期刊文献+
共找到751篇文章
< 1 2 38 >
每页显示 20 50 100
Impact of Burial Dissolution on the Development of Ultradeep Fault-controlled Carbonate Reservoirs:Insights from High-temperature and High-pressure Dissolution Kinetic Simulation 被引量:1
1
作者 TAN Xiaolin ZENG Lianbo +6 位作者 SHE Min LI Hao MAO Zhe SONG Yichen YAO Yingtao WANG Junpeng LU Yuzhen 《Acta Geologica Sinica(English Edition)》 2025年第1期228-242,共15页
Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temper... Burial dissolution is a critical diagenetic process influencing ultra-deep carbonate reservoir development and preservation.Artificial carbonate samples with different internal structures were prepared,and high-temperature and highpressure dissolution kinetic simulations were conducted.The results demonstrate that the intensity of burial dissolution is controlled by temperature and pressure,while tectonic-fluid activity influences the development pattern of burial dissolution,ultimately determining the direction of its differential modification.Extensive burial dissolution is likely to occur primarily at relatively shallow depths,significantly influencing reservoir formation,preservation,modification,and adjustment.The development of faults facilitates the maintenance of the intensity of burial dissolution.The maximum intensity of burial dissolution occurs at the tips and overlap zones of faults and intersections of multiple faults.The larger the scale of the faults,the more conducive it is to the development of burial dissolution.Burial dissolution fosters the formation of fault networks characterized by enhanced reservoir capacity and permeability.Burial dissolution controlled by episodic tectonic-fluid activity is a plausible explanation for forming the Tarim Basin's ultra-deep fault-controlled“stringbead-like”reservoirs. 展开更多
关键词 burial dissolution tectonic-fluid ultra-deep carbonate reservoirs high-temperature and high-pressure dissolution kinetic simulation
在线阅读 下载PDF
Revealing the intrinsic connection between residual strain distribution and dissolution mode in Mg-Sc-Y-Ag anode for Mg-air battery 被引量:1
2
作者 Wei-li Cheng Xu-bang Hao +4 位作者 Jin-hui Wang Hui Yu Li-fei Wang Ze-qin Cui Cheng Chang 《Journal of Magnesium and Alloys》 2025年第3期1020-1033,共14页
The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconci... The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment. 展开更多
关键词 Mg-air batteries ANODE Residual strain distribution dissolution mode Discharge mechanism
在线阅读 下载PDF
In-situ observation on dissolution of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions in refining slag 被引量:1
3
作者 Yu-die Gu Ying Ren Li-feng Zhang 《Journal of Iron and Steel Research International》 2025年第2期376-387,共12页
The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(... The dissolution behavior of complex inclusions in refining slag was studied using confocal laser scanning microscope.Based on the dissolution curve of complex inclusions,the main rate-limiting link of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was the diffusion in the molten slag.The dissolution rate of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was affected by the composition and size of inclusion.The functional relationship between the dimensionless inclusion capacity(Zh)and the dimensionless dissolution rate(Ry)of CaO-SiO_(2)-Al_(2)O_(3)complex inclusions was calculated as Ry=2.10×10^(-6)Zh^(0.160),while it was Ry=2.10×10^(-6)Zh^(0.0087)for Al_(2)O_(3)-CaO complex inclusions.On this basis,the complete dissolution time and rate of the complex inclusions were calculated by using the function relation between the Zh and Ry numbers. 展开更多
关键词 INCLUSION Confocal laser scanning microscope Refining slag dissolution kinetics
原文传递
The dilemma of Luhuitou fringing reefs:net dissolution in winter and enhanced acidification in summer
4
作者 Junxiao ZHANG Hui HUANG +4 位作者 Xiangcheng YUAN Yong LUO Haorui LIANG Peixi LIANG Xin XU 《Journal of Oceanology and Limnology》 2025年第3期785-802,共18页
