Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research probl...Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem.Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables.In this study,we propose a machine learning algorithm for carbon emissions,a Bayesian optimized XGboost regression model,using multi-year energy carbon emission data and nighttime lights(NTL)remote sensing data from Shaanxi Province,China.Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models,with an R^(2)of 0.906 and RMSE of 5.687.We observe an annual increase in carbon emissions,with high-emission counties primarily concentrated in northern and central Shaanxi Province,displaying a shift from discrete,sporadic points to contiguous,extended spatial distribution.Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns,with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering.Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissionsmore accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment.This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.展开更多
Interlayer is an important factor affecting the distribution of remaining oil.Accurate identification of interlayer distribution is of great significance in guiding oilfield production and development.However,the trad...Interlayer is an important factor affecting the distribution of remaining oil.Accurate identification of interlayer distribution is of great significance in guiding oilfield production and development.However,the traditional method of identifying interlayers has some limitations:(1)Due to the existence of overlaps in the cross plot for different categories of interlayers,it is difficult to establish a determined model to classify the type of interlayer;(2)Traditional identification methods only use two or three logging curves to identify the types of interlayers,making it difficult to fully utilize the information of the logging curves,the recognition accuracy will be greatly reduced;(3)For a large number of complex logging data,interlayer identification is time-consuming and laborintensive.Based on the existing well area data such as logging data and core data,this paper uses machine learning method to quantitatively identify the interlayers in the single well layer of CIII sandstone group in the M oilfield.Through the comparison of various classifiers,it is found that the decision tree method has the best applicability and the highest accuracy in the study area.Based on single well identification of interlayers,the continuity of well interval interlayers in the study area is analyzed according to the horizontal well.Finally,the influence of the continuity of interlayers on the distribution of remaining oil is verified by the spatial distribution characteristics of interlayers combined with the production situation of the M oilfield.展开更多
The security of Federated Learning(FL)/Distributed Machine Learning(DML)is gravely threatened by data poisoning attacks,which destroy the usability of the model by contaminating training samples,so such attacks are ca...The security of Federated Learning(FL)/Distributed Machine Learning(DML)is gravely threatened by data poisoning attacks,which destroy the usability of the model by contaminating training samples,so such attacks are called causative availability indiscriminate attacks.Facing the problem that existing data sanitization methods are hard to apply to real-time applications due to their tedious process and heavy computations,we propose a new supervised batch detection method for poison,which can fleetly sanitize the training dataset before the local model training.We design a training dataset generation method that helps to enhance accuracy and uses data complexity features to train a detection model,which will be used in an efficient batch hierarchical detection process.Our model stockpiles knowledge about poison,which can be expanded by retraining to adapt to new attacks.Being neither attack-specific nor scenario-specific,our method is applicable to FL/DML or other online or offline scenarios.展开更多
We present the viewpoint that optimization problems encountered in machine learning can often be interpreted as minimizing a convex functional over a function space,but with a non-convex constraint set introduced by m...We present the viewpoint that optimization problems encountered in machine learning can often be interpreted as minimizing a convex functional over a function space,but with a non-convex constraint set introduced by model parameterization.This observation allows us to repose such problems via a suitable relaxation as convex optimization problems in the space of distributions over the training parameters.We derive some simple relationships between the distribution-space problem and the original problem,e.g.,a distribution-space solution is at least as good as a solution in the original space.Moreover,we develop a numerical algorithm based on mixture distributions to perform approximate optimization directly in the distribution space.Consistency of this approximation is established and the numerical efficacy of the proposed algorithm is illustrated in simple examples.In both theory and practice,this formulation provides an alternative approach to large-scale optimization in machine learning.展开更多
To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the ...To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the corresponding optimization solver algorithms converge slowly,which highly demand on computing and memory resources.To overcome the challenges,we propose a distributed computing framework for L-BFGS optimization algorithm based on variance reduction method,which is a lightweight,few additional cost and parallelized scheme for the model training process.To validate the claims,we have conducted several experiments on multiple classical datasets.Results show that our proposed computing framework can steadily accelerate the training process of solver in either local mode or distributed mode.展开更多
Compressed Sensing(CS)is a Machine Learning(ML)method,which can be regarded as a single-layer unsupervised learning method.It mainly emphasizes the sparsity of the model.In this paper,we study an ML-based CS Channel E...Compressed Sensing(CS)is a Machine Learning(ML)method,which can be regarded as a single-layer unsupervised learning method.It mainly emphasizes the sparsity of the model.In this paper,we study an ML-based CS Channel Estimation(CE)method for wireless communications,which plays an important role in Industrial Internet of Things(IIoT)applications.For the sparse correlation between channels in Multiple Input Multiple Output Filter Bank MultiCarrier with Offset Quadrature Amplitude Modulation(MIMO-FBMC/OQAM)systems,a Distributed Compressed Sensing(DCS)-based CE approach is studied.A distributed sparse adaptive weak selection threshold method is proposed for CE.Firstly,the correlation between MIMO channels is utilized to represent a joint sparse model,and CE is transformed into a joint sparse signal reconstruction problem.Then,the number of correlation atoms for inner product operation is optimized by weak selection threshold,and sparse signal reconstruction is realized by sparse adaptation.The experiment results show that the proposed DCS-based method not only estimates the multipath channel components accurately but also achieves higher CE performance than classical Orthogonal Matching Pursuit(OMP)method and other traditional DCS methods in the time-frequency dual selective channels.展开更多
