineages. We thus postulate that this genetic divergence was a result of past separations of coastal habitats into eastern and western portions due to the emergence of Sunda shelf as sea-level fell. The current separation of morphological subspecies in Borneo is maintained by low climatic suitability (high annual rainfall) in certain regions. The extirpation of M. haemacephala from Borneo and southern Malay Peninsula might have been driven by unsuitable conditions (high temperature seasonality) in central Sundaland and/or the lack of open woodlands. Our study shows that ecological niche modeling adds a powerful dimension to our attempt to understand lineage evolution in space [Current Zoology 61 (5): 922-934, 2015].展开更多
基金supported by the National Key R&D Program of China(No.2023YFC3006702)the Natural Science Foundation of Beijing Municipality(IS23117).
文摘Characterized by special morphologic,geographic,hydrologic,and societal behaviors,the water resources management of the Mediterranean catchment often shows a higher level of complexity including security issues of water supply,inundation risks,and environment management under the perspective of climate change.To have a comprehensive understanding of the Mediterranean water-cycle system,a deterministic distributed hydrologic modeling approach has been developed and presented in this study based on an application in the Var catchment(2800 km^(2))located at the French Mediterranean region.A 1D and 2D coupled model of MIKE SHE and MIKE 11 has been set up under a series of hypotheses to represent the whole hydrologic and hydrodynamic processes including rainfall-runoff,snow-melting,channel flow,overland flow,and the water exchange between land surface and unsaturated/saturated zones.The developed model was first calibrated with 4 years daily records from 2008 to 2011,then to be validated and further run within hourly time interval to produce detailed representation of the catchment water-cycle from 2012 to 2014.The deterministic distributed modeling approach presented in this study is able to represent its complicated water-cycle and used for supporting the decision‐making process of the water resources management of the catchment.
文摘In Pakistan,the solar analogue has been addressed but its surface geographical parameterization has given least attention.Inappropriate density of stations and their spatial coverage particularly in difficult peripheral national territories,little or no solar radiation data,non-satisfactory sunshine hours data,and low quality of ground observed cloud cover data create a situation in which the spatial modeling of Extraterrestrial Solar Radiation(ESR) and its ground parameterization got sufficient scope.The Digital Elevation Model (DEM) input into Geographic Information System (GIS) is a compatible tool to demonstrate the spatial distribution of ESR over the rugged terrains of the study domain.For the first time,distributed modeling of ESR is done over the rugged terrains of Pakistan,based on DEM and ArcGIS..Results clearly depict that the complex landforms profoundly disrupt the zonal distribution of ESR in Pakistan.The screening impact of topography is higher on spatial distribution of ESR in winter and considerably low in summer.The combined effect of topography and latitude is obvious.Hence,the model was further testified by plotting Rb (ratio of ESR quantity over rugged terrain against plane surface) against azimuth at different latitudes with different angled slopes.The results clearly support the strong screening effect of rugged terrain through out the country especially in Himalayas,Karakoram and Hindukush (HKH),western border mountains and Balochistan Plateau.This model can be instrumental as baseline geospatial information for scientific investigations in Pakistan,where substantial fraction of national population is living in mountainous regions.
文摘Due to the influences of local topographical factors and terrain inter-shielding, calculation of direct solar radiation (DSR) quantity of rugged terrain is very complex. Based on digital elevation model (DEM) data and meteorological observations, a distributed model for calculating DSR over rugged terrain is developed. This model gives an all-sided consideration on factors influencing th a resolution of 1 km × 1 km for thDSR. Using the developed model, normals of annual DSR quantity wie Yellow River Basin was generated, with DEM data as the general characterization of terrain. Characteristics of DSR quantity influenced by geographic and topographic factors over rugged terrain were analyzed thoroughly. Results suggest that: influenced by local topographic factors, i.e. azimuth, slope and so on, and annual DSR quantity over mountainous area has a clear spatial difference; annual DSR quantity of sunny slope (or southern slope) of mountains is obviously larger than that of shady slope (or northern slope). The calculated DSR quantity of the Yellow River Basin is provided in the same way as other kinds of spatial information and can be employed as basic geographic data for relevant studies as well.
基金the National Nat-ural Science Foundation of China(Nos.52074029,51804026)the USTB-NTUT Joint Research Program(No.06310063)Chuan Wang would like to acknowledge the funding support from Vinnova(dnr:2017-01327).
