Influence of the combination of nutrient feed with dissolved oxygen control on taxol production in suspension cultures of Taxus chinensis (Pilg.) Rehd. was investigated in bioreactors. Addition of feeding medium with ...Influence of the combination of nutrient feed with dissolved oxygen control on taxol production in suspension cultures of Taxus chinensis (Pilg.) Rehd. was investigated in bioreactors. Addition of feeding medium with 20 g/L sucrose on day 16 enhanced both the biomass and taxol production in 5-L bioreactors. Further investigation of the fed-batch cultures in a 20-L bioreactor showed that cultivation under a low dissolved oxygen tension (DOT) of 20% for the entire culture resulted in the highest taxol content of 0.98 mg/g DW, while the taxol production was lower than that with 40% and 60% DOT. Moreover, taxol accumulation was remarkably improved by the cultivation of cells initially under DOT of 60% for 20 d followed by changing the DOT to 20% for another 12 d. By combining the use of these two strategies, a maximum taxol content of 18.7 mg/L was obtained in a 20-L bioreactor.展开更多
The objective of this study was to investigate the nitritation performance in a biofilm reactor for treating domestic wastewater.The reactor was operated in continuous feed mode from phases 1 to 3.The dissolved oxygen...The objective of this study was to investigate the nitritation performance in a biofilm reactor for treating domestic wastewater.The reactor was operated in continuous feed mode from phases 1 to 3.The dissolved oxygen(DO)was controlled at 3.5–7 mg/L throughout the experiment.The biofilm reactor showed excellent nitritation performance after the inoculation of nitrifying sludge,with the hydraulic retention time being reduced from 24 to 7 hr.Above 90%nitrite accumulation ratio(NAR)was maintained in phase 1.Afterwards,nitratation occurred with the low NH4^+–N concentration in the reactor.The improvement of NH4^+–N concentration to 20–35 mg/L had a limited effect on the recovery of nitritation.However,nitritation recovered rapidly when sequencing batch feed mode was adopted in phase 4,with the effluent NH4^+-N concentration above 7 mg/L.The improvement of ammonia oxidizing bacteria(AOB)activity and the combined inhibition effect of free ammonia(FA)and free nitrous acid(FNA)on the nitrite oxidizing bacteria(NOB)were two key factors for the rapid recovery of nitritation.Sludge activity was obtained in batch tests.The results of batch tests had a good relationship with the long term operation performance of the biofilm reactor.展开更多
Oceanic dissolved oxygen(DO)concentration is crucial for assessing the status of marine ecosystems.Against the backdrop of global warming,DO shows a general decrease,posing a threat to the health of marine ecosystems....Oceanic dissolved oxygen(DO)concentration is crucial for assessing the status of marine ecosystems.Against the backdrop of global warming,DO shows a general decrease,posing a threat to the health of marine ecosystems.Therefore,there is an urgent need to develop advanced tools to characterize the spatio-temporal variations of three-dimensional(3D)DO.To address this challenge,this study introduces the Light Gradient Boosting Machine(Light-GBM),combining satellite remote sensing and reanalysis data with Biogeochemical Argo data to accurately reconstruct the 3D DO structure in the Mediterranean Sea from 2010 to 2022.Various environmental parameters are incorporated as inputs,including spatiotemporal features,meteorological characteristics,and ocean color properties.The LightGBM model demonstrates excellent performance on the testing dataset with R^(2) of 0.958.The modeled DO agrees better with in-situ measurements than products from numerical models.Using the Shapley Additive exPlanations method,the contributions of input features are assessed.Sea surface temperatures provide a correlation with DO at the sea surface,while spatial coordinates supplement the view of the ocean interior.Based on the reconstructed 3D DO structure,we identify an oxygen minimum zone in the western Mediterranean that expands continuously,reaching depths of approximately 300–800 m.The western Mediterranean exhibits a significant declining trend.This study enhances marine environmental evidence by proposing a precise and cost-effective approach for reconstructing 3D DO,thereby offering insights into the dynamics of DO variations under changing climatic conditions.展开更多
This study examines the potential impacts o climate change on Lake Biwa,Japan’s largest freshwate lake,with a focus on temperature,wind speed,and pre cipitation variations.Leveraging data from the IPCC Sixth Assessme...This study examines the potential impacts o climate change on Lake Biwa,Japan’s largest freshwate lake,with a focus on temperature,wind speed,and pre cipitation variations.Leveraging data from the IPCC Sixth Assessment Report,including CCP scenarios,projecting a significant temperature rise of 3.3–5.7℃in the case o very high GHG emission power,the research investigates how these shifts may influence dissolved oxygen levels in Lake Biwa.Through a one-dimensional model incorporat ing sediment redox reactions,various scenarios where ai temperature and wind speed are changed are simulated.I is revealed that a 5℃increase in air temperature leads to decreasing 1-2 mg/L of dissolved oxygen concentrations from the surface layer to the bottom layer,while a decrease in air temperature tends to elevate 1–3 mg/L of oxygen lev els.Moreover,doubling wind speed enhances surface laye oxygen but diminishes it in deeper layers due to increased mixing.Seasonal variations in wind effects are noted with significant surface layer oxygen increases from 0.4to 0.8 mg/L during summer to autumn,increases from 0.4 to 0.8 mg/L in autumn to winter due to intensified vertica mixing.This phenomenon impacts the lake’s oxygen cycle year-round.In contrast,precipitation changes show limited impact on oxygen levels,suggesting minor influence com pared to other meteorological factors.The study suggests the necessity of comprehensive three-dimensional models that account for lake-specific and geographical factors fo accurate predictions of future water conditions.A holistic approach integrating nutrient levels,water temperature,and river inflow is deemed essential for sustainable management of Lake Biwa’s water resources,particularly in addressing precipitation variations.展开更多
To investigate the influence of oxygen content in a physiological liquid environment on the corrosion behavior of biomedical zinc-based alloys,a simulated bodily fluid environment with varying dissolved oxygen was est...To investigate the influence of oxygen content in a physiological liquid environment on the corrosion behavior of biomedical zinc-based alloys,a simulated bodily fluid environment with varying dissolved oxygen was established in vitro using external oxygen supply equipment.The influence of dissolved oxygen concentration on the corrosion behavior of pure Zn and Zn−Cu alloys was studied with scanning electron microscopy,energy dispersive spectroscopy,Fourier transform infrared spectrometry,and electrochemical analysis.Due to oxygen absorption corrosion,the increase in dissolved oxygen concentration increases the pH value of the solution and promotes the accumulation of corrosion product layer.Compared with the environment without additional oxygen supply,the corrosion rate of the sample under the continuous oxygen supply condition is increased by one order of magnitude.Because the Zn−Cu alloy has micro-galvanic corrosion,its corrosion rate is about 1.5 times that of pure zinc under different dissolved oxygen conditions.展开更多
