Balancing high display performance with energy efficiency is crucial for global sustainability.Lowering operating frequencies—such as enabling 1 Hz operation in fringe-field switching(FFS)liquid crystal displays—red...Balancing high display performance with energy efficiency is crucial for global sustainability.Lowering operating frequencies—such as enabling 1 Hz operation in fringe-field switching(FFS)liquid crystal displays—reduces power consumption but is hindered by image flicker.While negative dielectric anisotropy liquid crystals(nLCs)mitigate flicker,their high driving voltages and production costs limit adoption.Positive dielectric anisotropy liquid crystals(pLCs)offer lower operating voltages,faster response times,and broader applicability,making them a more viable alternative.This study introduces a novel approach to minimizing flexoelectric effects in pLCs by investigating how single components influence flexoelectric behavior in mixtures through an effective experimental methodology.Two innovative measurement techniques—(1)flexoelectric coefficient difference analysis and(2)displacement-current measurement(DCM)—are presented,marking the first application of DCM for verifying flexoelectric effects.The proposed system eliminates uncertainties associated with previous methods,providing a reliable framework for selecting liquid crystal components with minimal flexoelectric effects while preserving key electro-optic properties.Given pLCs'higher reliability,lower production costs,and broader material selection,these advancements hold significant potential for low-power displays.We believe this work enhances flexoelectric analysis in nematic liquid crystals and contributes to sustainable innovation in the display industry,aligning with global energy-saving goals.展开更多
High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental sta...High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics.展开更多
It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be...It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.展开更多
Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancement...Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancements have been made in the performance of cadmium-free QLEDs.However,several challenges persist in the industrialization of ecofriendly QLED displays.For instance,(1)the poor performance,characterized by low photoluminescence quantum yield(PLQY),unstable ligand,and charge imbalance,cannot be effectively addressed with a solitary strategy;(2)the degradation mechanism,involving emission quenching,morphological inhomogeneity,and field-enhanced electron delocalization remains unclear;(3)the lack of techniques for color patterning,such as optical lithography and transfer printing.Herein,we undertake a specific review of all technological breakthroughs that endeavor to tackle the above challenges associated with cadmium-free QLED displays.We begin by reviewing the evolution,architecture,and operational characteristics of eco-friendly QLEDs,highlighting the photoelectric properties of QDs,carrier transport layer stability,and device lifetime.Subsequently,we focus our attention not only on the latest insights into device degradation mechanisms,particularly,but also on the remarkable technological progress in color patterning techniques.To conclude,we provide a synthesis of the promising prospects,current challenges,potential solutions,and emerging research trends for QLED displays.展开更多
The evolution of display backplane technologies has been driven by the relentless pursuit of higher form factor and superior performance coupled with lower power consumption.Current state-of-the-art backplane technolo...The evolution of display backplane technologies has been driven by the relentless pursuit of higher form factor and superior performance coupled with lower power consumption.Current state-of-the-art backplane technologies based on amorphous Si,poly Si,and IGZO,face challenges in meeting the requirements of next-generation displays,including larger dimensions,higher refresh rates,increased pixel density,greater brightness,and reduced power consumption.In this context,2D chalcogenides have emerged as promising candidates for thin-film transistors(TFTs)in display backplanes,offering advantages such as high mobility,low leakage current,mechanical robustness,and transparency.This comprehensive review explores the significance of 2D chalcogenides as materials for TFTs in next-generation display backplanes.We delve into the structural characteristics,electronic properties,and synthesis methods of 2D chalcogenides,emphasizing scalable growth strategies that are relevant to large-area display backplanes.Additionally,we discuss mechanical flexibility and strain engineering,crucial for the development of flexible displays.Performance enhancement strategies for 2D chalcogenide TFTs have been explored encompassing techniques in device engineering and geometry optimization,while considering scaling over a large area.Active-matrix implementation of 2D TFTs in various applications is also explored,benchmarking device performance on a large scale which is a necessary aspect of TFTs used in display backplanes.Furthermore,the latest development on the integration of 2D chalcogenide TFTs with different display technologies,such as OLED,quantum dot,and MicroLED displays has been reviewed in detail.Finally,challenges and opportunities in the field are discussed with a brief insight into emerging trends and research directions.展开更多