Global coral reef ecosystems have been severely degraded due to the combined effects of climate change and human activities.Changes in the seawater carbonate system of coral reef ecosystems can reflect their status an... Global coral reef ecosystems have been severely degraded due to the combined effects of climate change and human activities.Changes in the seawater carbonate system of coral reef ecosystems can reflect their status and their responses to the impacts of climate change and human activities.Winter and summer surveys in 2019 found that the ecological community of the Luhuitou coral reef flat was dominated by macroalgae and corals,respectively,contrasting with the conditions 10 years ago.The Luhuitou fringing reefs were sources of atmospheric CO_(2) in both seasons.In winter,the daily variation range of dissolved inorganic carbon(DIC)in Luhuitou coral reefs was up to 450μmol/kg,while that of total alkalinity(TA)was only 68μmol/kg.This indicated that the organic production was significantly higher than the calcification process during this period.The TA/DIC was approximately 0.15,which was less than half of that in healthy coral reefs;hence,photosynthesis-respiration processes were the most important factors controlling daily changes in the seawater carbonate system.The net community production(NCP)of the Luhuitou coral reef ecosystem in winter was as high as 47.65 mmol C/(m^(2)·h).While the net community calcification(NCC)was approximately 3.35 and-4.15 mmol CaCO_(3)/(m^(2)·h)during the daytime and nighttime respectively.Therefore,the NCC for the entire day was-21.9 mmol CaCO_(3)/(m^(2)·d),indicating a net autotrophic dissolved state.In summer,the acidification was enhanced by thunderstorms and heavy rain with the highest seawater partial pressure of CO_(2)(p CO_(2))and lowest pH T.Over the past 10 years,the increase rate of seawater p CO_(2) in Luhuitou reef was approximately 13.3μatm/a***,six times that of the open ocean,while the decrease rate of pH was approximately 0.0083/a,being five times that of the global ocean.These findings underscore the importance of protecting and restoring Luhuitou fringing reef,as well as similar reefs worldwide. 展开更多
关键词 Luhuitou coral reef carbonate system ACIDIFICATION CALCIFICATION dissolution
在线阅读 下载PDF
Impact of dissolution and precipitation on pore structure in CO_(2)sequestration within tight sandstone reservoirs
5
作者 Hui Gao Kai-Qing Luo +6 位作者 Chen Wang Teng Li Zhi-Lin Cheng Liang-Bin Dou Kai Zhao Nan Zhang Yue-Liang Liu 《Petroleum Science》 2025年第2期868-883,共16页
Complex physical and chemical reactions during CO_(2)sequestration alter the microscopic pore structure of geological formations,impacting sequestration stability.To investigate CO_(2)sequestration dynamics,comprehens... Complex physical and chemical reactions during CO_(2)sequestration alter the microscopic pore structure of geological formations,impacting sequestration stability.To investigate CO_(2)sequestration dynamics,comprehensive physical simulation experiments were conducted under varied pressures,coupled with assessments of changes in mineral composition,ion concentrations,pore morphology,permeability,and sequestration capacity before and after experimentation.Simultaneously,a method using NMR T2spectra changes to measure pore volume shift and estimate CO_(2)sequestration is introduced.It quantifies CO_(2)needed for mineralization of soluble minerals.However,when CO_(2)dissolves in crude oil,the precipitation of asphaltene compounds impairs both seepage and storage capacities.Notably,the impact of dissolution and precipitation is closely associated with storage pressure,with a particularly pronounced influence on smaller pores.As pressure levels rise,the magnitude of pore alterations progressively increases.At a pressure threshold of 25 MPa,the rate of change in small pores due to dissolution reaches a maximum of 39.14%,while precipitation results in a change rate of-58.05%for small pores.The observed formation of dissolution pores and micro-cracks during dissolution,coupled with asphaltene precipitation,provides crucial insights for establishing CO_(2)sequestration parameters and optimizing strategies in low permeability reservoirs. 展开更多
