期刊文献+
共找到2,550篇文章
< 1 2 128 >
每页显示 20 50 100
An Improved DV-Hop Localization Algorithm Based on Hop Distances Correction 被引量:9
1
作者 Guiqi Liu Zhihong Qian Xue Wang 《China Communications》 SCIE CSCD 2019年第6期200-214,共15页
DV-Hop localization algorithm has greater localization error which estimates distance from an unknown node to the different anchor nodes by using estimated average size of a hop to achieve the location of the unknown ... DV-Hop localization algorithm has greater localization error which estimates distance from an unknown node to the different anchor nodes by using estimated average size of a hop to achieve the location of the unknown node.So an improved DV-Hop localization algorithm based on correctional average size of a hop,HDCDV-Hop algorithm,is proposed.The improved algorithm corrects the estimated distance between the unknown node and different anchor nodes based on fractional hop count information and relatively accurate coordinates of the anchor nodes information,and it uses the improved Differential Evolution algorithm to get the estimate location of unknown nodes so as to further reduce the localization error.Simulation results show that our proposed algorithm have lower localization error and higher localization accuracy compared with the original DV-Hop algorithm and other classical improved algorithms. 展开更多
关键词 WSN DV-HOP localization algorithm HOP distance CORRECTION IMPROVED Differential Evolution algorithm
在线阅读 下载PDF
Distance Concentration-Based Artificial Immune Algorithm 被引量:6
2
作者 LIUTao WANGYao-cai +1 位作者 WANGZhi-jie MENGJiang 《Journal of China University of Mining and Technology》 EI 2005年第2期81-85,共5页
The diversity, adaptation and memory of biological immune system attract much attention of researchers. Several optimal algorithms based on immune system have also been proposed up to now. The distance concentra- tion... The diversity, adaptation and memory of biological immune system attract much attention of researchers. Several optimal algorithms based on immune system have also been proposed up to now. The distance concentra- tion-based artificial immune algorithm (DCAIA) is proposed to overcome defects of the classical artificial immune al- gorithm (CAIA) in this paper. Compared with genetic algorithm (GA) and CAIA, DCAIA is good for solving the prob- lem of precocity,holding the diversity of antibody, and enhancing convergence rate. 展开更多
关键词 artificial immune system distance concentration immune algorithm
在线阅读 下载PDF
Multiple targets vector miss distance measurement accuracy based on 2-D assignment algorithms 被引量:1
3
作者 Fang Bingyi Wu Siliang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2008年第1期76-80,共5页
An extension of 2-D assignment approach is proposed for measurement-to-target association for improving multiple targets vector miss distance measurement accuracy. When the multiple targets move so closely, the measur... An extension of 2-D assignment approach is proposed for measurement-to-target association for improving multiple targets vector miss distance measurement accuracy. When the multiple targets move so closely, the measurements can not be fully resolved due to finite resolution. The proposed method adopts an auction algorithm to compute the feasible measurement-to-target assignment with unresolved measurements for solving this 2-D assignment problem. Computer simulation results demonstrate the effectiveness and feasibility of this method. 展开更多