Oceanic dissolved oxygen(DO)in the ocean has an indispensable role on supporting biological respiration,maintaining ecological balance and promoting nutrient cycling.According to existing research,the total DO has dec...Oceanic dissolved oxygen(DO)in the ocean has an indispensable role on supporting biological respiration,maintaining ecological balance and promoting nutrient cycling.According to existing research,the total DO has declined by 2%of the total over the past 50 a,and the tropical Pacific Ocean occupied the largest oxygen minimum zone(OMZ)areas.However,the sparse observation data is limited to understanding the dynamic variation and trend of ocean using traditional interpolation methods.In this study,we applied different machine learning algorithms to fit regression models between measured DO,ocean reanalysis physical variables,and spatiotemporal variables.We demonstrate that extreme gradient boosting(XGBoost)model has the best performance,hereby reconstructing a four-dimensional DO dataset of the tropical Pacific Ocean from 1920 to 2023.The results reveal that XGBoost significantly improves the reconstruction performance in the tropical Pacific Ocean,with a 35.3%reduction in root mean-squared error and a 39.5%decrease in mean absolute error.Additionally,we compare the results with three Coupled Model Intercomparison Project Phase 6(CMIP6)models data to confirm the high accuracy of the 4-dimensional reconstruction.Overall,the OMZ mainly dominates the eastern tropical Pacific Ocean,with a slow expansion.This study used XGBoost to efficiently reconstructing 4-dimensional DO enhancing the understanding of the hypoxic expansion in the tropical Pacific Ocean and we foresee that this approach would be extended to reconstruct more ocean elements.展开更多
The exploitation of durable and highly active Pt-based electrocatalysts for the oxygen reduction reaction(ORR)is essential for the commercialization of proton exchange membrane fuel cells(PEMFCs).Herein,we designed Pt...The exploitation of durable and highly active Pt-based electrocatalysts for the oxygen reduction reaction(ORR)is essential for the commercialization of proton exchange membrane fuel cells(PEMFCs).Herein,we designed Pt@Pt_(3)Ti core-shell nanoparticles with atomic-controllable shells through precise thermal diffusing Ti into Pt nanoparticles for effective and durable ORR.Combining theoretical and experiment analysis,we found that the lattice strain of Pt_(3)Ti shells can be tailored by precisely controlling the thick-ness of Pt_(3)Ti shell in atomic-scale on account of the lattice constant difference between Pt and Pt_(3)Ti to optimize adsorption properties of Pt_(3)Ti for ORR intermediates,thus enhancing its performance.The Pt@Pt_(3)Ti catalyst with one-atomic Pt_(3)Ti shell(Pt@1L-Pt_(3)Ti/TiO_(2)-C)demonstrates excellent performance with mass activity of 592 mA mgpt-1 and durability nearly 19.5-fold that of commercial Pt/C with negligible decay(2%)after 30,000 potential cycles(0.6-1.0 V vs.RHE).Notably,at higher potential cycles(1.0 V-1.5 V vs.RHE),Pt@1L-Pt_(3)Ti/TiO_(2)-C also showed far superior durability than Pt/C(9.6%decayed while 54.8% for commercial Pt/C).This excellent stability is derived from the intrinsic stability of Pt_(3)Ti alloy and the confinement effect of TiO_(2)-C.The catalyst's enhancement was further confirmed in PEMFC configuration.展开更多
A mathematical model of the decarburization reaction zone was established for the Ruhrstahl–Heraeus (RH) forced oxygen blowing decarburization process by Matlab R2022b software. For the problem of inaccurate predicti...A mathematical model of the decarburization reaction zone was established for the Ruhrstahl–Heraeus (RH) forced oxygen blowing decarburization process by Matlab R2022b software. For the problem of inaccurate prediction due to the large variation range of oxygen absorption rate under different process conditions, we statistically analyzed the main factors affecting the oxygen absorption rate. The backpropagation neural network was used to train and predict the oxygen absorption rate and was used to calculate the RH decarburization reaction zone model. We designed and developed a mathematical modeling software with process control of decarburization in RH degasser, which can realize the change of operating process parameters in the dynamic prediction process. The optimized mathematical model has more than 95% of the furnaces whose absolute error in calculation of carbon content is within ± 5 × 10^(−6), more than 90% of the heats whose relative error in calculation of oxygen content is within ± 15%, and the average absolute error of calculation of oxygen content is 26.4 × 10^(−6). Finally, we studied the influence of oxygen blowing timing, oxygen blowing volume and initial oxygen content on the forced decarburization process.展开更多
To establish a immobilization method of oxygen sensitive dye, a dissolved oxygen sensor based on a sol-gel matrix doped with ruthenium complex ([Ru(bpy)3]2+) as the oxygen-sensitive material is reported. The results i...To establish a immobilization method of oxygen sensitive dye, a dissolved oxygen sensor based on a sol-gel matrix doped with ruthenium complex ([Ru(bpy)3]2+) as the oxygen-sensitive material is reported. The results indicate that the I0 /I100 value of the [Ru(bpy)3]2+-doped in tetraethylorthosilane (TEOS) composite films are estimated to be 10.6, where I0 and I100 correspond to the detected fluorescence intensities in pure nitrogen saturated water and pure oxygen saturated water, respectively. Also, the Stern-Volmer plot shows a very good linearity at low dissolved oxygen concentrations. The response time of the composite films is 5 s upon switching from nitrogen saturated water to oxygen saturated water and 10 s from oxygen saturated water to nitrogen saturated water. The dissolved oxygen sensors based on the ruthenium complex/TEOS composite films exhibit greater sensitivity, stability and faster response time as compared to the existing ones. Furthermore, the thin films possess greatly minimized dye leaching effect.展开更多
A dissolved oxygen fuzzy system predicting model based on neural network was put forward in this study. 106 groups of data were used to confirm the fitness of the predicting model. The first 80 groups of data were act...A dissolved oxygen fuzzy system predicting model based on neural network was put forward in this study. 106 groups of data were used to confirm the fitness of the predicting model. The first 80 groups of data were acted as training input and the other 26 groups of data were acted as the confirmed data in the system. The result showed that the testing data was approximately the same as the predicted data. So it gave a new way to solve the problem that the status of the water quality couldn't be predicted in time and it's hard to watching and measuring the factors dynamic.展开更多