文摘Combustion kinetics of the hydrochar was investigated using a multi-Gaussian-distributed activation energy model(DAEM)to ex-pand the knowledge on the combustion mechanisms.The results demonstrated that the kinetic parameters calculated by the multi-Gaussian-DAEM accurately represented the experimental conversion rate curves.Overall,the feedstock combustion could be divided into four stages:the decomposition of hemicellulose,cellulose,lignin,and char combustion.The hydrochar combustion could in turn be divided into three stages:the combustion of cellulose,lignin,and char.The mean activation energy ranges obtained for the cellulose,lignin,and char were 273.7-292.8,315.1-334.5,and 354.4-370 kJ/mol,respectively,with the standard deviations of 2.1-23.1,9.5-27.4,and 12.1-22.9 kJ/mol,re-spectively.The cellulose and lignin contents first increased and then decreased with increasing hydrothermal carbonization(HTC)temperature,while the mass fraction of char gradually increased.
基金This work was supported by the Fundamental Research Funds for the Central Universities (No.2017JBM003), the National Natural Science Foundation of China (No.61575053, No.61504008), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (No.20130009120042).
文摘Lithium ion battery has typical character of distributed parameter system, and can be described precisely by partial differential equations and multi-physics theory because lithium ion battery is a complicated electrochemical energy storage system. A novel failure prediction modeling method of lithium ion battery based on distributed parameter estimation and single particle model is proposed in this work. Lithium ion concentration in the anode of lithium ion battery is an unmeasurable distributed variable. Failure prediction system can estimate lithium ion concentration online, track the failure residual which is the difference between the estimated value and the ideal value. The precaution signal will be triggered when the failure residual is beyond the predefined failure precaution threshold, and the failure countdown prediction module will be activated. The remaining time of the severe failure threshold can be estimated by the failure countdown prediction module according to the changing rate of the failure residual. A simulation example verifies that lithium ion concentration in the anode of lithium ion battery can be estimated exactly and effectively by the failure prediction model. The precaution signal can be triggered reliably, and the remaining time of the severe failure can be forecasted accurately by the failure countdown prediction module.
基金supported by the Pilot program“Adaptation to climate change”of the Swiss Federal Office for the Environment(FOEN,project E03)by the Interreg V A Italy Switzerland Cooperation Program 20142020(project MONGEFITOFOR).
文摘Biological invasions,driven mainly by human activities,pose significant threats to global ecosystems and economies,with fungi and fungal-like oomycetes playing a pivotal role.Ink disease,caused by Phytophthora cinnamomi and P.×cambivora,is a growing concern for sweet chestnut stands(Castanea sativa)in Europe.Since both pathogens are thermophilic organisms,ongoing climate change will likely exacerbate their impact.In this study,we applied species distribution modeling techniques to identify poten-tial substitutive species for sweet chestnut in the light of future climate scenarios SSP126 and SSP370 in southern Switzerland.Using the presence-only machine learning algorithm MaxEnt and leveraging occurrence data from the global dataset GBIF,we delineated the current and projected(2070-2100)distribution of 28 tree species.Several exotic species emerged as valuable alternatives to sweet chestnut,although careful consideration of all potential ecological consequences is required.We also identified several native tree species as promising substitutes,offering ecological benefits and potential adaptability to climatic conditions.Since species diversification fosters forest resilience,we also determined communities of alternative species that can be grown together.Our findings represent a valuable deci-sion tool for forest managers confronted with the challenges posed by ink disease and climate change.Given that,even in absence of disease,sweet chestnut is not a future-proof tree species in the study region,the identified species could offer a pathway toward resilient and sustainable forests within the entire chestnut belt.
基金Supported by the National Natural Science Foundation of China(No.U24B20156)the National Defense Basic Scientific Research Program of China(No.JCKY2021204B051)the National Laboratory of Space Intelligent Control of China(Nos.HTKJ2023KL502005 and HTKJ2024KL502007)。
文摘A chance-constrained energy dispatch model based on the distributed stochastic model predictive control(DSMPC)approach for an islanded multi-microgrid system is proposed.An ambiguity set considering the inherent uncertainties of renewable energy sources(RESs)is constructed without requiring the full distribution knowledge of the uncertainties.The power balance chance constraint is reformulated within the framework of the distributionally robust optimization(DRO)approach.With the exchange of information and energy flow,each microgrid can achieve its local supply-demand balance.Furthermore,the closed-loop stability and recursive feasibility of the proposed algorithm are proved.The comparative results with other DSMPC methods show that a trade-off between robustness and economy can be achieved.