关键词 miss distance 2-D assignment auction algorithm data association
在线阅读 下载PDF
A Self-Organizing RBF Neural Network Based on Distance Concentration Immune Algorithm 被引量:4
4
作者 Junfei Qiao Fei Li +2 位作者 Cuili Yang Wenjing Li Ke Gu 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期276-291,共16页
Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a dis... Radial basis function neural network(RBFNN) is an effective algorithm in nonlinear system identification. How to properly adjust the structure and parameters of RBFNN is quite challenging. To solve this problem, a distance concentration immune algorithm(DCIA) is proposed to self-organize the structure and parameters of the RBFNN in this paper. First, the distance concentration algorithm, which increases the diversity of antibodies, is used to find the global optimal solution. Secondly,the information processing strength(IPS) algorithm is used to avoid the instability that is caused by the hidden layer with neurons split or deleted randomly. However, to improve the forecasting accuracy and reduce the computation time, a sample with the most frequent occurrence of maximum error is proposed to regulate the parameters of the new neuron. In addition, the convergence proof of a self-organizing RBF neural network based on distance concentration immune algorithm(DCIA-SORBFNN) is applied to guarantee the feasibility of algorithm. Finally, several nonlinear functions are used to validate the effectiveness of the algorithm. Experimental results show that the proposed DCIASORBFNN has achieved better nonlinear approximation ability than that of the art relevant competitors. 展开更多
关键词 distance concentration immune algorithm(DCIA) information processing strength(IPS) radial basis function neural network(RBFNN)
在线阅读 下载PDF
Interactive Liver Segmentation Algorithm Based on Geodesic Distance and V-Net 被引量:1
5
作者 Kang Jie Ding Jumin +2 位作者 Lei Tao Feng Shujie Liu Gang 《Journal of Shanghai Jiaotong university(Science)》 EI 2022年第2期190-201,共12页
Convolutional neural networks(CNNs)are prone to mis-segmenting image data of the liver when the background is complicated,which results in low segmentation accuracy and unsuitable results for clinical use.To address t... Convolutional neural networks(CNNs)are prone to mis-segmenting image data of the liver when the background is complicated,which results in low segmentation accuracy and unsuitable results for clinical use.To address this shortcoming,an interactive liver segmentation algorithm based on geodesic distance and V-net is proposed.The three-dimensional segmentation network V-net adequately considers the characteristics of the spatial context information to segment liver medical images and obtain preliminary segmentation results.An artificial algorithm based on geodesic distance is used to form artificial hard constraints to modify the image,and the superpixel piece created by the watershed algorithm is introduced as a sample point for operation,which significantly improves the efficiency of segmentation.Results from simulation of the liver tumor segmentation challenge(LiTS)dataset show that this algorithm can effectively refine the results of automatic liver segmentation,reduce user intervention,and enable a fast,interactive liver image segmentation that is convenient for doctors. 展开更多
关键词 geodesic distance interactive segmentation liver segmentation V-net watershed algorithm