关键词 dissolution PRECIPITATION Pore structure CO_(2)sequestration Unconventional reservoirs
原文传递
In-situ confocal microscopy study on dissolution kinetics of calcium aluminate inclusions in CaO-Al_(2)O_(3)-SiO_(2)type steelmaking slags
6
作者 Guang Wang Muhammad Nabeel +2 位作者 Wangzhong Mu A.B.Phillion Neslihan Dogan 《Journal of Iron and Steel Research International》 2025年第2期364-375,共12页
Dissolution kinetics of CaO·2Al_(2)O_(3)(CA_(2))particles in a synthetic CaO-Al_(2)O_(3)-SiO_(2)steelmaking slag system have been investigated using the high-temperature confocal laser scanning microscope.Effects... Dissolution kinetics of CaO·2Al_(2)O_(3)(CA_(2))particles in a synthetic CaO-Al_(2)O_(3)-SiO_(2)steelmaking slag system have been investigated using the high-temperature confocal laser scanning microscope.Effects of temperature(i.e.,1500,1550,and 1600℃)and slag composition on the dissolution time of CA_(2)particles are investigated,along with the time dependency of the projection area of the particle during the dissolution process.It is found that the dissolution rate was enhanced by either an increase in temperature or a decrease in slag viscosity.Moreover,a higher ratio of CaO/Al_(2)O_(3)(C/A)leads to an increased dissolution rate of CA_(2)particle at 1600℃.Thermodynamic calculations suggested the dissolution product,i.e.,melilite,formed on the surface of the CA_(2)particle during dissolution in slag with a C/A ratio of 3.8 at 1550℃.Scanning electron microscopy equipped with energy dispersive X-ray spectrometry analysis of as-quenched samples confirmed the dissolution path of CA_(2)particles in slags with C/A ratios of 1.8 and 3.8 as well as the melilite formed on the surface of CA_(2)particle.The formation of this layer during the dissolution process was identified as a hindrance,impeding the dissolution of CA_(2)particle.A valuable reference for designing or/and choosing the composition of top slag for clean steel production is provided,especially using calcium treatment during the secondary refining process. 展开更多
关键词 In-situ observation dissolution kinetics Confocal laser scanning microscope Calcium aluminate inclusion Steelmaking slag Clean steel
原文传递
Increasing plant diversity exacerbates tufa dissolution: A case study of central Guizhou karst tufa landscape, China
7
作者 LIU Zhiming ZHANG Zhaohui +2 位作者 WANG Zhihui LI Chenyi SHEN Jiachen 《Journal of Mountain Science》 2025年第4期1343-1358,共16页
Tufa is an important type of landscape in karst regions.In recent years,the loss of landscape diversity due to tufa dissolution is affecting the stability of local ecosystems.Therefore,determining the factors and thei... Tufa is an important type of landscape in karst regions.In recent years,the loss of landscape diversity due to tufa dissolution is affecting the stability of local ecosystems.Therefore,determining the factors and their mechanisms involved in tufa dissolution is important for preserving regional landscape diversity and local ecosystem stability.In this study,we selected four tufa sites with different degrees of dissolution(undissolved tufa,lightly dissolved tufa,moderately dissolved tufa,and heavily dissolved tufa)in Xiangzhigou karst region of Guizhou Province as the study objects.We explored the effects of natural plant colonization on tufa dissolution using changes inαandβdiversity indices,soil physicochemical indicators,tufa components,and tufa substrate.The results indicated that the Shannon-wiener index,Simpson index and Patrick richness index gradually increased with tufa's increasing degree of dissolution.Additionally,the dissolution degree exhibited a significantly negative correlation with the species diversity(p<0.05).Natural vegetation colonization is the primary cause of changes in the proportion of tufa components and changes in the physicochemical properties of overlying tufa soils.The proportion of CaO components decreased significantly,and the proportion of loss on ignition components increased significantly.Soil