文摘A distributed capacitance model for monolithic inductors is developed to predict the equivalently parasitical capacitances of the inductor.The ratio of the self-resonant frequency (f SR) of the differential-driven symmetric inductor to the f SR of the single-ended driven inductor is firstly predicted and explained.Compared with a single-ended configuration,experimental data demonstrate that the differential inductor offers a 127% greater maximum quality factor and a broader range of operating frequencies.Two differential inductors with low parasitical capacitance are developed and validated.
基金supported in part by the National Natural Science Foundation of China(No.61803009)Fundamental Research Funds for the Central Universities,China(No.YWF-19-BJ-J-205)Aeronautical Science Foundation of China(No.20175851032)。
文摘The paper proposes a Virtual Target Guidance(VTG)-based distributed Model Predictive Control(MPC) scheme for formation control of multiple Unmanned Aerial Vehicles(UAVs).First, a framework of distributed MPC scheme is designed in which each UAV only shares the information with its neighbors, and the obtained local Finite-Horizon Optimal Control Problem(FHOCP) can be solved by swarm intelligent optimization algorithm.Then, a VTG approach is developed and integrated into the distributed MPC scheme to achieve trajectory tracking and obstacle avoidance.Further, an event-triggered mechanism is proposed to reduce the computational burden for UAV formation control, which takes into consideration the predictive state errors as well as the convergence of cost function.Numerical simulations show that the proposed VTG-based distributed MPC scheme is more computationally efficient to achieve formation control of multiple UAVs in comparison with the traditional distributed MPC method.
基金Supported by National Natural Science Foundation of China(61164013,U1334211,51174091)the Key Program of China Ministry of Railway(2011Z002-D)Natural Science Foundation of Jiangxi Province(20122BAB201021)
文摘The distributed-power electric multiple units(EMUs)are widely used in high-speed railway.Due to the structural characteristic of mutual-coupled power units in EMUs,each power unit is set as an agent.Combining with the traction/brake characteristic curve and running data of EMUs,a subtractive clustering method and pattern classification algorithm are adopted to set up a multi-model set for every agent.Then,the multi-agent model is established according to the multi-agent network topology and mutual-coupled constraint relations.Finally,we adopt a smooth start switching control strategy and a multi-agent distributed coordination control algorithm to ensure the synchronous speed tracking control of each agent.Simulation results on the actual CRH380A running data show the effectiveness of the proposed approach.
基金co-supported by the National Natural Science Foundation of China(Nos.61803009,61903084)Fundamental Research Funds for the Central Universities of China(No.YWF-20-BJ-J-542)Aeronautical Science Foundation of China(No.20175851032)。
文摘The paper proposes a new swarm intelligence-based distributed Model Predictive Control(MPC)approach for coordination control of multiple Unmanned Aerial Vehicles(UAVs).First,a distributed MPC framework is designed and each member only shares the information with neighbors.The Chaotic Grey Wolf Optimization(CGWO)method is developed on the basis of chaotic initialization and chaotic search to solve the local Finite Horizon Optimal Control Problem(FHOCP).Then,the distributed cost function is designed and integrated into each FHOCP to achieve multi-UAV formation control and trajectory tracking with no-fly zone constraint.Further,an event-triggered strategy is proposed to reduce the computational burden for the distributed MPC approach,which considers the predicted state errors and the convergence of cost function.Simulation results show that the CGWO-based distributed MPC approach is more computationally efficient to achieve multi-UAV coordination control than traditional method.
基金National Key Technology P&D Program,No.2012BAB02B00The Fundamental Research Funds for the Central Universities
文摘The objective of this study is to quantitatively evaluate Tropical Rainfall Measuring Mission (TRMM) data with rain gauge data and further to use this TRMM data to drive a Dis- tributed Time-Variant Gain Model (DTVGM) to perform hydrological simulations in the semi-humid Weihe River catchment in China. Before the simulations, a comparison with a 10-year (2001-2010) daily rain gauge data set reveals that, at daily time step, TRMM rainfall data are better at capturing rain occurrence and mean values than rainfall extremes. On a monthly time scale, good linear relationships between TRMM and rain gauge rainfall data are found, with determination coefficients R2 varying between 0.78 and 0.89 for the individual stations. Subsequent simulation results of seven years (2001-2007) of data on daily hydro- logical processes confirm that the DTVGM when calibrated by rain gauge data performs better than when calibrated by TRMM data, but the performance of the simulation driven by TRMM data is better than that driven by gauge data on a monthly time scale. The results thus suggest that TRMM rainfall data are more suitable for monthly streamfiow simulation in the study area, and that, when the effects of recalibration and the results for water balance components are also taken into account, the TRMM 3B42-V7 product has the potential to perform well in similar basins.