A marine survey was conducted from 18 May to 13 June 2014 in the East China Sea (ECS) and its adjacent Kuroshio Current to examine the spatial distribution and biogeochemical characteristics of dissolved oxygen (DO) i...A marine survey was conducted from 18 May to 13 June 2014 in the East China Sea (ECS) and its adjacent Kuroshio Current to examine the spatial distribution and biogeochemical characteristics of dissolved oxygen (DO) in spring. Waters were sampled at 10?25 m intervals within 100 m depth, and at 25?500 m beyond 100 m. The depth, temperature, salinity, and density (sigma- t ) were measured in situ with a conductivity-temperature-depth (CTD) sensor. DO concentrations were determined on board using traditional Winkler titration method. The results show that in the Kuroshio Current, DO content was the highest in the euphotic layer, then decreased sharply with depth to about 1 000 m, and increased with depth gradually thereafter. While in the ECS continental shelf area, DO content had high values in the coastal surface water and low values in the near-bottom water. In addition, a low-DO zone off the Changjiang (Yangtze) River estuary was found in spring 2014, and it was formed under the combined influence of many factors, including water stratification, high primary productivity in the euphotic layers, high accumulation/ sedimentation of organic matter below the euphotic layers, and mixing/transport of oceanic current waters on the shelf. Most notable among these is the Kuroshio intruded water, an oceanic current water which carried rich dissolved oxygen onto the continental shelf and alleviated the oxygen deficit phenomenon in the ECS, could impact the position, range, and intensity, thus the formation/destruction of the ECS Hypoxia Zone.展开更多
Ocean temperature and dissolved oxygen concentrations are critical factors that control ocean productivity, carbon and nutrient cycles, and marine habitat. However, the evolution of these two factors in the geologic p...Ocean temperature and dissolved oxygen concentrations are critical factors that control ocean productivity, carbon and nutrient cycles, and marine habitat. However, the evolution of these two factors in the geologic past are still unclear. Here, we use a new oxygen isotope database to establish the sea surface temperature(SST) curve in the past 500 million years. The database is composed of 22 796 oxygen isotope values of phosphatic and calcareous fossils. The result shows two prolonged cooling events happened in the Late Paleozoic and Late Cenozoic, coinciding with two major ice ages indicated by continental glaciation data, and seven global warming events that happened in the Late Cambrian, Silurian–Devonian transition, Late Devonian, Early Triassic, Toarcian, Late Cretaceous, and Paleocene–Eocene transition. The SSTs during these warming periods are about 5–30 °C higher than the present-day level. Oxygen contents of shallow seawater are calculated from temperature, salinity, and atmospheric oxygen. The results show that major dissolved oxygen valleys of surface seawater coincide with global warming events and ocean anoxic events. We propose that the combined effect of temperature and dissolved oxygen account for the long-term evolution of global oceanic redox state during the Phanerozoic.展开更多
The Changjiang Estuary and its adjacent waters form one of the most important estuarine and coastal areas in China. Multi source and long-term data are assembled to examine the temporal-spatial distribution features o...The Changjiang Estuary and its adjacent waters form one of the most important estuarine and coastal areas in China. Multi source and long-term data are assembled to examine the temporal-spatial distribution features of dissolved oxygen (DO) in the Changjiang Estuary and its adjacent waters for the past SO a. The results show that the DO concentration in the surface of different seasons generally stays stable, while the DO concentration in winter displays a slight increase for the last 50 a. The DO average concentration in winter and spring varies from 7 to 11 rag/L, and in summer and autumn from 6 to 8 mg/L. Hypoxic values first appear in May, and low DO value plume can be observed on the bottom in spring along coastal areas of Zhejiang and Fujian Provinces, China. In summer, the plume advances northward, and the hypoxic intensity of northern transects is much higher than southern transects. Until autumn, hypoxia areas fade away little by little, and completely disappear in winter. Within last 50 a, hypoxia in the Changjiang Estuary and its adjacent waters starts to appear in the 1980s. Since 2000, the degree of hypoxia has increased seriously and the distribution depth has become smaller. It is performed based on a large amount of historical data, and the research results will be of great significance to further study on the dynamic development of hypoxia around the Changjiang Estuary.展开更多
The effect of residual dissolved oxygen (DO) on the corrosion behavior of carbon steel in 0.1 M NaHCO3 solution was investigated by electrochemical measurements, corrosion mass loss test, scanning electron microsco...The effect of residual dissolved oxygen (DO) on the corrosion behavior of carbon steel in 0.1 M NaHCO3 solution was investigated by electrochemical measurements, corrosion mass loss test, scanning electron microscopy (SEM) and X-ray diffraction (XRD). In the initial immersion stage, the increase of the dissolved oxygen concentration led to the change of from a reductive state of active dissolution to an oxidizing state of pseudo passivation in low carbon steel. While in the final stage, all the steels transformed into the steady state of pseudo passivation. In the anaerobic solution, the formation of c^-FeOOH was attributed to the chemical oxidization of the ferrous corrosion products and the final cathodic process only included the reduction of c^-FeOOH, while in the aerobic solution, it included the reduction of oxygen and (x-FeOOH simultaneously. As the main corrosion products, the content of (x-FeOOH was increased while that of Fe6(OH)12CO3 was decreased with increasing concentration of dissolved oxygen. The total corrosion mass loss of the steel was promoted with the increase of dissolved oxygen concentration.展开更多
Sinoe vertical transport of nutrients and dissolved oxygen are quite important in the water col-umn and have drawn serious attention these recent years, a one-dmension numerical model is tried to simulate the vertical...Sinoe vertical transport of nutrients and dissolved oxygen are quite important in the water col-umn and have drawn serious attention these recent years, a one-dmension numerical model is tried to simulate the vertical distribution of nutrients and dissolved oxygen in June at two research sites in the southemTaiwan Strait. Physical transport parameters are calibrated by temperature simulation, and thenare used to simulate the profiles of NO<sub>3</sub>, PO<sub>4</sub> and dissolved oxygen. The simulation was generally success-ful for both stations. The importance of various factors, such as upwelling tidal current andbiogeochemical activities, which influence the vertical distribution of nutrients and dissolved oxygen, is revealed by analysis of the modeling results. Some important rates, fluxes and ratios are also estimated anddiscussed on the basis of simulation.展开更多