organic carbon,pH,total nitrogen,available nitrogen,total phosphorus,available phosphorus,total potassium,available potassium,β-glucosidase,and urease gradually increased with deeper tufa dissolution and were negatively correlated with the degree of dissolution(p<0.05).It indicates that tufa is a process of dissolution into the soil and gradual improvement of the physicochemical properties of the overlying soil.Furthermore,scanning electron micrographs revealed the transition from dense to fragmented tufa structure under the influence of plants.In conclusion,this study found that improving plant diversity exacerbated tufa dissolution.Our findings provide a theoretical reference for the preventing and controlling of tufa dissolution in karst. 展开更多
关键词 Karst landform Tufa dissolution Natural vegetation colonization Vegetation diversity Soil formation Soil physicochemical properties
原文传递
Rapid lime dissolution for efficient dephosphorization by self-disintegrating effect of core–shell structured lime in converter slag
8
作者 Jia-xin Zhang Yu-feng Tian +1 位作者 Guang-qiang Li Yu Liu 《Journal of Iron and Steel Research International》 2025年第9期3089-3095,共7页
The dissolution behaviors of lime,limestone,and core–shell structured lime,as well as their effects on dephosphorization behavior were studied.The results show that the slow dissolution of lime in converter slag is m... The dissolution behaviors of lime,limestone,and core–shell structured lime,as well as their effects on dephosphorization behavior were studied.The results show that the slow dissolution of lime in converter slag is mainly attributed to the calcium silicate layer at the lime/slag interface.CO_(2)generated by CaCO_(3)decomposition can destroy the calcium silicate layer,and thus accelerates the dissolution of limestone and core–shell structured lime.However,in the initial stage,a large amount of CO_(2)emission generated by limestone decomposition results in the poor contact between molten slag and limestone,and the dissolution rate is slower in the test of limestone than that of lime.For core–shell structured lime,the initial dissolution rate is not affected due to the lime surface,and is accelerated by the appropriate CO_(2)emission.Rapid CaO pickup in molten slag by fast dissolution of the lime sample can remarkably accelerate the dephosphorization reaction.Because of the fastest dissolution rate,the core–shell structured lime slagging mode shows the most promising prospects for the efficient dephosphorization. 展开更多
关键词 Lime dissolution DEPHOSPHORIZATION Slag-metal interaction Core-shell structured lime CaCO_(3)decomposition
原文传递
Dynamic instantaneous dissolution of the precipitates in aged Mg-Zn-Zr alloy at high strain rate
9
作者 LIU Yue-yang YANG Yang +6 位作者 HU Li-xiang CHEN Yi KE Yu-bin LI Dan WEI Shao-hong XU Wen-lin CHEN Xiang 《Journal of Central South University》 2025年第6期2038-2050,共13页
The commercial ZK 60 magnesium alloy with extruded state experienced aging heat treatment(T 6)was dynamically loaded at strain rate of 3000 s−1 by means of the split Hopkinson pressure bar(SHPB)in this paper.Transmiss... The commercial ZK 60 magnesium alloy with extruded state experienced aging heat treatment(T 6)was dynamically loaded at strain rate of 3000 s−1 by means of the split Hopkinson pressure bar(SHPB)in this paper.Transmission electron microscopy(TEM)observations showed that the precipitatedβ′_(1) phases partially dissolved(spheroidized)with blurred interfaces within 160μs at 3000 s^(−1).The average length and diameter of the rod-shapedβ′_(1) phase particles were 48.5 and 9.8 nm after the T 6 heat treatment;while the average diameter of the sphericalβ′_(1) phases changed to 8.8 nm after loading.The deformedβ′_(1) phase generated larger lattice distortion energy than Mg matrix under high strain rate loading.Therefore,the difference of free energy(the driving force of dissolution)between theβ′_(1) phase and the matrix increased,making the instantaneous dissolution of theβ′_(1) phase thermodynamically feasible.The dissolution(spheroidization)of theβ′_(1) phase particles was kinetically promoted because the diffusion rate of the solute Zn atoms was accelerated by combined actions of adiabatic temperature rise,high density of dislocations(vacancies)and high deviatoric stresses during high strain rate loading.The increase in hardness of ZK 60-T 6 alloy could be attributed to solid solution strengthening,dislocation strengthening and second phase particle strengthening. 展开更多