原文传递
Distance Control Algorithm for Automobile Automatic Obstacle Avoidance and Cruise System
6
作者 Jinguo Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2018年第7期69-88,共20页
With the improvement of automobile ownership in recent years,the incidence of traffic accidents constantly increases and requirements on the security of automobiles become increasingly higher.As science and technology... With the improvement of automobile ownership in recent years,the incidence of traffic accidents constantly increases and requirements on the security of automobiles become increasingly higher.As science and technology develops constantly,the development of automobile automatic obstacle avoidance and cruise system accelerates gradually,and the requirement on distance control becomes stricter.Automobile automatic obstacle avoidance and cruise system can determine the conditions of automobiles and roads using sensing technology,automatically adopt measures to control automobile after discovering road safety hazards,thus to reduce the incidence of traffic accidents.To prevent accidental collision of automobile which are installed with automatic obstacle avoidance and cruise system,active brake should be controlled during driving.This study put forward a neural network based proportional-integral-derivative(PID)control algorithm.The active brake of automobiles was effectively controlled using the system to keep the distance between automobiles.Moreover the algorithm was tested using professional automobile simulation platform.The results demonstrated that neural network based PID control algorithm can precisely and efficiently control the distance between two cars.This work provides a reference for the development of automobile automatic obstacle avoidance and cruise system. 展开更多
关键词 OBSTACLE AVOIDANCE and CRUISE distance control AUTOMOBILE algorithm
在线阅读 下载PDF
An Algorithm for the Inverse Problem of Matrix Processing: DNA Chains, Their Distance Matrices and Reconstructing
7
作者 Boris F. Melnikov Ye Zhang Dmitrii Chaikovskii 《Journal of Biosciences and Medicines》 CAS 2023年第5期310-320,共11页
We continue to consider one of the cybernetic methods in biology related to the study of DNA chains. Exactly, we are considering the problem of reconstructing the distance matrix for DNA chains. Such a matrix is forme... We continue to consider one of the cybernetic methods in biology related to the study of DNA chains. Exactly, we are considering the problem of reconstructing the distance matrix for DNA chains. Such a matrix is formed on the basis of any of the possible algorithms for determining the distances between DNA chains, as well as any specific object of study. At the same time, for example, the practical programming results show that on an average modern computer, it takes about a day to build such a 30 × 30 matrix for mnDNAs using the Needleman-Wunsch algorithm;therefore, for such a 300 × 300 matrix, about 3 months of continuous computer operation is expected. Thus, even for a relatively small number of species, calculating the distance matrix on conventional computers is hardly feasible and the supercomputers are usually not available. Therefore, we started publishing our variants of the algorithms for calculating the distance between two DNA chains, then we publish algorithms for restoring partially filled matrices, i.e., the inverse problem of matrix processing. Previously, we used the method of branches and boundaries, but in this paper we propose to use another new algorithm for restoring the distance matrix for DNA chains. Our recent work has shown that even greater improvement in the quality of the algorithm can often be achieved without improving the auxiliary heuristics of the branches and boundaries method. Thus, we are improving the algorithms that formulate the greedy function of this method only. . 展开更多