In the Orbal oxidation ditch, denitrification is primarily accomplished in the outer channel. However, the detailed characteristics of the flow field and dissolved oxygen (DO) distribution in the outer channel are n...In the Orbal oxidation ditch, denitrification is primarily accomplished in the outer channel. However, the detailed characteristics of the flow field and dissolved oxygen (DO) distribution in the outer channel are not well understood. Therefore, in this study, the flow velocity and DO concentration in the outer channel of an Orbal oxidation ditch system in a wastewater treatment plant in Beijing (China) were monitored under actual operation conditions. The flow field and DO concentration distributions were analyzed by computed fluid dynamic modeling. In situ monitoring and modeling both showed that the flow velocity was heterogeneous in the outer channel. As a result, the DO was also heterogeneously distributed in the outer channel, with concentration gradients occurring along the flow direction as well as in the cross-section. This heterogeneous DO distribution created many anoxic and aerobic zones, which may have facilitated simultaneous nitrificafion-denitrification in the channel. These findings may provide supporting information for rational optimization of the performance of the Orbal oxidation ditch.展开更多
Dissolved oxygen(DO)concentration is regarded as one of the crucial factors to influence partial nitrification process.However,achieving and keeping stable partial nitrification under different DO concentrations were ...Dissolved oxygen(DO)concentration is regarded as one of the crucial factors to influence partial nitrification process.However,achieving and keeping stable partial nitrification under different DO concentrations were widely reported.The mechanism of DO concentration influencing partial nitrification is still unclear.Therefore,in this study two same sequencing batch reactors(SBRs)cultivated same seeding sludge were built up with realtime control strategy.Different DO concentrations were controlled in SBRs to explore the effect of DO concentration on the long-term stability of partial nitrification process at room temperature.It was discovered that ammonium oxidation rate(AOR)was inhibited when DO concentration decreased from 2.5 to 0.5 mg/L.The abundance of Nitrospira increased from 1011.5 to 1013.7 copies/g DNA,and its relative percentage increased from 0.056%to 3.2%during 190 operational cycles,causing partial nitrification gradually turning into complete nitrification process.However,when DO was 2.5 mg/L the abundance of Nitrospira was stable and AOB was always kept at 1010.7 copies/g DNA.High AOR was maintained,and stable partial nitrification process was kept.Ammonia oxidizing bacteria(AOB)activity was significantly higher than nitrite oxidizing bacteria(NOB)activity at DO of 2.5 mg/L,which was crucial to maintain excellent nitrite accumulation performance.展开更多
An ecosystem-based water quality model was designed to estimate the biochemical reaction of nutrient and dissolved oxygen in conjunction with a three-dimensional hydrodynamic and sediment model. As both phosphorus and...An ecosystem-based water quality model was designed to estimate the biochemical reaction of nutrient and dissolved oxygen in conjunction with a three-dimensional hydrodynamic and sediment model. As both phosphorus and nitrogen successively limit phytoplankton growth in many estuaries, the model simulates both there nutrient cycles each using five variables, namely, dissolved inorganic nutri- ent, detritic organic matter, benthic matter, phytoplankton and zooplankton.展开更多
Pt-based nanoframes represent a class of promising catalysts towards oxygen reduction reaction. Herein, we, for the first time, successfully prepared Pt-Pd octahedral nanoframes with ultrathin ridges less than 2 nm in...Pt-based nanoframes represent a class of promising catalysts towards oxygen reduction reaction. Herein, we, for the first time, successfully prepared Pt-Pd octahedral nanoframes with ultrathin ridges less than 2 nm in thickness. The Pt-Pd octahedral nanoframes were obtained through site-selected deposition of Pt atoms onto the edge sites of Pd octahedral seeds, followed by selective removal of the Pd octahedral cores via chemical etching. Due to that a combination of three-dimensional opens geometrical structure and Pt-skin surface compositional structure, the Pt-Pd octahedral nanoframes/C catalyst shows a mass activity of 1.15 A/mgPt towards oxygen reduction reaction, 5.8 times enhancement in mass activity relative to commercial Pt/C catalyst (0.20 A/mgPt). Moreover, even after 8000 cycles of accelerated durability test, the Pt-Pd octahedral nanoframes/C catalyst still exhibits a mass activity which is more than three times higher than that of pristine Pt/C catalyst.展开更多
The influence of dissolved oxygen content on the oxidative stability of a linked polymer solution (LPS) was studied by micro-filtration, dynamic light scattering and viscosity measurements. The results showed that at ...The influence of dissolved oxygen content on the oxidative stability of a linked polymer solution (LPS) was studied by micro-filtration, dynamic light scattering and viscosity measurements. The results showed that at the same temperature, the degree of the oxidative degradation of the LPS increased and the rapidity of the oxidative degradation was accelerated with the increase of the dissolved oxygen content. Consequently, the size of linked polymer coils (LPCs) of the LPS became small, and the plugging capability of the LPS decreased. At a fixed content of dissolved oxygen, with increasing degradation temperature, almost the same results were observed, namely, an increased degree of oxidative degradation, accelerated rapidity of the oxidative degradation and decreased plugging capacity, with decreased oxidative stability of LPS. At 90 °C, in the presence of oxygen, LPS lost its plugging capability after having been degraded for a period of time. But at 40 °C, LPS with low dissolved oxygen content could be stable for a long time. The decreased plugging ability of LPS after oxidative degradation is mainly caused by the decreased size and number of the LPCs due to the breaking of hydrolyzed polyacrylamide (HPAM) molecule segments and the structural changing of HPAM molecules.展开更多
文摘Influence of the combination of nutrient feed with dissolved oxygen control on taxol production in suspension cultures of Taxus chinensis (Pilg.) Rehd. was investigated in bioreactors. Addition of feeding medium with 20 g/L sucrose on day 16 enhanced both the biomass and taxol production in 5-L bioreactors. Further investigation of the fed-batch cultures in a 20-L bioreactor showed that cultivation under a low dissolved oxygen tension (DOT) of 20% for the entire culture resulted in the highest taxol content of 0.98 mg/g DW, while the taxol production was lower than that with 40% and 60% DOT. Moreover, taxol accumulation was remarkably improved by the cultivation of cells initially under DOT of 60% for 20 d followed by changing the DOT to 20% for another 12 d. By combining the use of these two strategies, a maximum taxol content of 18.7 mg/L was obtained in a 20-L bioreactor.