In distributed machine learning(DML)based on the parameter server(PS)architecture,unbalanced communication load distribution of PSs will lead to a significant slowdown of model synchronization in heterogeneous network...In distributed machine learning(DML)based on the parameter server(PS)architecture,unbalanced communication load distribution of PSs will lead to a significant slowdown of model synchronization in heterogeneous networks due to low utilization of bandwidth.To address this problem,a network-aware adaptive PS load distribution scheme is proposed,which accelerates model synchronization by proactively adjusting the communication load on PSs according to network states.We evaluate the proposed scheme on MXNet,known as a realworld distributed training platform,and results show that our scheme achieves up to 2.68 times speed-up of model training in the dynamic and heterogeneous network environment.展开更多
With the emergence of various intelligent applications,machine learning technologies face lots of challenges including large-scale models,application oriented real-time dataset and limited capabilities of nodes in pra...With the emergence of various intelligent applications,machine learning technologies face lots of challenges including large-scale models,application oriented real-time dataset and limited capabilities of nodes in practice.Therefore,distributed machine learning(DML) and semi-supervised learning methods which help solve these problems have been addressed in both academia and industry.In this paper,the semi-supervised learning method and the data parallelism DML framework are combined.The pseudo-label based local loss function for each distributed node is studied,and the stochastic gradient descent(SGD) based distributed parameter update principle is derived.A demo that implements the pseudo-label based semi-supervised learning in the DML framework is conducted,and the CIFAR-10 dataset for target classification is used to evaluate the performance.Experimental results confirm the convergence and the accuracy of the model using the pseudo-label based semi-supervised learning in the DML framework.Given the proportion of the pseudo-label dataset is 20%,the accuracy of the model is over 90% when the value of local parameter update steps between two global aggregations is less than 5.Besides,fixing the global aggregations interval to 3,the model converges with acceptable performance degradation when the proportion of the pseudo-label dataset varies from 20% to 80%.展开更多
The Internet service provider(ISP)is the heart of any country’s Internet infrastructure and plays an important role in connecting to theWorld WideWeb.Internet exchange point(IXP)allows the interconnection of two or m...The Internet service provider(ISP)is the heart of any country’s Internet infrastructure and plays an important role in connecting to theWorld WideWeb.Internet exchange point(IXP)allows the interconnection of two or more separate network infrastructures.All Internet traffic entering a country should pass through its IXP.Thus,it is an ideal location for performing malicious traffic analysis.Distributed denial of service(DDoS)attacks are becoming a more serious daily threat.Malicious actors in DDoS attacks control numerous infected machines known as botnets.Botnets are used to send numerous fake requests to overwhelm the resources of victims and make them unavailable for some periods.To date,such attacks present a major devastating security threat on the Internet.This paper proposes an effective and efficient machine learning(ML)-based DDoS detection approach for the early warning and protection of the Saudi Arabia Internet exchange point(SAIXP)platform.The effectiveness and efficiency of the proposed approach are verified by selecting an accurate ML method with a small number of input features.A chi-square method is used for feature selection because it is easier to compute than other methods,and it does not require any assumption about feature distribution values.Several ML methods are assessed using holdout and 10-fold tests on a public large-size dataset.The experiments showed that the performance of the decision tree(DT)classifier achieved a high accuracy result(99.98%)with a small number of features(10 features).The experimental results confirmthe applicability of using DT and chi-square for DDoS detection and early warning in SAIXP.展开更多
With the advent of the era of big data,the exponential growth of data generation has provided unprecedented opportunities for innovation and insight in various fields.However,increasing privacy and security concerns a...With the advent of the era of big data,the exponential growth of data generation has provided unprecedented opportunities for innovation and insight in various fields.However,increasing privacy and security concerns and the existence of the phenomenon of“data silos”limit the collaborative utilization of data.This paper systematically discusses the technological progress of federated learning,including its basic framework,model optimization,communication efficiency improvement,privacy protection mechanism,and integration with other technologies.It then analyzes the broad applications of federated learning in healthcare,the Internet of Things,Internet of Vehicles,smart cities,and financial services,and summarizes its challenges in data heterogeneity,communication overhead,privacy protection,scalability,and security.Finally,this paper looks forward to the future development direction of federated learning and proposes potential research paths in efficient algorithm design,privacy protection mechanism optimization,heterogeneous data processing,and cross-industry collaboration.展开更多
The privacy and security of data are recently research hotspots and challenges.For this issue,an adaptive scheme of distributed learning based on homomorphic encryption and blockchain is proposed.Specifically,in the f...The privacy and security of data are recently research hotspots and challenges.For this issue,an adaptive scheme of distributed learning based on homomorphic encryption and blockchain is proposed.Specifically,in the form of homomorphic encryption,the computing party iteratively aggregates the learning models from distributed participants,so that the privacy of both the data and model is ensured.Moreover,the aggregations are recorded and verified by blockchain,which prevents attacks from malicious nodes and guarantees the reliability of learning.For these sophisticated privacy and security technologies,the computation cost and energy consumption in both the encrypted learning and consensus reaching are analyzed,based on which a joint optimization of computation resources allocation and adaptive aggregation to minimize loss function is established with the realistic solution followed.Finally,the simulations and analysis evaluate the performance of the proposed scheme.展开更多
