Commercial organisations commonly use operational research tools to solve vehicle routing problems. This practice is less commonplace in charity and voluntary organisations. In this paper, we provide an elementary app...Commercial organisations commonly use operational research tools to solve vehicle routing problems. This practice is less commonplace in charity and voluntary organisations. In this paper, we provide an elementary approach for solving the Vehicle Routing Problem (VRP) that we believe can be easily implemented in these types of organisations. The proposed model leverages mixed integer linear programming to optimize the pickup sequence of all customers, each with distinct time windows and locations, transporting them to a final destination using a fleet of vehicles. To ensure ease of implementation, the model utilises Python, a user-friendly programming language, and integrates with the Google Maps API, which simplifies data input by eliminating the need for manual entry of travel times between locations. Troubleshooting methods are incorporated into the model design to ensure easy debugging of the model’s infeasibilities. Additionally, a computation time analysis is conducted to evaluate the efficiency of the code. A node partitioning approach is also discussed, which aims to reduce computational times, especially when handling larger datasets, ensuring this model is realistic and practical for real-world application. By implementing this optimized routing strategy, logistics companies or organisations can expect significant improvements in their day-to-day operations, with minimal computational cost or need for specialised expertise. This includes reduced travel times, minimized fuel consumption, and thus lower operational costs, while ensuring punctuality and meeting the demands of all passengers.展开更多
Quality and robustness of grid deformation is of the most importance in the field of aircraft design, and grid in high quality is essential for improving the precision of numerical simulation. In order to maintain the...Quality and robustness of grid deformation is of the most importance in the field of aircraft design, and grid in high quality is essential for improving the precision of numerical simulation. In order to maintain the orthogonality of deformed grid, the displacement of grid points is divided into rotational and translational parts in this paper, and inverse distance weighted interpolation is used to transfer the changing location from boundary grid to the spatial grid. Moreover, the deformation of rotational part is implemented in combination with the exponential space mapping that improves the certainty and stability of quaternion interpolation. Furthermore, the new grid deformation technique named ‘‘layering blend deformation'' is built based on the basic quaternion technique, which combines the layering arithmetic with transfinite interpolation(TFI) technique. Then the proposed technique is applied in the movement of airfoil, parametric modeling, and the deformation of complex configuration, in which the robustness of grid quality is tested. The results show that the new method has the capacity to deal with the problems with large deformation, and the ‘‘layering blend deformation'' improves the efficiency and quality of the basic quaternion deformation method significantly.展开更多
文摘Commercial organisations commonly use operational research tools to solve vehicle routing problems. This practice is less commonplace in charity and voluntary organisations. In this paper, we provide an elementary approach for solving the Vehicle Routing Problem (VRP) that we believe can be easily implemented in these types of organisations. The proposed model leverages mixed integer linear programming to optimize the pickup sequence of all customers, each with distinct time windows and locations, transporting them to a final destination using a fleet of vehicles. To ensure ease of implementation, the model utilises Python, a user-friendly programming language, and integrates with the Google Maps API, which simplifies data input by eliminating the need for manual entry of travel times between locations. Troubleshooting methods are incorporated into the model design to ensure easy debugging of the model’s infeasibilities. Additionally, a computation time analysis is conducted to evaluate the efficiency of the code. A node partitioning approach is also discussed, which aims to reduce computational times, especially when handling larger datasets, ensuring this model is realistic and practical for real-world application. By implementing this optimized routing strategy, logistics companies or organisations can expect significant improvements in their day-to-day operations, with minimal computational cost or need for specialised expertise. This includes reduced travel times, minimized fuel consumption, and thus lower operational costs, while ensuring punctuality and meeting the demands of all passengers.
文摘Quality and robustness of grid deformation is of the most importance in the field of aircraft design, and grid in high quality is essential for improving the precision of numerical simulation. In order to maintain the orthogonality of deformed grid, the displacement of grid points is divided into rotational and translational parts in this paper, and inverse distance weighted interpolation is used to transfer the changing location from boundary grid to the spatial grid. Moreover, the deformation of rotational part is implemented in combination with the exponential space mapping that improves the certainty and stability of quaternion interpolation. Furthermore, the new grid deformation technique named ‘‘layering blend deformation'' is built based on the basic quaternion technique, which combines the layering arithmetic with transfinite interpolation(TFI) technique. Then the proposed technique is applied in the movement of airfoil, parametric modeling, and the deformation of complex configuration, in which the robustness of grid quality is tested. The results show that the new method has the capacity to deal with the problems with large deformation, and the ‘‘layering blend deformation'' improves the efficiency and quality of the basic quaternion deformation method significantly.