We investigate a distributed game strategy for unmanned aerial vehicle(UAV)formations with external disturbances and obstacles.The strategy is based on a distributed model predictive control(MPC)framework and Levy fli...We investigate a distributed game strategy for unmanned aerial vehicle(UAV)formations with external disturbances and obstacles.The strategy is based on a distributed model predictive control(MPC)framework and Levy flight based pigeon inspired optimization(LFPIO).First,we propose a non-singular fast terminal sliding mode observer(NFTSMO)to estimate the influence of a disturbance,and prove that the observer converges in fixed time using a Lyapunov function.Second,we design an obstacle avoidance strategy based on topology reconstruction,by which the UAV can save energy and safely pass obstacles.Third,we establish a distributed MPC framework where each UAV exchanges messages only with its neighbors.Further,the cost function of each UAV is designed,by which the UAV formation problem is transformed into a game problem.Finally,we develop LFPIO and use it to solve the Nash equilibrium.Numerical simulations are conducted,and the efficiency of LFPIO based distributed MPC is verified through comparative simulations.展开更多
The problem of strategic stability of long-range cooperative agreements in dynamic games with coalition structures is investigated. Based on imputation distribution procedures, a general theoretical framework of the d...The problem of strategic stability of long-range cooperative agreements in dynamic games with coalition structures is investigated. Based on imputation distribution procedures, a general theoretical framework of the differential game with a coalition structure is proposed. A few assumptions about the deviation instant for a coalition are made concerning the behavior of a group of many individuals in certain dynamic environments.From these, the time-consistent cooperative agreement can be strategically supported by ε-Nash or strong ε-Nash equilibria. While in games in the extensive form with perfect information, it is somewhat surprising that without the assumptions of deviation instant for a coalition, Nash or strong Nash equilibria can be constructed.展开更多
基金Project supported by the Science and Technology Innovation 2030 Key Project of“New Generation Artificial Intelligence,”China(No.2018AAA0100803)the National Natural Science Foundation of China(Nos.T2121003,U1913602,U20B2071,91948204,and U19B2033)。
文摘We investigate a distributed game strategy for unmanned aerial vehicle(UAV)formations with external disturbances and obstacles.The strategy is based on a distributed model predictive control(MPC)framework and Levy flight based pigeon inspired optimization(LFPIO).First,we propose a non-singular fast terminal sliding mode observer(NFTSMO)to estimate the influence of a disturbance,and prove that the observer converges in fixed time using a Lyapunov function.Second,we design an obstacle avoidance strategy based on topology reconstruction,by which the UAV can save energy and safely pass obstacles.Third,we establish a distributed MPC framework where each UAV exchanges messages only with its neighbors.Further,the cost function of each UAV is designed,by which the UAV formation problem is transformed into a game problem.Finally,we develop LFPIO and use it to solve the Nash equilibrium.Numerical simulations are conducted,and the efficiency of LFPIO based distributed MPC is verified through comparative simulations.
基金supported by National Natural Science Foundation of China(Grant Nos.7117112071373262 and 71571108)+3 种基金Projects of International(Regional)Cooperation and Exchanges of National Natural Science Foundation of China(Grant No.71411130215)Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20133706110002)Natural Science Foundation of Shandong Province of China(Grant No.ZR2015GZ007)Saint Petersburg State University(Grant No.9.38.245.2014)
文摘The problem of strategic stability of long-range cooperative agreements in dynamic games with coalition structures is investigated. Based on imputation distribution procedures, a general theoretical framework of the differential game with a coalition structure is proposed. A few assumptions about the deviation instant for a coalition are made concerning the behavior of a group of many individuals in certain dynamic environments.From these, the time-consistent cooperative agreement can be strategically supported by ε-Nash or strong ε-Nash equilibria. While in games in the extensive form with perfect information, it is somewhat surprising that without the assumptions of deviation instant for a coalition, Nash or strong Nash equilibria can be constructed.