Breast cancer is presently one of the most common malignancies worldwide,with a higher fatality rate.In this study,a quantitative structure-activity relationship(QSAR)model of compound biological activity and ADMET(Ab...Breast cancer is presently one of the most common malignancies worldwide,with a higher fatality rate.In this study,a quantitative structure-activity relationship(QSAR)model of compound biological activity and ADMET(Absorption,Distribution,Metabolism,Excretion,Toxicity)properties prediction model were performed using estrogen receptor alpha(ERα)antagonist information collected from compound samples.We first utilized grey relation analysis(GRA)in conjunction with the random forest(RF)algorithm to identify the top 20 molecular descriptor variables that have the greatest influence on biological activity,and then we used Spearman correlation analysis to identify 16 independent variables.Second,a QSAR model of the compound were developed based on BP neural network(BPNN),genetic algorithm optimized BP neural network(GA-BPNN),and support vector regression(SVR).The BPNN,the SVR,and the logistic regression(LR)models were then used to identify and predict the ADMET properties of substances,with the prediction impacts of each model compared and assessed.The results reveal that a SVR model was used in QSAR quantitative prediction,and in the classification prediction of ADMET properties:the SVR model predicts the Caco-2 and hERG(human Ether-a-go-go Related Gene)properties,the LR model predicts the cytochrome P450 enzyme 3A4 subtype(CYP3A4)and Micronucleus(MN)properties,and the BPNN model predicts the Human Oral Bioavailability(HOB)properties.Finally,information entropy theory is used to validate the rationality of variable screening,and sensitivity analysis of the model demonstrates that the constructed model has high accuracy and stability,which can be used as a reference for screening probable active compounds and drug discovery.展开更多
Software-defined network(SDN)becomes a new revolutionary paradigm in networks because it provides more control and network operation over a network infrastructure.The SDN controller is considered as the operating syst...Software-defined network(SDN)becomes a new revolutionary paradigm in networks because it provides more control and network operation over a network infrastructure.The SDN controller is considered as the operating system of the SDN based network infrastructure,and it is responsible for executing the different network applications and maintaining the network services and functionalities.Despite all its tremendous capabilities,the SDN face many security issues due to the complexity of the SDN architecture.Distributed denial of services(DDoS)is a common attack on SDN due to its centralized architecture,especially at the control layer of the SDN that has a network-wide impact.Machine learning is now widely used for fast detection of these attacks.In this paper,some important feature selection methods for machine learning on DDoS detection are evaluated.The selection of optimal features reflects the classification accuracy of the machine learning techniques and the performance of the SDN controller.A comparative analysis of feature selection and machine learning classifiers is also derived to detect SDN attacks.The experimental results show that the Random forest(RF)classifier trains the more accurate model with 99.97%accuracy using features subset by the Recursive feature elimination(RFE)method.展开更多
Over the past few years,rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems.As a result,greater intelligence is necessary to effectively ...Over the past few years,rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems.As a result,greater intelligence is necessary to effectively manage,optimize,and maintain these systems.Due to their distributed nature,machine learning models are challenging to deploy in traditional networks.However,Software-Defined Networking(SDN)presents an opportunity to integrate intelligence into networks by offering a programmable architecture that separates data and control planes.SDN provides a centralized network view and allows for dynamic updates of flow rules and softwarebased traffic analysis.While the programmable nature of SDN makes it easier to deploy machine learning techniques,the centralized control logic also makes it vulnerable to cyberattacks.To address these issues,recent research has focused on developing powerful machine-learning methods for detecting and mitigating attacks in SDN environments.This paper highlighted the countermeasures for cyberattacks on SDN and how current machine learningbased solutions can overcome these emerging issues.We also discuss the pros and cons of using machine learning algorithms for detecting and mitigating these attacks.Finally,we highlighted research issues,gaps,and challenges in developing machine learning-based solutions to secure the SDN controller,to help the research and network community to develop more robust and reliable solutions.展开更多
The large-scale application of renewable energy power generation technology brings new challenges to the operation of traditional power grids andenergy management on the load side. Microgrid can effectively solve this...The large-scale application of renewable energy power generation technology brings new challenges to the operation of traditional power grids andenergy management on the load side. Microgrid can effectively solve this problemby using its regulation and flexibility, and is considered to be an ideal platform.The traditional method of computing total transfer capability is difficult due tothe central integration of wind farms. As a result, the differential evolutionextreme learning machine is offered as a data mining approach for extractingoperating rules for the total transfer capability of tie-lines in wind-integratedpower systems. K-medoids clustering under the two-dimensional “wind power-load consumption” feature space is used to define representative operational scenarios initially. Then, using stochastic sampling and repetitive power flow, aknowledge base for total transfer capability operating rule mining is created.Then, a novel method is used to filter redundant characteristics and find featuresthat are closely associated to the total transfer capability in order to decrease theultra-high dimensionality of operational features. Finally, by feeding the trainingdata into the proposed algorithm, the total transfer capability operation rules arederived from the knowledge base. It can be seen that, the proposed algorithmcan optimize the system performance with good accuracy and generality, according to numerical data.展开更多