关键词 dynamic dissolution(spheroidization) THERMODYNAMICS kinetics high strain rate ZK 60-T 6 magnesium alloy
在线阅读 下载PDF
Insights into the dissolution kinetics of copper-nickel tailings for CO_(2)mineral sequestration
10
作者 Zhenghong Yang Haiyun Gu +3 位作者 Sijia Liu Kai Wu Linglin Xu Lijie Guo 《International Journal of Minerals,Metallurgy and Materials》 2025年第9期2119-2130,共12页
Copper-nickel tailings(CNTs),consisting of more than 80wt%magnesium-bearing silicate minerals,show great potential for CO_(2)mineral sequestration.The dissolution kinetics of CNTs in HCl solution was investigated thro... Copper-nickel tailings(CNTs),consisting of more than 80wt%magnesium-bearing silicate minerals,show great potential for CO_(2)mineral sequestration.The dissolution kinetics of CNTs in HCl solution was investigated through a leaching experiment and kinetic modeling,and the effects of reaction time,HCl concentration,solid-to-liquid ratio,and reaction temperature on the leaching rate of mag-nesium were comprehensively studied.Results show that the suitable leaching conditions for magnesium in CNTs are 2 M HCl,a solid-to-liquid ratio of 50 g·L^(−1),and 90℃,at which the maximum leaching rate of magnesium is as high as 83.88%.A modified shrinking core model can well describe the leaching kinetics of magnesium.The dissolution of magnesium was dominated by a combination of chemical reaction and product layer diffusion,with a calculated apparent activation energy of 77.51 kJ·mol^(−1).This study demonstrates the feasibil-ity of using CNTs as a media for CO_(2)mineral sequestration. 展开更多
关键词 copper-nickel tailings dissolution kinetics magnesium leaching shrinking core model CO_(2)mineral sequestration
在线阅读 下载PDF
Characteristics and control factors of feldspar dissolution in gravity flow sandstone of Chang 7 Member,Triassic Yanchang Formation,Ordos Basin,NW China 被引量:2
11
作者 ZHU Haihua ZHANG Qiuxia +4 位作者 DONG Guodong SHANG Fei ZHANG Fuyuan ZHAO Xiaoming ZHANG Xi 《Petroleum Exploration and Development》 SCIE 2024年第1期114-126,共13页
To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb... To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly. 展开更多
关键词 gravity flow sandstone differential feldspar dissolution mica-feldspar dissolution experiment Chang 7 Member of Triassic Yanchang Formation Ordos Basin
在线阅读 下载PDF
Heterointerface Engineering-Induced Oxygen Defects for the Manganese Dissolution Inhibition in Aqueous Zinc Ion Batteries 被引量:5
12
作者 Wentao Qu Yong Cai +1 位作者 Baohui Chen Ming Zhang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期112-122,共11页
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t... Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy. 展开更多
关键词 electrochemical activation HETEROINTERFACE manganese dissolution inhibition oxygen defects zinc ion batteries
在线阅读 下载PDF
Progress on Transition Metal Ions Dissolution Suppression Strategies in Prussian Blue Analogs for Aqueous Sodium-/Potassium-Ion Batteries 被引量:2
13
作者 Wenli Shu Junxian Li +3 位作者 Guangwan Zhang Jiashen Meng Xuanpeng Wang Liqiang Mai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第7期142-168,共27页
Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonethel... Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries. 展开更多
关键词 Prussian blue analogs Transition metal ions dissolution Suppression strategies Aqueous sodium-ion batteries Aqueous potassium-ion batteries
在线阅读 下载PDF
Effect of Cr_(2)O_(3) on properties of CaO-SiO_(2)-Fe_(t)O-MgO system and dissolution behavior of lime 被引量:2
14
作者 Shan-nan Li Jian-li Li +1 位作者 Yue Yu Hang-yu Zhu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第4期870-881,共12页