关键词 DNA Chains distance Matrix Optimization Problem Restoring algorithm Greedy algorithm HEURISTICS
在线阅读 下载PDF
Distance function selection in several clustering algorithms
8
作者 LUYu 《Journal of Chongqing University》 CAS 2004年第1期47-50,共4页
Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical... Most clustering algorithms need to describe the similarity of objects by a predefined distance function. Three distance functions which are widely used in two traditional clustering algorithms k-means and hierarchical clustering were investigated. Both theoretical analysis and detailed experimental results were given. It is shown that a distance function greatly affects clustering results and can be used to detect the outlier of a cluster by the comparison of such different results and give the shape information of clusters. In practice situation, it is suggested to use different distance function separately, compare the clustering results and pick out the 搒wing points? And such points may leak out more information for data analysts. 展开更多
关键词 distance function clustering algorithms K-MEANS DENDROGRAM data mining
在线阅读 下载PDF
Transmission Lines Distance Protection Using Differential Equation Algorithm and Hilbert-Huang Transform
9
作者 Xingmao Liu Zhengyou He 《Journal of Power and Energy Engineering》 2014年第4期616-623,共8页
This paper proposed the scheme of transmission lines distance protection based on differential equation algorithms (DEA) and Hilbert-Huang transform (HHT). The measured impedance based on EDA is affected by various fa... This paper proposed the scheme of transmission lines distance protection based on differential equation algorithms (DEA) and Hilbert-Huang transform (HHT). The measured impedance based on EDA is affected by various factors, such as the distributed capacitance, the transient response characteristics of current transformer and voltage transformer, etc. In order to overcome this problem, the proposed scheme applies HHT to improve the apparent impedance estimated by DEA. Empirical mode decomposition (EMD) is used to decompose the data set from DEA into the intrinsic mode functions (IMF) and the residue. This residue has monotonic trend and is used to evaluate the impedance of faulty line. Simulation results show that the proposed scheme improves significantly the accuracy of the estimated impedance. 展开更多
关键词 Hilbert-Huang TRANSFORM DIFFERENTIAL EQUATION algorithm distance PROTECTION Transmission LINES
在线阅读 下载PDF
Prediction-Based Distance Weighted Algorithm for Target Tracking in Binary Sensor Network
10
作者 SUN Xiaoyan LI Jiandong +1 位作者 CHEN Yanhui HUANG Pengyu 《China Communications》 SCIE CSCD 2010年第4期41-50,共10页
Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algori... Binary sensor network(BSN) are becoming more attractive due to the low cost deployment,small size,low energy consumption and simple operation.There are two different ways for target tracking in BSN,the weighted algorithms and particle filtering algorithm.The weighted algorithms have good realtime property,however have poor estimation property and some of them does not suit for target’s variable velocity model.The particle filtering algorithm can estimate target's position more accurately with poor realtime property and is not suitable for target’s constant velocity model.In this paper distance weight is adopted to estimate the target’s position,which is different from the existing distance weight in other papers.On the analysis of principle of distance weight (DW),prediction-based distance weighted(PDW) algorithm for target tracking in BSN is proposed.Simulation results proved PDW fits for target's constant and variable velocity models with accurate estimation and good realtime property. 展开更多
关键词 Binary Sensor Network Weighted algorithm Particle Filter distance Weight Recursive Least Squre(RLS)
在线阅读 下载PDF
Fast parallel algorithm for three-dimensional distance-driven model in iterative computed tomography reconstruction
11
作者 陈建林 李磊 +5 位作者 王林元 蔡爱龙 席晓琦 张瀚铭 李建新 闫镔 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第2期513-520,共8页
The projection matrix model is used to describe the physical relationship between reconstructed object and projection.Such a model has a strong influence on projection and backprojection,two vital operations in iterat... The projection matrix model is used to describe the physical relationship between reconstructed object and projection.Such a model has a strong influence on projection and backprojection,two vital operations in iterative computed tomographic reconstruction.The distance-driven model(DDM) is a state-of-the-art technology that simulates forward and back projections.This model has a low computational complexity and a relatively high spatial resolution;however,it includes only a few methods in a parallel operation with a matched model scheme.This study introduces a fast and parallelizable algorithm to improve the traditional DDM for computing the parallel projection and backprojection operations.Our proposed model has been implemented on a GPU(graphic processing unit) platform and has achieved satisfactory computational efficiency with no approximation.The runtime for the projection and backprojection operations with our model is approximately 4.5 s and 10.5 s per loop,respectively,with an image size of 256×256×256 and 360 projections with a size of 512×512.We compare several general algorithms that have been proposed for maximizing GPU efficiency by using the unmatched projection/backprojection models in a parallel computation.The imaging resolution is not sacrificed and remains accurate during computed tomographic reconstruction. 展开更多
关键词 computed tomography iterative reconstruction parallelizable algorithm distance-driven model
原文传递
A Study of EM Algorithm as an Imputation Method: A Model-Based Simulation Study with Application to a Synthetic Compositional Data
12
作者 Yisa Adeniyi Abolade Yichuan Zhao 《Open Journal of Modelling and Simulation》 2024年第2期33-42,共10页
Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear mode... Compositional data, such as relative information, is a crucial aspect of machine learning and other related fields. It is typically recorded as closed data or sums to a constant, like 100%. The statistical linear model is the most used technique for identifying hidden relationships between underlying random variables of interest. However, data quality is a significant challenge in machine learning, especially when missing data is present. The linear regression model is a commonly used statistical modeling technique used in various applications to find relationships between variables of interest. When estimating linear regression parameters which are useful for things like future prediction and partial effects analysis of independent variables, maximum likelihood estimation (MLE) is the method of choice. However, many datasets contain missing observations, which can lead to costly and time-consuming data recovery. To address this issue, the expectation-maximization (EM) algorithm has been suggested as a solution for situations including missing data. The EM algorithm repeatedly finds the best estimates of parameters in statistical models that depend on variables or data that have not been observed. This is called maximum likelihood or maximum a posteriori (MAP). Using the present estimate as input, the expectation (E) step constructs a log-likelihood function. Finding the parameters that maximize the anticipated log-likelihood, as determined in the E step, is the job of the maximization (M) phase. This study looked at how well the EM algorithm worked on a made-up compositional dataset with missing observations. It used both the robust least square version and ordinary least square regression techniques. The efficacy of the EM algorithm was compared with two alternative imputation techniques, k-Nearest Neighbor (k-NN) and mean imputation (), in terms of Aitchison distances and covariance. 展开更多
关键词 Compositional Data Linear Regression Model Least Square Method Robust Least Square Method Synthetic Data Aitchison distance Maximum Likelihood Estimation Expectation-Maximization algorithm k-Nearest Neighbor and Mean imputation
在线阅读 下载PDF
基于Max-min distance聚类算法的园地空间聚类--以永泰县嵩口镇为例
13
作者 冯宇琳 《测绘与空间地理信息》 2024年第7期146-149,共4页
空间聚类是空间数据挖掘的重要手段之一。本文研究了一种基于质心点距离的Max-min distance空间聚类算法:通过加载园地图斑数据,计算其园地图斑质心,判断聚类中心之间的距离,并将符合条件的园地图斑进行聚类,最终将聚类结果可视化表达... 空间聚类是空间数据挖掘的重要手段之一。本文研究了一种基于质心点距离的Max-min distance空间聚类算法:通过加载园地图斑数据,计算其园地图斑质心,判断聚类中心之间的距离,并将符合条件的园地图斑进行聚类,最终将聚类结果可视化表达。本文的算法是利用Visual Studio 2017实验平台和ArcGIS Engine组件式开发环境,采用C#语言进行编写。实验结果表明:1)Max-mindistance聚类通过启发式的选择簇中心,克服了K-means选择簇中心过于邻近的缺点,能够适应嵩口镇等山区丘陵地区空间分布呈破碎的园地数据集分布,有效地实现园地的合理聚类;2)根据连片面积将园地空间聚类结果分为大中小三类,未来嵩口镇可以重点发展园地连片规模较大的村庄,形成规模化的青梅种植园。 展开更多
关键词 Max-mindistance聚类算法 园地 GIS 嵩口镇
在线阅读 下载PDF
算法仁心,工于为公?算法推荐对消费者政治性消费的影响研究 被引量:1
14
作者 刘建新 范秀成 李希 《商业经济与管理》 北大核心 2025年第8期5-25,共21页
通过算法向潜在消费者推荐政府倡议或鼓励消费的产品或服务已经成为广为应用的营销策略,但目前的研究主要集中于算法推荐对消费者的信任、采纳或转荐的影响,而它对于消费者政治性消费的影响却严重缺乏关注和研究。基于责任内化理论与自... 通过算法向潜在消费者推荐政府倡议或鼓励消费的产品或服务已经成为广为应用的营销策略,但目前的研究主要集中于算法推荐对消费者的信任、采纳或转荐的影响,而它对于消费者政治性消费的影响却严重缺乏关注和研究。基于责任内化理论与自由意志理论,文章通过构建有调节的双中介模型深入探究了算法推荐影响消费者政治性消费的内在机理与边界条件,并用在线调查和实验研究方法进行了实证检验。一个调查与三个实验研究结果表明:(1)算法推荐确实会影响消费者的政治性消费,并且基于用户相似性算法推荐较之于基于产品相似性算法推荐更有助于增强消费者的政治性消费;(2)责任内化与自主威胁会共同中介算法推荐对消费者政治性消费的影响,其中前者主要起着积极中介效应,而后者主要起着消极中介效应;(3)消费者的权力距离信念会前置调节算法推荐对他们政治性消费的影响,即高权力距离信念者更容易让责任内化中介效应占优,而低权力距离信念者更容易让自主威胁中介效应占优;(4)身份歧视会后置调节双中介效应,即高身份歧视会产生减弱效应,而低身份歧视会产生增强效应。这些研究结论不仅对深化和完善算法推荐理论和政治性消费理论等具有重要的理论意义,而且对厂商、消费者和监管机构等有重要的管理启示。 展开更多
关键词 算法推荐 责任内化 自主威胁 权力距离信念 身份歧视 政治性消费
在线阅读 下载PDF
基于遗传-禁忌搜索算法绿色低碳停机位分配 被引量:1
15
作者 陈俣秀 全力炎 +1 位作者 于剑 张立超 《科学技术与工程》 北大核心 2025年第1期410-415,共6页