基金funded by the National Water Pollution Control and Management Technology Major Projects(No.2014ZX 07201-011)the Beijing Natural Science Foundation(No.8122005)of Chinathe Beijing Municipal EducationCommission General Program(No.KM2012-10005028)
文摘The objective of this study was to investigate the nitritation performance in a biofilm reactor for treating domestic wastewater.The reactor was operated in continuous feed mode from phases 1 to 3.The dissolved oxygen(DO)was controlled at 3.5–7 mg/L throughout the experiment.The biofilm reactor showed excellent nitritation performance after the inoculation of nitrifying sludge,with the hydraulic retention time being reduced from 24 to 7 hr.Above 90%nitrite accumulation ratio(NAR)was maintained in phase 1.Afterwards,nitratation occurred with the low NH4^+–N concentration in the reactor.The improvement of NH4^+–N concentration to 20–35 mg/L had a limited effect on the recovery of nitritation.However,nitritation recovered rapidly when sequencing batch feed mode was adopted in phase 4,with the effluent NH4^+-N concentration above 7 mg/L.The improvement of ammonia oxidizing bacteria(AOB)activity and the combined inhibition effect of free ammonia(FA)and free nitrous acid(FNA)on the nitrite oxidizing bacteria(NOB)were two key factors for the rapid recovery of nitritation.Sludge activity was obtained in batch tests.The results of batch tests had a good relationship with the long term operation performance of the biofilm reactor.
基金supported by the Central Guiding Local Science and Technology Development Fund of Shandong-Yellow River Basin(No.YDZX2023019)Shandong Natural Science Foundation of China(Nos.ZR2020QF067 and ZR2023QD073)+6 种基金the Discipline Cluster Research Project of Qingdao University“Deep mining and intelligent prediction of multimodal big data for marine ecological disasters”(No.20240604)sourced from the International Argo Program and the national programs that contribute to it(https://argo.ucsd.edu)the CMEMS(http://marine.copernicus.eu/)the CDS(https://cds.climate.copernicus.eu/)the EMODnet(https://www.emodnet-chemistry.eu/)obtained from the ERA5(https://www.ecmwf.int)derived from the Glob Colour Project(http://globcolour.info).
文摘Oceanic dissolved oxygen(DO)concentration is crucial for assessing the status of marine ecosystems.Against the backdrop of global warming,DO shows a general decrease,posing a threat to the health of marine ecosystems.Therefore,there is an urgent need to develop advanced tools to characterize the spatio-temporal variations of three-dimensional(3D)DO.To address this challenge,this study introduces the Light Gradient Boosting Machine(Light-GBM),combining satellite remote sensing and reanalysis data with Biogeochemical Argo data to accurately reconstruct the 3D DO structure in the Mediterranean Sea from 2010 to 2022.Various environmental parameters are incorporated as inputs,including spatiotemporal features,meteorological characteristics,and ocean color properties.The LightGBM model demonstrates excellent performance on the testing dataset with R^(2) of 0.958.The modeled DO agrees better with in-situ measurements than products from numerical models.Using the Shapley Additive exPlanations method,the contributions of input features are assessed.Sea surface temperatures provide a correlation with DO at the sea surface,while spatial coordinates supplement the view of the ocean interior.Based on the reconstructed 3D DO structure,we identify an oxygen minimum zone in the western Mediterranean that expands continuously,reaching depths of approximately 300–800 m.The western Mediterranean exhibits a significant declining trend.This study enhances marine environmental evidence by proposing a precise and cost-effective approach for reconstructing 3D DO,thereby offering insights into the dynamics of DO variations under changing climatic conditions.
基金Open Access funding provided by Kobe UniversityThis research was partially performed by the Environment Research and Technology Development Fund(2RL-2301)of the Environmental Restoration and Conservation Agency provided by Ministry of the Environment of Japan.
文摘This study examines the potential impacts o climate change on Lake Biwa,Japan’s largest freshwate lake,with a focus on temperature,wind speed,and pre cipitation variations.Leveraging data from the IPCC Sixth Assessment Report,including CCP scenarios,projecting a significant temperature rise of 3.3–5.7℃in the case o very high GHG emission power,the research investigates how these shifts may influence dissolved oxygen levels in Lake Biwa.Through a one-dimensional model incorporat ing sediment redox reactions,various scenarios where ai temperature and wind speed are changed are simulated.I is revealed that a 5℃increase in air temperature leads to decreasing 1-2 mg/L of dissolved oxygen concentrations from the surface layer to the bottom layer,while a decrease in air temperature tends to elevate 1–3 mg/L of oxygen lev els.Moreover,doubling wind speed enhances surface laye oxygen but diminishes it in deeper layers due to increased mixing.Seasonal variations in wind effects are noted with significant surface layer oxygen increases from 0.4to 0.8 mg/L during summer to autumn,increases from 0.4 to 0.8 mg/L in autumn to winter due to intensified vertica mixing.This phenomenon impacts the lake’s oxygen cycle year-round.In contrast,precipitation changes show limited impact on oxygen levels,suggesting minor influence com pared to other meteorological factors.The study suggests the necessity of comprehensive three-dimensional models that account for lake-specific and geographical factors fo accurate predictions of future water conditions.A holistic approach integrating nutrient levels,water temperature,and river inflow is deemed essential for sustainable management of Lake Biwa’s water resources,particularly in addressing precipitation variations.