The productivity of the chrome-containing semi-steel converter smelting process is directly affected by the slag-forming speed during the converter preliminary stage.The effects of Cr_(2)O_(3) content on the physicoch... The productivity of the chrome-containing semi-steel converter smelting process is directly affected by the slag-forming speed during the converter preliminary stage.The effects of Cr_(2)O_(3) content on the physicochemical properties of the CaO-SiO_(2)-Fe_(t)O-MgO system,such as melting temperature,solidification behavior,mineral composition,and lime dissolution rate,were studied.The results showed that the slag was an amorphous phase at 1500℃.When Cr_(2)O_(3) was added,Ca(Fe,Mg)Si_(2)O_(6) and spinel were formed in the slag.With the increase in Cr_(2)O_(3) content,the amount of spinel precipitation increased,and the dendritic FegO_(4) crystal gradually changed into the granular(Fe,Mg)(Fe,Cr)2O_(4) crystal.As the Cr_(2)O_(3) content increased from O to 2.91 wt.%,the melting temperature of the slag rose,and the melting range of the slag expanded slightly,but the lime dissolution rate did not change.When the Cr_(2)O_(3) content further increased to 9.09 wt.%,the melting temperature continued to rise,the melting range rapidly expanded,and the lime dissolution rate decreased. 展开更多
关键词 Cr_(2)O_(3) Vanadium-titanium magnetite Converter SLAG Lime dissolution
原文传递
Dissolution behavior of Al_(2)O_(3)inclusions into CaO-MgO-SiO_(2)-Al_(2)O_(3)-TiO_(2)system ladle slags
15
作者 Zhiyin Deng Xiaomeng Zhang +2 位作者 Guangyu Hao Chunxin Wei Miaoyong Zhu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期977-987,共11页
To investigate the dissolution behaviors of Al_(2)O_(3)inclusions in CaO-5wt%MgO-SiO_(2)-30wt%Al_(2)O_(3)-TiO_(2)system ladle slags,confocal scanning laser microscopy was conducted on the slags with different TiO_(2)c... To investigate the dissolution behaviors of Al_(2)O_(3)inclusions in CaO-5wt%MgO-SiO_(2)-30wt%Al_(2)O_(3)-TiO_(2)system ladle slags,confocal scanning laser microscopy was conducted on the slags with different TiO_(2)contents(0-10wt%),and scanning electron microscopy was performed to study the interfacial reaction between Al_(2)O_(3)and this slag system.The results disclose that the dissolution of Al_(2)O_(3)inclusions does not result in the formation of new phases at the boundary between the slag and the inclusions.In TiO_(2)-bearing and TiO_(2)-free ladle slags,there is no difference in the dissolution mechanism of Al_(2)O_(3)inclusions at steelmaking temperatures.Boundary layer diffusion is found as the controlling step of the dissolution of Al_(2)O_(3),and the diffusion coefficient is in the range of 4.18×10^(-10)to 2.18×10^(-9)m^(2)/s at 1450-1500℃.Compared with the solubility of Al_(2)O_(3)in the slags,slag viscosity and temperature play a more profound role in the dissolution of Al_(2)O_(3)inclusions.A lower viscosity and a lower melting point of the slags are beneficial for the dissolution.Suitable addition of TiO_(2)(e.g.,5wt%)in ladle slags can enhance the dissolution of Al_(2)O_(3)inclusions because of the low viscosity and melting point of the slags,while excessive addition of TiO_(2)(e.g.,10wt%)shows the opposite trend. 展开更多
关键词 INCLUSIONS dissolution ladle refining slag titanium dioxide confocal scanning laser microscopy
在线阅读 下载PDF
Zn Dissolution-Passivation Behavior with ZnO Formation via In Situ Characterizations
16
作者 Tanyanyu Wang Masahiro Kunimoto +3 位作者 Masahiro Yanagisawa Masayuki Morita Takeshi Abe Takayuki Homma 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期193-200,共8页