随着环境气候问题日益严峻,绿色低碳已成为航空运输业可持续发展的重要原则。以单跑道运输机场为研究对象,以绿色低碳、旅客步行距离为优化目标,构建多情景下绿色低碳停机位分配模型,并设计遗传-禁忌搜索组合优化算法求解,最后以中国东... 随着环境气候问题日益严峻,绿色低碳已成为航空运输业可持续发展的重要原则。以单跑道运输机场为研究对象,以绿色低碳、旅客步行距离为优化目标,构建多情景下绿色低碳停机位分配模型,并设计遗传-禁忌搜索组合优化算法求解,最后以中国东北部的运输机场为实例进行仿真实验。实验结果表明,与实际运行分配方案相比,若仅考虑绿色低碳,最优分配方案可减少3.1%的燃油消耗,减少3.1%的航空器滑行距离,减少4.2%HC、3.6%CO、3.1%NO_(X)、3.1%CO_(2)排放,但会提高5.3%的旅客步行距离;若同时兼顾绿色低碳和旅客利益,最优分配方案可减少2.1%的燃油消耗,减少2.2%的航空器滑行距离,减少3.8%HC、2.7%CO、2.0%NO_(X)、2.1%的CO_(2)排放,减少2.1%的旅客步行距离。可见绿色低碳发展的同时,仍可兼顾旅客利益。 展开更多
关键词 停机位分配 绿色低碳 旅客步行距离 遗传算法 禁忌搜索算法
在线阅读 下载PDF
面向大型激光装置集成安装的机器人自动路径规划
16
作者 陈静 独伟锋 +3 位作者 裴国庆 熊召 杨科 周海 《强激光与粒子束》 北大核心 2025年第6期163-170,共8页
针对大型激光装置集成安装过程中的机器人路径规划问题,提出一种简单有效的改进A*算法。该算法较传统A*算法进行了三步改进:第一步是限制可行走方向,避免出现传统A*算法发生穿越障碍物情况;二是将其启发函数优化为加权曼哈顿距离函数,... 针对大型激光装置集成安装过程中的机器人路径规划问题,提出一种简单有效的改进A*算法。该算法较传统A*算法进行了三步改进:第一步是限制可行走方向,避免出现传统A*算法发生穿越障碍物情况;二是将其启发函数优化为加权曼哈顿距离函数,加速向x方向或者y方向扩展节点,改善限制可行走方向带来的遍历节点数激增现象;三是引入转弯惩罚项,减少路径规划过程中的转弯次数,提高路径规划搜索效率和质量。在不同大小的栅格地图中验证三步改进A*算法的性能,并与传统A*算法进行比较。实验结果表明,简单地图中,三步改进A*算法遍历节点数略高于传统A*算法,转弯次数与传统A*算法相当,但路径避障性能明显优于传统A*算法,更有利于机器人安全行走。复杂地图中,综合考虑遍历节点数、转弯次数和路径长度的优先关系后,可以实现调节三步改进A*算法参数至路径规划结果最优。 展开更多
关键词 路径规划 A~*算法 限制可行走方向 加权曼哈顿距离 转弯惩罚项
在线阅读 下载PDF
基于注意力机制的非平坦路面单目车距估计方法研究 被引量:1
17
作者 刘永涛 李怡飞 +2 位作者 高隆鑫 陈轶嵩 王泰琪 《汽车工程学报》 2025年第3期353-365,共13页
提出一种基于注意力机制的单目车距估计算法,以提高非平坦路面下的车距估计精度。通过将通道和空间注意力引入ImVoxelNet神经网络,增强卷积层对车辆轮廓感知和特征区分能力,有效减少车辆漏检现象;基于感兴趣区域角点标定,剔除逆透视变... 提出一种基于注意力机制的单目车距估计算法,以提高非平坦路面下的车距估计精度。通过将通道和空间注意力引入ImVoxelNet神经网络,增强卷积层对车辆轮廓感知和特征区分能力,有效减少车辆漏检现象;基于感兴趣区域角点标定,剔除逆透视变换时的冗余信息,改善了图像畸变问题;针对车辆姿态变化,提出了考虑姿态干扰的相机外参矩阵,建立了非平坦路面下的相机坐标转换模型;利用真实与逆透视图像的比例关系构建车距估计模型,实现对前车纵、横向距离准确估算。试验表明,本文方法在非平坦路面条件下,纵向80m和横向4m的间距范围内测距相对误差小于3%,验证了所提方法的有效性和准确性。 展开更多
关键词 3D目标检测 逆透视变换 测距 单目视觉
在线阅读 下载PDF
一种基于遗传退火算法的MTD参数生成应用研究
18
作者 代培龙 张薇 徐斐 《现代雷达》 北大核心 2025年第3期88-92,共5页
动目标检测(MTD)是雷达探测的重要技术之一,MTD重频参数对探测性能至关重要。文中分析了不同重频的应用场景,深入研究遗传退火算法,阐述了遗传退火算法的优劣,论述了采用基于二进制遗传退火算法设计MTD重频参数的过程,基于距离-速度清... 动目标检测(MTD)是雷达探测的重要技术之一,MTD重频参数对探测性能至关重要。文中分析了不同重频的应用场景,深入研究遗传退火算法,阐述了遗传退火算法的优劣,论述了采用基于二进制遗传退火算法设计MTD重频参数的过程,基于距离-速度清晰度构造目标函数和约束条件。根据探测速度需要,该方法可以快速构建多重频参数,优化距离-速度清晰度。仿真结果表明:该算法相对于传统穷举搜索法,是一种全局随机搜索方法,参数生成速度快,可实时产生满足系统设计要求的参数。生成的清晰度说明了该方法的有效性,并给出了一种有效的工程应用思路,在雷达设计中具有一定的工程应用价值。 展开更多
关键词 动目标检测 遗传退火算法 探测参数优化 距离-速度盲区
原文传递
基于驾驶人内异质性的响应时间和阻塞间距分析
19
作者 李卓丹 朱小锋 宋瑞升 《公路交通科技》 北大核心 2025年第1期22-30,共9页
【目标】在考虑驾驶人内异质性的基础上,对Newell汽车跟驰模型中的响应时间和阻塞间距这两个重要参数进行了进一步的研究和标定。【方法】基于既有汽车跟驰试验数据,运用动态时间规整算法从试验数据中提取响应时间和阻塞间距,并分析参... 【目标】在考虑驾驶人内异质性的基础上,对Newell汽车跟驰模型中的响应时间和阻塞间距这两个重要参数进行了进一步的研究和标定。【方法】基于既有汽车跟驰试验数据,运用动态时间规整算法从试验数据中提取响应时间和阻塞间距,并分析参数特性以及参数之间的相关性。【数据】输入数据集包括前后车的速度(或加速度)、位置、时间步等信息,并形成每个单元格的成本和累积成本矩阵,通过累积成本矩阵的最优化求解得到最小累积成本。【结论】响应时间和阻塞间距二者之间存在一定程度的相关性。(1)响应时间与阻塞间距存在负相关关系,响应时间越小,阻塞间距越大。(2)针对不同的头车速度,响应时间基本符合对数正态概率密度分布,且随着头车速度的增加,响应时间减小,期望和方差参数均在减小。(3)阻塞间距的下限和响应时间存在线性负相关关系,随着响应时间的增加,阻塞间距的下限在变小。(4)阻塞间距在扣除下限值后,服从相同的正态概率密度分布,随着头车速度的增加,该归一化阻塞间距的期望和方差参数逐渐增加。 展开更多
关键词 交通工程 改进Newell跟驰模型 动态时间规整算法 响应时间 阻塞间距
原文传递
有向无环图建模的自动导引车任务调度优化
20
作者 胡毅 崔梦笙 +1 位作者 张曦阳 赵彦庆 《浙江大学学报(工学版)》 北大核心 2025年第8期1680-1688,共9页
针对生产线和仓库之间单载自动导引车(AGV)任务调度的行驶距离优化问题,考虑多种任务选择策略,提出基于二进制粒子群优化的嵌套算法框架(BPSO嵌套框架),求解优化调度方案.针对固定任务选择策略下的优化调度方案求解,考虑任务执行顺序约... 针对生产线和仓库之间单载自动导引车(AGV)任务调度的行驶距离优化问题,考虑多种任务选择策略,提出基于二进制粒子群优化的嵌套算法框架(BPSO嵌套框架),求解优化调度方案.针对固定任务选择策略下的优化调度方案求解,考虑任务执行顺序约束和任务节点信息随环境变化,以最小化AGV行驶总距离为目标,建立基于有向无环图建模的动态旅行商问题(DAGDTSP)模型,提出改进遗传算法(IGA)求解模型.实验结果表明,针对AGV任务调度方案的优化,利用IGA算法,能够有效地求解固定任务选择策略下的优化调度方案. BPSO嵌套框架能够提升求解质量,所求解的优化调度方案能够在一定程度上适应任务变化. DAGDTSP模型在不同环境参数设置的测试问题上具备准确性. 展开更多
关键词 任务调度 行驶总距离 有向无环图 遗传算法 粒子群优化算法
在线阅读 下载PDF
上一页 1 2 128 下一页 到第
使用帮助 返回顶部