基金supported by the National Natural Science Foundation of China(Nos.52171236,51971062,52231005)Open Research Fund of Jiangsu Key Laboratory for Advanced Metallic Materials,Southeast University,China(No.AMM2024A01)+3 种基金Suzhou Science and Technology Project,China(Nos.SJC2023005,SZS2023023)City University of Hong Kong Donation Research Grant,China(No.DON-RMG 9229021)City University of Hong Kong Strategic Research Grant,China(No.SRG 7005505)City University of Hong Kong Donation Grant,China(No.9220061)。
文摘To investigate the influence of oxygen content in a physiological liquid environment on the corrosion behavior of biomedical zinc-based alloys,a simulated bodily fluid environment with varying dissolved oxygen was established in vitro using external oxygen supply equipment.The influence of dissolved oxygen concentration on the corrosion behavior of pure Zn and Zn−Cu alloys was studied with scanning electron microscopy,energy dispersive spectroscopy,Fourier transform infrared spectrometry,and electrochemical analysis.Due to oxygen absorption corrosion,the increase in dissolved oxygen concentration increases the pH value of the solution and promotes the accumulation of corrosion product layer.Compared with the environment without additional oxygen supply,the corrosion rate of the sample under the continuous oxygen supply condition is increased by one order of magnitude.Because the Zn−Cu alloy has micro-galvanic corrosion,its corrosion rate is about 1.5 times that of pure zinc under different dissolved oxygen conditions.
基金The National Natural Science Foundation of China under contract Nos T2421002, 623B2071,and 42125601the National Key R&D Program of China under contract No. 2023YFF0805300
文摘Oceanic dissolved oxygen(DO)in the ocean has an indispensable role on supporting biological respiration,maintaining ecological balance and promoting nutrient cycling.According to existing research,the total DO has declined by 2%of the total over the past 50 a,and the tropical Pacific Ocean occupied the largest oxygen minimum zone(OMZ)areas.However,the sparse observation data is limited to understanding the dynamic variation and trend of ocean using traditional interpolation methods.In this study,we applied different machine learning algorithms to fit regression models between measured DO,ocean reanalysis physical variables,and spatiotemporal variables.We demonstrate that extreme gradient boosting(XGBoost)model has the best performance,hereby reconstructing a four-dimensional DO dataset of the tropical Pacific Ocean from 1920 to 2023.The results reveal that XGBoost significantly improves the reconstruction performance in the tropical Pacific Ocean,with a 35.3%reduction in root mean-squared error and a 39.5%decrease in mean absolute error.Additionally,we compare the results with three Coupled Model Intercomparison Project Phase 6(CMIP6)models data to confirm the high accuracy of the 4-dimensional reconstruction.Overall,the OMZ mainly dominates the eastern tropical Pacific Ocean,with a slow expansion.This study used XGBoost to efficiently reconstructing 4-dimensional DO enhancing the understanding of the hypoxic expansion in the tropical Pacific Ocean and we foresee that this approach would be extended to reconstruct more ocean elements.
基金supported by the National Natural Science Foundation of China(No.21875039)the Project on the Integration of Industry-Education-Research of Fujian Province(No.2021H6020)the State Key Laboratory of Advanced Technology for Materials Synthesis and Processing(Wuhan University of Technology).
文摘The exploitation of durable and highly active Pt-based electrocatalysts for the oxygen reduction reaction(ORR)is essential for the commercialization of proton exchange membrane fuel cells(PEMFCs).Herein,we designed Pt@Pt_(3)Ti core-shell nanoparticles with atomic-controllable shells through precise thermal diffusing Ti into Pt nanoparticles for effective and durable ORR.Combining theoretical and experiment analysis,we found that the lattice strain of Pt_(3)Ti shells can be tailored by precisely controlling the thick-ness of Pt_(3)Ti shell in atomic-scale on account of the lattice constant difference between Pt and Pt_(3)Ti to optimize adsorption properties of Pt_(3)Ti for ORR intermediates,thus enhancing its performance.The Pt@Pt_(3)Ti catalyst with one-atomic Pt_(3)Ti shell(Pt@1L-Pt_(3)Ti/TiO_(2)-C)demonstrates excellent performance with mass activity of 592 mA mgpt-1 and durability nearly 19.5-fold that of commercial Pt/C with negligible decay(2%)after 30,000 potential cycles(0.6-1.0 V vs.RHE).Notably,at higher potential cycles(1.0 V-1.5 V vs.RHE),Pt@1L-Pt_(3)Ti/TiO_(2)-C also showed far superior durability than Pt/C(9.6%decayed while 54.8% for commercial Pt/C).This excellent stability is derived from the intrinsic stability of Pt_(3)Ti alloy and the confinement effect of TiO_(2)-C.The catalyst's enhancement was further confirmed in PEMFC configuration.
基金supported by the Central Government Guides Local Science and Technology Development Foundation(No.2023JH6/100100046)the Project funded by China Postdoctoral Science Foundation(No.2023M730230).
文摘A mathematical model of the decarburization reaction zone was established for the Ruhrstahl–Heraeus (RH) forced oxygen blowing decarburization process by Matlab R2022b software. For the problem of inaccurate prediction due to the large variation range of oxygen absorption rate under different process conditions, we statistically analyzed the main factors affecting the oxygen absorption rate. The backpropagation neural network was used to train and predict the oxygen absorption rate and was used to calculate the RH decarburization reaction zone model. We designed and developed a mathematical modeling software with process control of decarburization in RH degasser, which can realize the change of operating process parameters in the dynamic prediction process. The optimized mathematical model has more than 95% of the furnaces whose absolute error in calculation of carbon content is within ± 5 × 10^(−6), more than 90% of the heats whose relative error in calculation of oxygen content is within ± 15%, and the average absolute error of calculation of oxygen content is 26.4 × 10^(−6). Finally, we studied the influence of oxygen blowing timing, oxygen blowing volume and initial oxygen content on the forced decarburization process.
基金Funded by the Open Project of State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials of Sichuan Province (No.10zxfk23)Scientific Research Project of Sichuan Normal University (No.11KYL06)
文摘To establish a immobilization method of oxygen sensitive dye, a dissolved oxygen sensor based on a sol-gel matrix doped with ruthenium complex ([Ru(bpy)3]2+) as the oxygen-sensitive material is reported. The results indicate that the I0 /I100 value of the [Ru(bpy)3]2+-doped in tetraethylorthosilane (TEOS) composite films are estimated to be 10.6, where I0 and I100 correspond to the detected fluorescence intensities in pure nitrogen saturated water and pure oxygen saturated water, respectively. Also, the Stern-Volmer plot shows a very good linearity at low dissolved oxygen concentrations. The response time of the composite films is 5 s upon switching from nitrogen saturated water to oxygen saturated water and 10 s from oxygen saturated water to nitrogen saturated water. The dissolved oxygen sensors based on the ruthenium complex/TEOS composite films exhibit greater sensitivity, stability and faster response time as compared to the existing ones. Furthermore, the thin films possess greatly minimized dye leaching effect.