With the advancement of internet,there is also a rise in cybercrimes and digital attacks.DDoS(Distributed Denial of Service)attack is the most dominant weapon to breach the vulnerabilities of internet and pose a signi...With the advancement of internet,there is also a rise in cybercrimes and digital attacks.DDoS(Distributed Denial of Service)attack is the most dominant weapon to breach the vulnerabilities of internet and pose a significant threat in the digital environment.These cyber-attacks are generated deliberately and consciously by the hacker to overwhelm the target with heavy traffic that genuine users are unable to use the target resources.As a result,targeted services are inaccessible by the legitimate user.To prevent these attacks,researchers are making use of advanced Machine Learning classifiers which can accurately detect the DDoS attacks.However,the challenge in using these techniques is the limitations on capacity for the volume of data and the required processing time.In this research work,we propose the framework of reducing the dimensions of the data by selecting the most important features which contribute to the predictive accuracy.We show that the‘lite’model trained on reduced dataset not only saves the computational power,but also improves the predictive performance.We show that dimensionality reduction can improve both effectiveness(recall)and efficiency(precision)of the model as compared to the model trained on‘full’dataset.展开更多
CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferrin...CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferring information.A dynamic strategy,DevMLOps(Development Machine Learning Operations)used in automatic selections and tunings of MLTs result in significant performance differences.But,the scheme has many disadvantages including continuity in training,more samples and training time in feature selections and increased classification execution times.RFEs(Recursive Feature Eliminations)are computationally very expensive in its operations as it traverses through each feature without considering correlations between them.This problem can be overcome by the use of Wrappers as they select better features by accounting for test and train datasets.The aim of this paper is to use DevQLMLOps for automated tuning and selections based on orchestrations and messaging between containers.The proposed AKFA(Adaptive Kernel Firefly Algorithm)is for selecting features for CNM(Cloud Network Monitoring)operations.AKFA methodology is demonstrated using CNSD(Cloud Network Security Dataset)with satisfactory results in the performance metrics like precision,recall,F-measure and accuracy used.展开更多
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ...When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ML models to be trained on local devices without any need for centralized data transfer,thereby reducing both the exposure of sensitive data and the possibility of data interception by malicious third parties.This paradigm has gained momentum in the last few years,spurred by the plethora of real-world applications that have leveraged its ability to improve the efficiency of distributed learning and to accommodate numerous participants with their data sources.By virtue of FL,models can be learned from all such distributed data sources while preserving data privacy.The aim of this paper is to provide a practical tutorial on FL,including a short methodology and a systematic analysis of existing software frameworks.Furthermore,our tutorial provides exemplary cases of study from three complementary perspectives:i)Foundations of FL,describing the main components of FL,from key elements to FL categories;ii)Implementation guidelines and exemplary cases of study,by systematically examining the functionalities provided by existing software frameworks for FL deployment,devising a methodology to design a FL scenario,and providing exemplary cases of study with source code for different ML approaches;and iii)Trends,shortly reviewing a non-exhaustive list of research directions that are under active investigation in the current FL landscape.The ultimate purpose of this work is to establish itself as a referential work for researchers,developers,and data scientists willing to explore the capabilities of FL in practical applications.展开更多
Most of the existing machine learning studies in logs interpretation do not consider the data distribution discrepancy issue,so the trained model cannot well generalize to the unseen data without calibrating the logs....Most of the existing machine learning studies in logs interpretation do not consider the data distribution discrepancy issue,so the trained model cannot well generalize to the unseen data without calibrating the logs.In this paper,we formulated the geophysical logs calibration problem and give its statistical explanation,and then exhibited an interpretable machine learning method,i.e.,Unilateral Alignment,which could align the logs from one well to another without losing the physical meanings.The involved UA method is an unsupervised feature domain adaptation method,so it does not rely on any labels from cores.The experiments in 3 wells and 6 tasks showed the effectiveness and interpretability from multiple views.展开更多
基金supported by the Key Research and Development Program in Shaanxi Province,China(No.2022ZDLSF07-05)the Fundamental Research Funds for the Central Universities,CHD(No.300102352901)。
文摘Carbon emissions resulting from energy consumption have become a pressing issue for governments worldwide.Accurate estimation of carbon emissions using satellite remote sensing data has become a crucial research problem.Previous studies relied on statistical regression models that failed to capture the complex nonlinear relationships between carbon emissions and characteristic variables.In this study,we propose a machine learning algorithm for carbon emissions,a Bayesian optimized XGboost regression model,using multi-year energy carbon emission data and nighttime lights(NTL)remote sensing data from Shaanxi Province,China.Our results demonstrate that the XGboost algorithm outperforms linear regression and four other machine learning models,with an R^(2)of 0.906 and RMSE of 5.687.We observe an annual increase in carbon emissions,with high-emission counties primarily concentrated in northern and central Shaanxi Province,displaying a shift from discrete,sporadic points to contiguous,extended spatial distribution.Spatial autocorrelation clustering reveals predominantly high-high and low-low clustering patterns,with economically developed counties showing high-emission clustering and economically relatively backward counties displaying low-emission clustering.Our findings show that the use of NTL data and the XGboost algorithm can estimate and predict carbon emissionsmore accurately and provide a complementary reference for satellite remote sensing image data to serve carbon emission monitoring and assessment.This research provides an important theoretical basis for formulating practical carbon emission reduction policies and contributes to the development of techniques for accurate carbon emission estimation using remote sensing data.