In this study,ZnO formation during the dissolution-passivation process of Zn anodes is observed via in situ Raman and optical characterization.The Zn passivation during galvanostatic anodization merely follows the dis... In this study,ZnO formation during the dissolution-passivation process of Zn anodes is observed via in situ Raman and optical characterization.The Zn passivation during galvanostatic anodization merely follows the dissolution-precipitation model,whereas that of potentiodynamic polarization exhibits different behaviors in different potential ranges.Initially,the Zn electrode is gradually covered by a ZnO precipitation film and then undergoes solid-state oxidation at~255 mV.The starting point of solid-state oxidation is well indicated by the abrupt current drop and yellow coloration of the electrode surface.During the pseudo passivation,an intense current oscillation is observed.Further,blink-like color changes between yellow and dark blue are revealed for the first time,implying that the oscillation is caused by the dynamic adsorption and desorption of OH groups.The as-formed ZnOs then experience a dissolution-reformation evolution,during which the crystallinity of the primary ZnO film is improved but the solid-state-formed ZnO layer becomes rich in oxygen vacancies.Eventually,oxide densification is realized,contributing to the Zn passivation.This study provides new insights into the Zn dissolution-passivation behavior,which is critical for the future optimization of Zn batteries. 展开更多
关键词 in situ characterization Zn dissolution and passivation ZnO formation
在线阅读 下载PDF
Dissolution kinetics and reaction mechanism of Al_(2)O_(3) in molten CaF_(2)-CaO-Al_(2)O_(3) slag
17
作者 Yao-xin Du Yan-wu Dong +5 位作者 Zhou-hua Jiang Ganna Stovpchenko Yu-shuo Li Jun Huang Xin-wei Wang Yu-xiao Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第4期861-869,共9页
The dissolution behavior of Al_(2)O_(3) in molten CaF_(2)-CaO-Al_(2)O_(3) slag,a basic slag system of electroslag remelting process,was investigated by rotating cylinder method using corundum rods to simulate Al_(2)O_... The dissolution behavior of Al_(2)O_(3) in molten CaF_(2)-CaO-Al_(2)O_(3) slag,a basic slag system of electroslag remelting process,was investigated by rotating cylinder method using corundum rods to simulate Al_(2)O_(3) inclusions in steel.The experimental results show that the dissolution rate of Al_(2)O_(3);rods in CaF_(2)-CaO-Al_(2)O_(3) slag increases with the increase in rotating speed and temperature,and the rate-controlling step is the mass transfer in the slag.The dissolution rate of Al_(2)O,in CaF_(2)-CaO-Al_(2)O_(3) slag increases with the increase in the ratio of CaO to Al_(2)O_(3),which is due to the increase in dissolution driving force and the decrease in slag viscosity.The apparent activation energy of the mass transfer of AlOs in slag C is calculated to be 222.86 kJ mol^(-1).During the dissolution of Al_(2)0,inclusions in the slag,it reacts with F in liquid slag at first,then reacts with CaO to form the intermediate compounds of xCaO-yAl_(2)O_(3) system,and finally dissolves in molten slag.The dissolution rate of Al_(2)O_(3) inclusions in CaF_(2)-CaO-Al_(2)O_(3) slag for electroslag remelting is positively correlated with the ratio of the dissolution driving force and slag viscosity,and the correlation coeficient is 2.487×10^(-11). 展开更多
关键词 Inclusion Electroslag remelting Mass transfer:dissolution rate-dissolution driving force
原文传递
Effect of Slag Basicity on Alumina Dissolution and Diffusivity:A High-temperature Confocal Laser Scanning Microscopy Study
18
作者 Burhanuddin Harald HARMUTH 《China's Refractories》 CAS 2024年第2期27-34,共8页
Alumina is one of the crucial and extensively utilized refractory components.As the refractory wear due to dissolution at elevated temperatures during operation is a major threat to refractory lifespan,quantifying dis... Alumina is one of the crucial and extensively utilized refractory components.As the refractory wear due to dissolution at elevated temperatures during operation is a major threat to refractory lifespan,quantifying dissolution is important for developing cost-effective and resource-efficient refractories.This study investigated the dissolution of alumina particles in two silicate and one calcium aluminate slags at 1450,1500,and 1550°C using high-temperature confocal laser scanning microscopy(HT-CLSM).Dissolution was quantified in terms of diffusivity,with all influencing factors,including Stefan flow and bath movement,incorporated into the determination process.The trends observed in total dissolution time and diffusivity in three slags at three experimental temperatures could not be explained solely on the basis of slag basicity.Two parameters,considering the influencing factors,were introduced to explain these trends.Furthermore,the linear trend observed in Arrhenius plots of diffusivities supports the diffusivity results.Additionally,good agreement between the diffusivities of alumina in one silicate slag obtained via CLSM and rotating finger test investigations verified the reliability of the results. 展开更多