基金Supported by National Natural Science Foundation of China (40801227)Open Foundation of Marine and Estuarine Fisheries Resources of Ministry of Agriculture and the Key Laboratory of Ecology (Open-2-04-09)~~
文摘A dissolved oxygen fuzzy system predicting model based on neural network was put forward in this study. 106 groups of data were used to confirm the fitness of the predicting model. The first 80 groups of data were acted as training input and the other 26 groups of data were acted as the confirmed data in the system. The result showed that the testing data was approximately the same as the predicted data. So it gave a new way to solve the problem that the status of the water quality couldn't be predicted in time and it's hard to watching and measuring the factors dynamic.
基金Supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA11020102)the National Natural Science Foundation of China-Shandong Joint Fund(No.U1606404)the Aoshan Program Supported by Qingdao National Laboratory for Marine Science and Technology(No.2016ASKJ14)
文摘A marine survey was conducted from 18 May to 13 June 2014 in the East China Sea (ECS) and its adjacent Kuroshio Current to examine the spatial distribution and biogeochemical characteristics of dissolved oxygen (DO) in spring. Waters were sampled at 10?25 m intervals within 100 m depth, and at 25?500 m beyond 100 m. The depth, temperature, salinity, and density (sigma- t ) were measured in situ with a conductivity-temperature-depth (CTD) sensor. DO concentrations were determined on board using traditional Winkler titration method. The results show that in the Kuroshio Current, DO content was the highest in the euphotic layer, then decreased sharply with depth to about 1 000 m, and increased with depth gradually thereafter. While in the ECS continental shelf area, DO content had high values in the coastal surface water and low values in the near-bottom water. In addition, a low-DO zone off the Changjiang (Yangtze) River estuary was found in spring 2014, and it was formed under the combined influence of many factors, including water stratification, high primary productivity in the euphotic layers, high accumulation/ sedimentation of organic matter below the euphotic layers, and mixing/transport of oceanic current waters on the shelf. Most notable among these is the Kuroshio intruded water, an oceanic current water which carried rich dissolved oxygen onto the continental shelf and alleviated the oxygen deficit phenomenon in the ECS, could impact the position, range, and intensity, thus the formation/destruction of the ECS Hypoxia Zone.
基金supported by the National Natural Science Foundation of China (Nos. 41821001, 41622207, 41530104, 41661134047)the State Key R&D Project of China (No. 2016YFA0601100)+3 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB26000000)a Marie Curie Fellowship (No. H2020MSCA-IF-2015-701652)the Natural Environment Research Council’s Eco-PT Project (No. NE/P01377224/1)a part of the Biosphere Evolution, Transitions and Resilience Program (BETR)
文摘Ocean temperature and dissolved oxygen concentrations are critical factors that control ocean productivity, carbon and nutrient cycles, and marine habitat. However, the evolution of these two factors in the geologic past are still unclear. Here, we use a new oxygen isotope database to establish the sea surface temperature(SST) curve in the past 500 million years. The database is composed of 22 796 oxygen isotope values of phosphatic and calcareous fossils. The result shows two prolonged cooling events happened in the Late Paleozoic and Late Cenozoic, coinciding with two major ice ages indicated by continental glaciation data, and seven global warming events that happened in the Late Cambrian, Silurian–Devonian transition, Late Devonian, Early Triassic, Toarcian, Late Cretaceous, and Paleocene–Eocene transition. The SSTs during these warming periods are about 5–30 °C higher than the present-day level. Oxygen contents of shallow seawater are calculated from temperature, salinity, and atmospheric oxygen. The results show that major dissolved oxygen valleys of surface seawater coincide with global warming events and ocean anoxic events. We propose that the combined effect of temperature and dissolved oxygen account for the long-term evolution of global oceanic redox state during the Phanerozoic.
文摘The Changjiang Estuary and its adjacent waters form one of the most important estuarine and coastal areas in China. Multi source and long-term data are assembled to examine the temporal-spatial distribution features of dissolved oxygen (DO) in the Changjiang Estuary and its adjacent waters for the past SO a. The results show that the DO concentration in the surface of different seasons generally stays stable, while the DO concentration in winter displays a slight increase for the last 50 a. The DO average concentration in winter and spring varies from 7 to 11 rag/L, and in summer and autumn from 6 to 8 mg/L. Hypoxic values first appear in May, and low DO value plume can be observed on the bottom in spring along coastal areas of Zhejiang and Fujian Provinces, China. In summer, the plume advances northward, and the hypoxic intensity of northern transects is much higher than southern transects. Until autumn, hypoxia areas fade away little by little, and completely disappear in winter. Within last 50 a, hypoxia in the Changjiang Estuary and its adjacent waters starts to appear in the 1980s. Since 2000, the degree of hypoxia has increased seriously and the distribution depth has become smaller. It is performed based on a large amount of historical data, and the research results will be of great significance to further study on the dynamic development of hypoxia around the Changjiang Estuary.
基金financially supported by the National Natural Science Foundation of China(No.51471175)
文摘The effect of residual dissolved oxygen (DO) on the corrosion behavior of carbon steel in 0.1 M NaHCO3 solution was investigated by electrochemical measurements, corrosion mass loss test, scanning electron microscopy (SEM) and X-ray diffraction (XRD). In the initial immersion stage, the increase of the dissolved oxygen concentration led to the change of from a reductive state of active dissolution to an oxidizing state of pseudo passivation in low carbon steel. While in the final stage, all the steels transformed into the steady state of pseudo passivation. In the anaerobic solution, the formation of c^-FeOOH was attributed to the chemical oxidization of the ferrous corrosion products and the final cathodic process only included the reduction of c^-FeOOH, while in the aerobic solution, it included the reduction of oxygen and (x-FeOOH simultaneously. As the main corrosion products, the content of (x-FeOOH was increased while that of Fe6(OH)12CO3 was decreased with increasing concentration of dissolved oxygen. The total corrosion mass loss of the steel was promoted with the increase of dissolved oxygen concentration.