基金Projects(51605361,51505357) supported by the National Natural Science Foundation of ChinaProjects(XJS16041,JB160411) supported by the Fundamental Research Funds for the Central Universities,China
文摘A dynamic model of a helical gear rotor system is proposed.Firstly,a generally distributed dynamic model of a helical gear pair with tooth profile errors is developed.The gear mesh is represented by a pair of cylinders connected by a series of springs and the stiffness of each spring is equal to the effective mesh stiffness.Combining the gear dynamic model with the rotor-bearing system model,the gear-rotor-bearing dynamic model is developed.Then three cases are presented to analyze the dynamic responses of gear systems.The results reveal that the gear dynamic model is effective and advanced for general gear systems,narrow-faced gear,wide-faced gear and gear with tooth profile errors.Finally,the responses of an example helical gear system are also studied to demonstrate the influence of the lead crown reliefs and misalignments.The results show that both of the lead crown relief and misalignment soften the gear mesh stiffness and the responses of the gear system increase with the increasing lead crown reliefs and misalignments.
基金supported by the Key R&D Project of Shaanxi Province,China(2020ZDLNY07-06)the Science and Technology Program of Shaanxi Academy of Sciences(2022k-11).
文摘In recent years,Meloidogyne enterolobii has emerged as a major parasitic nematode infesting many plants in tropical or subtropical areas.However,the regions of potential distribution and the main contributing environmental variables for this nematode are unclear.Under the current climate scenario,we predicted the potential geographic distributions of M.enterolobii worldwide and in China using a Maximum Entropy(MaxEnt)model with the occurrence data of this species.Furthermore,the potential distributions of M.enterolobii were projected under three future climate scenarios(BCC-CSM2-MR,CanESM5 and CNRM-CM6-1)for the periods 2050s and 2090s.Changes in the potential distribution were also predicted under different climate conditions.The results showed that highly suitable regions for M.enterolobii were concentrated in Africa,South America,Asia,and North America between latitudes 30°S to 30°N.Bio16(precipitation of the wettest quarter),bio10(mean temperature of the warmest quarter),and bio11(mean temperature of the coldest quarter)were the variables contributing most in predicting potential distributions of M.enterolobii.In addition,the potential suitable areas for M.enterolobii will shift toward higher latitudes under future climate scenarios.This study provides a theoretical basis for controlling and managing this nematode.
基金Chinese Academy of Sciences No.KZCX3-SW-329 No.KZCX1-10-03-01+1 种基金 No.CACX210036 No.CACX210016
文摘In order to predict the futuristic runoff under global warming, and to approach to the effects of vegetation on the ecological environment of the inland river mountainous watershed of Northwest China, the authors use the routine hydrometric data to create a distributed monthly model with some conceptual parameters, coupled with GIS and RS tools and data. The model takes sub-basin as the minimal confluent unit, divides the main soils of the basin into 3 layers, and identifies the vegetation types as forest and pasture. The data used in the model are precipitation, air temperature, runoff, soil weight water content, soil depth, soil bulk density, soil porosity, land cover, etc. The model holds that if the water amount is greater than the water content capacity, there will be surface runoff. The actual evaporation is proportional to the product of the potential evaporation and soil volume water content. The studied basin is Heihe mainstream mountainous basin, with a drainage area of 10,009 km 2 . The data used in this simulation are from Jan. 1980 to Dec. 1995, and the first 10 years' data are used to simulate, while the last 5 years' data are used to calibrate. For the simulation process, the Nash-Sutcliffe Equation, Balance Error and Explained Variance is 0.8681, 5.4008 and 0.8718 respectively, while for the calibration process, 0.8799, -0.5974 and 0.8800 respectively. The model results show that the futuristic runoff of Heihe river basin will increase a little. The snowmelt, glacier meltwater and the evaportranspiration will increase. The air temperature increment will make the permanent snow and glacier area diminish, and the snowline will rise. The vegetation, especially the forest in Heihe mountainous watershed, could lead to the evapotranspiration decrease of the watershed, adjust the runoff process, and increase the soil water content.