关键词 ALUMINA dissolution DIFFUSIVITY CORROSION REFRACTORY
在线阅读 下载PDF
Electrodeposited CrMnFeCoNi Oxy-carbide film and effect of selective dissolution of Cr on oxygen evolution reaction
19
作者 Tian Xiao Chenghua Sun Rongguang Wang 《Journal of Materials Science & Technology》 CSCD 2024年第33期176-184,共9页
High entropy compounds were proven to exhibit excellent catalytic activity.Here,a series of amorphous CrMnFeCoNi Oxy-carbide films were successfully synthesized by one-step electrodeposition.As demonstrated,the film p... High entropy compounds were proven to exhibit excellent catalytic activity.Here,a series of amorphous CrMnFeCoNi Oxy-carbide films were successfully synthesized by one-step electrodeposition.As demonstrated,the film presented superior electrocatalytic activity for oxygen evolution reaction(OER)with an overpotential of 295 mV at a current density of 10 mA/cm^(2).Uniquely,selective dissolution of Chromium(Cr)was observed,which increased the catalytic activity and showed high stability under a large current density of up to 400 mA/cm^(2).Cr dissolution not only increased the surface area but also improved the conductivity due to newly formed metal-metal bonding,promoting electron transfer and improving OER performance.As revealed by density functional theory(DFT)calculations,Cr-dissolution mediates the bonding of OER intermediates over surface active sites and ultimately reduces OER overpotential.The one-step electrodeposition method and the micro-dissolution mechanism provided a potential way to design and prepare high entropy compound electrodes,aiming to achieve efficient water electrolysis. 展开更多
关键词 High entropy compound ELECTRODEPOSITION Selective dissolution Oxygen evolution reaction Density functional theory
原文传递
Later-Life Marital Dissolution in Italy:An Emerging Phenomenon?
20
作者 Laura Arosio 《Sociology Study》 2024年第2期98-106,共9页
The phenomenon of marital dissolution in later life,also referred to as“gray divorce”,is described on the rise in contemporary Western societies.This article contributes to the study of marriage breakdown in older a... The phenomenon of marital dissolution in later life,also referred to as“gray divorce”,is described on the rise in contemporary Western societies.This article contributes to the study of marriage breakdown in older age,with a specific focus on Italian society.First,the temporal trends of this phenomenon are reconstructed using official statistics.The data reveal that,although still relatively rare,the dissolution of marriage in later life is expanding in Italy.The analysis of the period from 1974 to 2015 indicates a rise in the average age at separation,a higher percentage of spouses over 50 years on the total number of couples obtaining legal separation,and an increase in the proportion of Italian spouses separating after many years of marriage.Furthermore,data from the national survey“Family and Social Subjects”,conducted in 2016 by the Italian National Institute of Statistics,are utilized to explore the relationship between specific traits of those who separated and their tendency to dissolve marriages before or after the age of 50.The data suggest that individuals with characteristics such as lower educational attainment,residence in the South and Islands,and adherence to more traditional family models are more likely to experience separation in later life. 展开更多
关键词 marital dissolution later life gray divorce social inequality ITALY
在线阅读 下载PDF
上一页 1 2 38 下一页 到第
使用帮助 返回顶部