文摘Sinoe vertical transport of nutrients and dissolved oxygen are quite important in the water col-umn and have drawn serious attention these recent years, a one-dmension numerical model is tried to simulate the vertical distribution of nutrients and dissolved oxygen in June at two research sites in the southemTaiwan Strait. Physical transport parameters are calibrated by temperature simulation, and thenare used to simulate the profiles of NO<sub>3</sub>, PO<sub>4</sub> and dissolved oxygen. The simulation was generally success-ful for both stations. The importance of various factors, such as upwelling tidal current andbiogeochemical activities, which influence the vertical distribution of nutrients and dissolved oxygen, is revealed by analysis of the modeling results. Some important rates, fluxes and ratios are also estimated anddiscussed on the basis of simulation.
基金supported by the National Natural Science Foundation of China (No. 51138009)the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2012ZX07203-001)
文摘In the Orbal oxidation ditch, denitrification is primarily accomplished in the outer channel. However, the detailed characteristics of the flow field and dissolved oxygen (DO) distribution in the outer channel are not well understood. Therefore, in this study, the flow velocity and DO concentration in the outer channel of an Orbal oxidation ditch system in a wastewater treatment plant in Beijing (China) were monitored under actual operation conditions. The flow field and DO concentration distributions were analyzed by computed fluid dynamic modeling. In situ monitoring and modeling both showed that the flow velocity was heterogeneous in the outer channel. As a result, the DO was also heterogeneously distributed in the outer channel, with concentration gradients occurring along the flow direction as well as in the cross-section. This heterogeneous DO distribution created many anoxic and aerobic zones, which may have facilitated simultaneous nitrificafion-denitrification in the channel. These findings may provide supporting information for rational optimization of the performance of the Orbal oxidation ditch.
基金supported by the National Natural Science Foundation of China(No.51878011)
文摘Dissolved oxygen(DO)concentration is regarded as one of the crucial factors to influence partial nitrification process.However,achieving and keeping stable partial nitrification under different DO concentrations were widely reported.The mechanism of DO concentration influencing partial nitrification is still unclear.Therefore,in this study two same sequencing batch reactors(SBRs)cultivated same seeding sludge were built up with realtime control strategy.Different DO concentrations were controlled in SBRs to explore the effect of DO concentration on the long-term stability of partial nitrification process at room temperature.It was discovered that ammonium oxidation rate(AOR)was inhibited when DO concentration decreased from 2.5 to 0.5 mg/L.The abundance of Nitrospira increased from 1011.5 to 1013.7 copies/g DNA,and its relative percentage increased from 0.056%to 3.2%during 190 operational cycles,causing partial nitrification gradually turning into complete nitrification process.However,when DO was 2.5 mg/L the abundance of Nitrospira was stable and AOB was always kept at 1010.7 copies/g DNA.High AOR was maintained,and stable partial nitrification process was kept.Ammonia oxidizing bacteria(AOB)activity was significantly higher than nitrite oxidizing bacteria(NOB)activity at DO of 2.5 mg/L,which was crucial to maintain excellent nitrite accumulation performance.
基金The present study was supported by the Pearl River Estuary Pollution Project funded by the Hong Kong Government/Hong Kong Jock
文摘An ecosystem-based water quality model was designed to estimate the biochemical reaction of nutrient and dissolved oxygen in conjunction with a three-dimensional hydrodynamic and sediment model. As both phosphorus and nitrogen successively limit phytoplankton growth in many estuaries, the model simulates both there nutrient cycles each using five variables, namely, dissolved inorganic nutri- ent, detritic organic matter, benthic matter, phytoplankton and zooplankton.
基金This work is supported by Collaborative Innovation Center of Suzhou Nano Science and Technology, Ministry of Science and Technology of China (No.2014CB932700), the National Natural Science Foundation of China (No.21603208, No.21573206, and No.51371164), the China Postdoctoral Science Foundation (No.2015M580536, No.2016T90569), Key Research Program of Frontier Sciences, CAS (QYZDBSSW- SLH017), Strategic Priority Research Program B of the CAS (No.XDB01020000), Hefei Science Center, CAS (No.2015HSC-UP016), and Fundamental Research Funds for the Central Universities.
文摘Pt-based nanoframes represent a class of promising catalysts towards oxygen reduction reaction. Herein, we, for the first time, successfully prepared Pt-Pd octahedral nanoframes with ultrathin ridges less than 2 nm in thickness. The Pt-Pd octahedral nanoframes were obtained through site-selected deposition of Pt atoms onto the edge sites of Pd octahedral seeds, followed by selective removal of the Pd octahedral cores via chemical etching. Due to that a combination of three-dimensional opens geometrical structure and Pt-skin surface compositional structure, the Pt-Pd octahedral nanoframes/C catalyst shows a mass activity of 1.15 A/mgPt towards oxygen reduction reaction, 5.8 times enhancement in mass activity relative to commercial Pt/C catalyst (0.20 A/mgPt). Moreover, even after 8000 cycles of accelerated durability test, the Pt-Pd octahedral nanoframes/C catalyst still exhibits a mass activity which is more than three times higher than that of pristine Pt/C catalyst.
文摘The influence of dissolved oxygen content on the oxidative stability of a linked polymer solution (LPS) was studied by micro-filtration, dynamic light scattering and viscosity measurements. The results showed that at the same temperature, the degree of the oxidative degradation of the LPS increased and the rapidity of the oxidative degradation was accelerated with the increase of the dissolved oxygen content. Consequently, the size of linked polymer coils (LPCs) of the LPS became small, and the plugging capability of the LPS decreased. At a fixed content of dissolved oxygen, with increasing degradation temperature, almost the same results were observed, namely, an increased degree of oxidative degradation, accelerated rapidity of the oxidative degradation and decreased plugging capacity, with decreased oxidative stability of LPS. At 90 °C, in the presence of oxygen, LPS lost its plugging capability after having been degraded for a period of time. But at 40 °C, LPS with low dissolved oxygen content could be stable for a long time. The decreased plugging ability of LPS after oxidative degradation is mainly caused by the decreased size and number of the LPCs due to the breaking of hydrolyzed polyacrylamide (HPAM) molecule segments and the structural changing of HPAM molecules.