基金supported by the Natural Science Basic Research Program of Shaanxi(2024JC-YBMS-202).
文摘Interlayer is an important factor affecting the distribution of remaining oil.Accurate identification of interlayer distribution is of great significance in guiding oilfield production and development.However,the traditional method of identifying interlayers has some limitations:(1)Due to the existence of overlaps in the cross plot for different categories of interlayers,it is difficult to establish a determined model to classify the type of interlayer;(2)Traditional identification methods only use two or three logging curves to identify the types of interlayers,making it difficult to fully utilize the information of the logging curves,the recognition accuracy will be greatly reduced;(3)For a large number of complex logging data,interlayer identification is time-consuming and laborintensive.Based on the existing well area data such as logging data and core data,this paper uses machine learning method to quantitatively identify the interlayers in the single well layer of CIII sandstone group in the M oilfield.Through the comparison of various classifiers,it is found that the decision tree method has the best applicability and the highest accuracy in the study area.Based on single well identification of interlayers,the continuity of well interval interlayers in the study area is analyzed according to the horizontal well.Finally,the influence of the continuity of interlayers on the distribution of remaining oil is verified by the spatial distribution characteristics of interlayers combined with the production situation of the M oilfield.
基金supported in part by the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(Grant No.2022C03174)the National Natural Science Foundation of China(No.92067103)+4 种基金the Key Research and Development Program of Shaanxi,China(No.2021ZDLGY06-02)the Natural Science Foundation of Shaanxi Province(No.2019ZDLGY12-02)the Shaanxi Innovation Team Project(No.2018TD-007)the Xi'an Science and technology Innovation Plan(No.201809168CX9JC10)the Fundamental Research Funds for the Central Universities(No.YJS2212)and National 111 Program of China B16037.
文摘The security of Federated Learning(FL)/Distributed Machine Learning(DML)is gravely threatened by data poisoning attacks,which destroy the usability of the model by contaminating training samples,so such attacks are called causative availability indiscriminate attacks.Facing the problem that existing data sanitization methods are hard to apply to real-time applications due to their tedious process and heavy computations,we propose a new supervised batch detection method for poison,which can fleetly sanitize the training dataset before the local model training.We design a training dataset generation method that helps to enhance accuracy and uses data complexity features to train a detection model,which will be used in an efficient batch hierarchical detection process.Our model stockpiles knowledge about poison,which can be expanded by retraining to adapt to new attacks.Being neither attack-specific nor scenario-specific,our method is applicable to FL/DML or other online or offline scenarios.
基金supported by the National Natural Science Foundation of China(Grant No.12201053)supported by the National Research Foundation,Singapore,under the NRF fellowship(Project No.NRF-NRFF13-2021-0005).
文摘We present the viewpoint that optimization problems encountered in machine learning can often be interpreted as minimizing a convex functional over a function space,but with a non-convex constraint set introduced by model parameterization.This observation allows us to repose such problems via a suitable relaxation as convex optimization problems in the space of distributions over the training parameters.We derive some simple relationships between the distribution-space problem and the original problem,e.g.,a distribution-space solution is at least as good as a solution in the original space.Moreover,we develop a numerical algorithm based on mixture distributions to perform approximate optimization directly in the distribution space.Consistency of this approximation is established and the numerical efficacy of the proposed algorithm is illustrated in simple examples.In both theory and practice,this formulation provides an alternative approach to large-scale optimization in machine learning.
基金partly supported by National Key Basic Research Program of China(2016YFB1000100)partly supported by National Natural Science Foundation of China(NO.61402490)。
文摘To security support large-scale intelligent applications,distributed machine learning based on blockchain is an intuitive solution scheme.However,the distributed machine learning is difficult to train due to that the corresponding optimization solver algorithms converge slowly,which highly demand on computing and memory resources.To overcome the challenges,we propose a distributed computing framework for L-BFGS optimization algorithm based on variance reduction method,which is a lightweight,few additional cost and parallelized scheme for the model training process.To validate the claims,we have conducted several experiments on multiple classical datasets.Results show that our proposed computing framework can steadily accelerate the training process of solver in either local mode or distributed mode.
基金supported by National Natural Science Foundation of China under Grant Nos.61901409 and 61961013Jiangxi Provincial Natural Science Foundation under Grant No.20202BABL212001Open Project of State Key Laboratory of Marine Resources Utilization in South China Sea under Grant No.MRUKF2021034.