文摘In this paper,a resilient distributed control scheme against replay attacks for multi-agent networked systems subject to input and state constraints is proposed.The methodological starting point relies on a smart use of predictive arguments with a twofold aim:1)Promptly detect malicious agent behaviors affecting normal system operations;2)Apply specific control actions,based on predictive ideas,for mitigating as much as possible undesirable domino effects resulting from adversary operations.Specifically,the multi-agent system is topologically described by a leader-follower digraph characterized by a unique leader and set-theoretic receding horizon control ideas are exploited to develop a distributed algorithm capable to instantaneously recognize the attacked agent.Finally,numerical simulations are carried out to show benefits and effectiveness of the proposed approach.
基金supported by the Knowledge Innovation Key Project of Chinese Academy of Sciences (Nos. CX10G-E01-08 andKZCX2-SW-317) and the National Natural Science Foundation of China (No. 50279049)
文摘The Miyun Reservoir is the most important water source for Beijing Municipality, the capital of China with a population of more than 12 million. In recent decades, the inflow to the reservoir has shown a decreasing trend, which has seriously threatened water use in Beijing. In order to analyze the influents of land use and cover change (LUCC) upon inflow to Miyun Reservoir, terrain and land use information from remote sensing were utilized with a revised evapotranspiration estimation formula; a water loss model under conditions of human impacts was introduced; and a distributed monthly water balance model was established and applied to the Chaobai River Basin controlled by the Miyun Reservoir. The model simulation suggested that not only the impact of land cover change on evapotranspiration, but also the extra water loss caused by human activities, such as the water and soil conservation development projects should be considered. Although these development projects were of great benefit to human and ecological protection, they could reallocate water resources in time and space, and in a sense thereby influence the stream flow.
基金Supported by National Natural Science Foundation of China (No.50479017)Program for Changjiang Scholars and Innovative Research Team in University (PCSIRT) (No. IRT0717)
文摘A grid and Green-Ampt based (Grid-GA)distributed hydrologic physical model was developed for flood simulation and forecasting in semi-humid and semi-arid basin. Based on topographical information of each grid cell extracted fi'om the digital elevation model (DEM) and Green-Ampt infiltration method, the Grid-GA model takes into consideration the redistribution of water content, and consists of vegetation and root interception, evapotranspiration, runoff generation via the excess infiltration mechanism, runoff concentration, and flow routing. The downslope redis- tribution of soil moisture is explicitly calculated on a grid basis, and water exchange among grids within runoff routing along the river drainage networks is taken into consideration. The proposed model and Xin'anjiang model were ap- plied to the upper Lushi basin in the Luohe River, a tributary of the Yellow River, with an area of 4 716 km2 for flood simulation. Results show that both models perform well in flood simulation and can be used for flood forecasting in semi-humid and semi-arid region.
文摘Ecological niche modeling has emerged as an useful tool in the investigation of the phylogeographic histories of species or communities in a region. The high biodiversity (oftentimes cryptic), and complex geography and geological history of Southeast Asia particularly call for multipronged approaches in phylogeographic investigations. Past studies have focused on taxa that are associated with lowland rainforests, which is the dominant natural vegetation type. Here, we combine published phylogenetic data, ecological niche modeling and paleo-climate models to reveal potential drivers of divergence in two open-forest bird species, the oriental magpie-robin Copsychus saularis and Coppersmith barbet Megalaima haemacephala. In spite of broad overlap in current distributions, there are subtle differences in their climatic niches, which result in different responses to past climatic changes. For C saularis, both Last Glacial Maximum climate models indicated that the entire Sundaland was climati- cally suitable, while phylogenetic analyses found divergent eastern and western Sundaland lineages. We thus postulate that this genetic divergence was a result of past separations of coastal habitats into eastern and western portions due to the emergence of Sunda shelf as sea-level fell. The current separation of morphological subspecies in Borneo is maintained by low climatic suitability (high annual rainfall) in certain regions. The extirpation of M. haemacephala from Borneo and southern Malay Peninsula might have been driven by unsuitable conditions (high temperature seasonality) in central Sundaland and/or the lack of open woodlands. Our study shows that ecological niche modeling adds a powerful dimension to our attempt to understand lineage evolution in space [Current Zoology 61 (5): 922-934, 2015].