文摘Compressed Sensing(CS)is a Machine Learning(ML)method,which can be regarded as a single-layer unsupervised learning method.It mainly emphasizes the sparsity of the model.In this paper,we study an ML-based CS Channel Estimation(CE)method for wireless communications,which plays an important role in Industrial Internet of Things(IIoT)applications.For the sparse correlation between channels in Multiple Input Multiple Output Filter Bank MultiCarrier with Offset Quadrature Amplitude Modulation(MIMO-FBMC/OQAM)systems,a Distributed Compressed Sensing(DCS)-based CE approach is studied.A distributed sparse adaptive weak selection threshold method is proposed for CE.Firstly,the correlation between MIMO channels is utilized to represent a joint sparse model,and CE is transformed into a joint sparse signal reconstruction problem.Then,the number of correlation atoms for inner product operation is optimized by weak selection threshold,and sparse signal reconstruction is realized by sparse adaptation.The experiment results show that the proposed DCS-based method not only estimates the multipath channel components accurately but also achieves higher CE performance than classical Orthogonal Matching Pursuit(OMP)method and other traditional DCS methods in the time-frequency dual selective channels.
基金partially supported by the computing power networks and new communication primitives project under Grant No. HC-CN-2020120001the National Natural Science Foundation of China under Grant No. 62102066Open Research Projects of Zhejiang Lab under Grant No. 2022QA0AB02
文摘In distributed machine learning(DML)based on the parameter server(PS)architecture,unbalanced communication load distribution of PSs will lead to a significant slowdown of model synchronization in heterogeneous networks due to low utilization of bandwidth.To address this problem,a network-aware adaptive PS load distribution scheme is proposed,which accelerates model synchronization by proactively adjusting the communication load on PSs according to network states.We evaluate the proposed scheme on MXNet,known as a realworld distributed training platform,and results show that our scheme achieves up to 2.68 times speed-up of model training in the dynamic and heterogeneous network environment.
基金Supported by the National Key R&D Program of China(No.2020YFC1807904)the Natural Science Foundation of Beijing Municipality(No.L192002)the National Natural Science Foundation of China(No.U1633115)。
文摘With the emergence of various intelligent applications,machine learning technologies face lots of challenges including large-scale models,application oriented real-time dataset and limited capabilities of nodes in practice.Therefore,distributed machine learning(DML) and semi-supervised learning methods which help solve these problems have been addressed in both academia and industry.In this paper,the semi-supervised learning method and the data parallelism DML framework are combined.The pseudo-label based local loss function for each distributed node is studied,and the stochastic gradient descent(SGD) based distributed parameter update principle is derived.A demo that implements the pseudo-label based semi-supervised learning in the DML framework is conducted,and the CIFAR-10 dataset for target classification is used to evaluate the performance.Experimental results confirm the convergence and the accuracy of the model using the pseudo-label based semi-supervised learning in the DML framework.Given the proportion of the pseudo-label dataset is 20%,the accuracy of the model is over 90% when the value of local parameter update steps between two global aggregations is less than 5.Besides,fixing the global aggregations interval to 3,the model converges with acceptable performance degradation when the proportion of the pseudo-label dataset varies from 20% to 80%.
文摘The Internet service provider(ISP)is the heart of any country’s Internet infrastructure and plays an important role in connecting to theWorld WideWeb.Internet exchange point(IXP)allows the interconnection of two or more separate network infrastructures.All Internet traffic entering a country should pass through its IXP.Thus,it is an ideal location for performing malicious traffic analysis.Distributed denial of service(DDoS)attacks are becoming a more serious daily threat.Malicious actors in DDoS attacks control numerous infected machines known as botnets.Botnets are used to send numerous fake requests to overwhelm the resources of victims and make them unavailable for some periods.To date,such attacks present a major devastating security threat on the Internet.This paper proposes an effective and efficient machine learning(ML)-based DDoS detection approach for the early warning and protection of the Saudi Arabia Internet exchange point(SAIXP)platform.The effectiveness and efficiency of the proposed approach are verified by selecting an accurate ML method with a small number of input features.A chi-square method is used for feature selection because it is easier to compute than other methods,and it does not require any assumption about feature distribution values.Several ML methods are assessed using holdout and 10-fold tests on a public large-size dataset.The experiments showed that the performance of the decision tree(DT)classifier achieved a high accuracy result(99.98%)with a small number of features(10 features).The experimental results confirmthe applicability of using DT and chi-square for DDoS detection and early warning in SAIXP.
文摘With the advent of the era of big data,the exponential growth of data generation has provided unprecedented opportunities for innovation and insight in various fields.However,increasing privacy and security concerns and the existence of the phenomenon of“data silos”limit the collaborative utilization of data.This paper systematically discusses the technological progress of federated learning,including its basic framework,model optimization,communication efficiency improvement,privacy protection mechanism,and integration with other technologies.It then analyzes the broad applications of federated learning in healthcare,the Internet of Things,Internet of Vehicles,smart cities,and financial services,and summarizes its challenges in data heterogeneity,communication overhead,privacy protection,scalability,and security.Finally,this paper looks forward to the future development direction of federated learning and proposes potential research paths in efficient algorithm design,privacy protection mechanism optimization,heterogeneous data processing,and cross-industry collaboration.
基金Supported by the National Natural Science Foundation of China(No.62171062)Foundation of Beijing Municipal Commission of Education(No.KM202010005017,KM202110005021)Beijing Natural Science Foundation(No.L211002)。
文摘The privacy and security of data are recently research hotspots and challenges.For this issue,an adaptive scheme of distributed learning based on homomorphic encryption and blockchain is proposed.Specifically,in the form of homomorphic encryption,the computing party iteratively aggregates the learning models from distributed participants,so that the privacy of both the data and model is ensured.Moreover,the aggregations are recorded and verified by blockchain,which prevents attacks from malicious nodes and guarantees the reliability of learning.For these sophisticated privacy and security technologies,the computation cost and energy consumption in both the encrypted learning and consensus reaching are analyzed,based on which a joint optimization of computation resources allocation and adaptive aggregation to minimize loss function is established with the realistic solution followed.Finally,the simulations and analysis evaluate the performance of the proposed scheme.
基金Supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0082)
文摘Breast cancer is presently one of the most common malignancies worldwide,with a higher fatality rate.In this study,a quantitative structure-activity relationship(QSAR)model of compound biological activity and ADMET(Absorption,Distribution,Metabolism,Excretion,Toxicity)properties prediction model were performed using estrogen receptor alpha(ERα)antagonist information collected from compound samples.We first utilized grey relation analysis(GRA)in conjunction with the random forest(RF)algorithm to identify the top 20 molecular descriptor variables that have the greatest influence on biological activity,and then we used Spearman correlation analysis to identify 16 independent variables.Second,a QSAR model of the compound were developed based on BP neural network(BPNN),genetic algorithm optimized BP neural network(GA-BPNN),and support vector regression(SVR).The BPNN,the SVR,and the logistic regression(LR)models were then used to identify and predict the ADMET properties of substances,with the prediction impacts of each model compared and assessed.The results reveal that a SVR model was used in QSAR quantitative prediction,and in the classification prediction of ADMET properties:the SVR model predicts the Caco-2 and hERG(human Ether-a-go-go Related Gene)properties,the LR model predicts the cytochrome P450 enzyme 3A4 subtype(CYP3A4)and Micronucleus(MN)properties,and the BPNN model predicts the Human Oral Bioavailability(HOB)properties.Finally,information entropy theory is used to validate the rationality of variable screening,and sensitivity analysis of the model demonstrates that the constructed model has high accuracy and stability,which can be used as a reference for screening probable active compounds and drug discovery.
文摘Software-defined network(SDN)becomes a new revolutionary paradigm in networks because it provides more control and network operation over a network infrastructure.The SDN controller is considered as the operating system of the SDN based network infrastructure,and it is responsible for executing the different network applications and maintaining the network services and functionalities.Despite all its tremendous capabilities,the SDN face many security issues due to the complexity of the SDN architecture.Distributed denial of services(DDoS)is a common attack on SDN due to its centralized architecture,especially at the control layer of the SDN that has a network-wide impact.Machine learning is now widely used for fast detection of these attacks.In this paper,some important feature selection methods for machine learning on DDoS detection are evaluated.The selection of optimal features reflects the classification accuracy of the machine learning techniques and the performance of the SDN controller.A comparative analysis of feature selection and machine learning classifiers is also derived to detect SDN attacks.The experimental results show that the Random forest(RF)classifier trains the more accurate model with 99.97%accuracy using features subset by the Recursive feature elimination(RFE)method.
文摘Over the past few years,rapid advancements in the internet and communication technologies have led to increasingly intricate and diverse networking systems.As a result,greater intelligence is necessary to effectively manage,optimize,and maintain these systems.Due to their distributed nature,machine learning models are challenging to deploy in traditional networks.However,Software-Defined Networking(SDN)presents an opportunity to integrate intelligence into networks by offering a programmable architecture that separates data and control planes.SDN provides a centralized network view and allows for dynamic updates of flow rules and softwarebased traffic analysis.While the programmable nature of SDN makes it easier to deploy machine learning techniques,the centralized control logic also makes it vulnerable to cyberattacks.To address these issues,recent research has focused on developing powerful machine-learning methods for detecting and mitigating attacks in SDN environments.This paper highlighted the countermeasures for cyberattacks on SDN and how current machine learningbased solutions can overcome these emerging issues.We also discuss the pros and cons of using machine learning algorithms for detecting and mitigating these attacks.Finally,we highlighted research issues,gaps,and challenges in developing machine learning-based solutions to secure the SDN controller,to help the research and network community to develop more robust and reliable solutions.
基金The authors extend their appreciation to the Deputy ship for the Research&innovation,Ministry of Education in Saudi Arabia for funding this research work through the Project Number(IF-PSAU-2021/01/18432).
文摘The large-scale application of renewable energy power generation technology brings new challenges to the operation of traditional power grids andenergy management on the load side. Microgrid can effectively solve this problemby using its regulation and flexibility, and is considered to be an ideal platform.The traditional method of computing total transfer capability is difficult due tothe central integration of wind farms. As a result, the differential evolutionextreme learning machine is offered as a data mining approach for extractingoperating rules for the total transfer capability of tie-lines in wind-integratedpower systems. K-medoids clustering under the two-dimensional “wind power-load consumption” feature space is used to define representative operational scenarios initially. Then, using stochastic sampling and repetitive power flow, aknowledge base for total transfer capability operating rule mining is created.Then, a novel method is used to filter redundant characteristics and find featuresthat are closely associated to the total transfer capability in order to decrease theultra-high dimensionality of operational features. Finally, by feeding the trainingdata into the proposed algorithm, the total transfer capability operation rules arederived from the knowledge base. It can be seen that, the proposed algorithmcan optimize the system performance with good accuracy and generality, according to numerical data.
基金supported by the Researchers Supporting Project(No.RSP-2021/395),King Saud University,Riyadh,Saudi Arabia.
文摘With the advancement of internet,there is also a rise in cybercrimes and digital attacks.DDoS(Distributed Denial of Service)attack is the most dominant weapon to breach the vulnerabilities of internet and pose a significant threat in the digital environment.These cyber-attacks are generated deliberately and consciously by the hacker to overwhelm the target with heavy traffic that genuine users are unable to use the target resources.As a result,targeted services are inaccessible by the legitimate user.To prevent these attacks,researchers are making use of advanced Machine Learning classifiers which can accurately detect the DDoS attacks.However,the challenge in using these techniques is the limitations on capacity for the volume of data and the required processing time.In this research work,we propose the framework of reducing the dimensions of the data by selecting the most important features which contribute to the predictive accuracy.We show that the‘lite’model trained on reduced dataset not only saves the computational power,but also improves the predictive performance.We show that dimensionality reduction can improve both effectiveness(recall)and efficiency(precision)of the model as compared to the model trained on‘full’dataset.
文摘CC’s(Cloud Computing)networks are distributed and dynamic as signals appear/disappear or lose significance.MLTs(Machine learning Techniques)train datasets which sometime are inadequate in terms of sample for inferring information.A dynamic strategy,DevMLOps(Development Machine Learning Operations)used in automatic selections and tunings of MLTs result in significant performance differences.But,the scheme has many disadvantages including continuity in training,more samples and training time in feature selections and increased classification execution times.RFEs(Recursive Feature Eliminations)are computationally very expensive in its operations as it traverses through each feature without considering correlations between them.This problem can be overcome by the use of Wrappers as they select better features by accounting for test and train datasets.The aim of this paper is to use DevQLMLOps for automated tuning and selections based on orchestrations and messaging between containers.The proposed AKFA(Adaptive Kernel Firefly Algorithm)is for selecting features for CNM(Cloud Network Monitoring)operations.AKFA methodology is demonstrated using CNSD(Cloud Network Security Dataset)with satisfactory results in the performance metrics like precision,recall,F-measure and accuracy used.
基金the R&D&I,Spain grants PID2020-119478GB-I00 and,PID2020-115832GB-I00 funded by MCIN/AEI/10.13039/501100011033.N.Rodríguez-Barroso was supported by the grant FPU18/04475 funded by MCIN/AEI/10.13039/501100011033 and by“ESF Investing in your future”Spain.J.Moyano was supported by a postdoctoral Juan de la Cierva Formación grant FJC2020-043823-I funded by MCIN/AEI/10.13039/501100011033 and by European Union NextGenerationEU/PRTR.J.Del Ser acknowledges funding support from the Spanish Centro para el Desarrollo Tecnológico Industrial(CDTI)through the AI4ES projectthe Department of Education of the Basque Government(consolidated research group MATHMODE,IT1456-22)。
文摘When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized environment.FL allows ML models to be trained on local devices without any need for centralized data transfer,thereby reducing both the exposure of sensitive data and the possibility of data interception by malicious third parties.This paradigm has gained momentum in the last few years,spurred by the plethora of real-world applications that have leveraged its ability to improve the efficiency of distributed learning and to accommodate numerous participants with their data sources.By virtue of FL,models can be learned from all such distributed data sources while preserving data privacy.The aim of this paper is to provide a practical tutorial on FL,including a short methodology and a systematic analysis of existing software frameworks.Furthermore,our tutorial provides exemplary cases of study from three complementary perspectives:i)Foundations of FL,describing the main components of FL,from key elements to FL categories;ii)Implementation guidelines and exemplary cases of study,by systematically examining the functionalities provided by existing software frameworks for FL deployment,devising a methodology to design a FL scenario,and providing exemplary cases of study with source code for different ML approaches;and iii)Trends,shortly reviewing a non-exhaustive list of research directions that are under active investigation in the current FL landscape.The ultimate purpose of this work is to establish itself as a referential work for researchers,developers,and data scientists willing to explore the capabilities of FL in practical applications.
基金Supported in part by the National Natural Science Foundation of China under Grant 61903353in part by the SINOPEC Programmes for Science and Technology Development under Grant PE19008-8.
文摘Most of the existing machine learning studies in logs interpretation do not consider the data distribution discrepancy issue,so the trained model cannot well generalize to the unseen data without calibrating the logs.In this paper,we formulated the geophysical logs calibration problem and give its statistical explanation,and then exhibited an interpretable machine learning method,i.e.,Unilateral Alignment,which could align the logs from one well to another without losing the physical meanings.The involved UA method is an unsupervised feature domain adaptation method,so it does not rely on any labels from cores.The experiments in 3 wells and 6 tasks showed the effectiveness and interpretability from multiple views.