In recent years,artificial intelligence(AI)has demonstrated immense potential in driving breakthroughs in the semiconductor industry,particularly in full-color display technologies.Benefiting from the deep integration...In recent years,artificial intelligence(AI)has demonstrated immense potential in driving breakthroughs in the semiconductor industry,particularly in full-color display technologies.Benefiting from the deep integration of AI,these technologies are experiencing unprecedented innovation and industrial transformation,garnering significant attention.These advancements provide a solid foundation for displays with higher color gamut and resolution.In addition,the integration of deep learning with dimming technologies has enabled new display systems to deliver superior viewing experiences with reduced energy consumption.This review highlights recent progress in four key areas of AI application in full-color display technologies:epitaxial structure design,defect detection and repair,perovskite synthesis,and dynamic dimming.AI-driven advancements in these domains are paving the way for smarter,more efficient display technologies.By leveraging AI’s powerful data processing and optimization capabilities,full-color display systems are poised to achieve enhanced performance,energy efficiency,and user satisfaction,marking a significant step toward a more intelligent and innovative future.展开更多
Wearable flexible sensor devices have the characteristics of lightweight and miniaturization.Currently,power supply and detection components limit the portability of wearable flexible sensor devices.Meanwhile,conventi...Wearable flexible sensor devices have the characteristics of lightweight and miniaturization.Currently,power supply and detection components limit the portability of wearable flexible sensor devices.Meanwhile,conventional liquid electrolytes are unsuitable for the integration of sensing devices.To address these constraints,wearable biofuel cells and flexible electrochromic displays have been introduced,which can improve integration with other devices,safety,and color-coded display data.Meanwhile,electrode chips prepared through screen printing technology can further improve portability.In this work,a wearable sensor device with screen-printed chips was constructed and used for non-invasive detection of glucose.Agarose gel electrolytes doped with PDA-CNTs were prepared,and the mechanical strength and moisture retention were significantly improved compared with traditional gel electrolytes.Glucose in interstitial fluid was non-invasive extracted to the skin surface using reverse iontophoresis.As a biofuel for wearable biofuel cells,glucose drives self-powered sensor and electrochromic display to produce color change,allowing for visually measurement of glucose levels in body fluids.Accurate detection results can be visualized by reading the RGB value with a cell phone.展开更多
Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor m...Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor micro-LED displays.However,the impact of solvent on both the printing process and the morphology of SIJ-printed PNC color conversion microstructures remains underexplored.In this study,we prepared samples of CsPbBr3PNC colloid inks in various solvents and investigated the solvent's impact on SIJ printed PNC microstructures.Our findings reveal that the boiling point of the solvent is crucial to the SIJ printing process of PNC colloid inks.Only does the boiling point of the solvent fall in the optimal range,the regular positioned,micron-scaled,conical PNC microstructures can be successfully printed.Below this optimal range,the ink is unable to be ejected from the nozzle;while above this range,irregular positioned microstructures with nanoscale height and coffee-ring-like morphology are produced.Based on these observations,high-resolution color conversion PNC microstructures were effectively prepared using SIJ printing of PNC colloid ink dispersed in dimethylbenzene solvent.展开更多
Flexible electrochromic devices(FECDs)demonstrate significant potential for applications in wearable elec-tronics,military camouflage,and flexible smart displays.As a crucial electrochromic material,poly(3,4-ethylened...Flexible electrochromic devices(FECDs)demonstrate significant potential for applications in wearable elec-tronics,military camouflage,and flexible smart displays.As a crucial electrochromic material,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)is widely used in FECDs due to its excellent mechanical flexibility,tunable conductivity,and non-toxicity.However,the manufacturing process for patterned PEDOT:PSS electrochromic devices remains intricate,costly,and challenging to personalize.To address this challenge,we have developed a 3D-printable ink with controllable rheological properties through a concentration-tuning strategy,enabling programmable,patterned printing of PEDOT-based conductive polymer electrochromic layers.The 3D-printed FECDs exhibit outstanding electrochromic performance,including a high optical contrast(up to 47.9%at 635 nm),fast response times(t_(c)=1.6 s;t_(b)=0.6 s),high coloration efficiency(352 cm^(2) C^(-1)),and good cycling stability(with only a 9.3%decrease in optical contrast after 100 electrochemical cycles).Finally,we utilize 3D printing technology to construct flexible,patterned PEDOT:PSS electrochromic devices with bespoke butterfly designs.This work establishes the theoretical foundation for the application of 3D printing technology in PEDOT:PSS flexible electrochromic devices.展开更多
The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical pro...The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical properties of metal halide perovskites,such as tunable bandgap,narrow emission linewidth,high photoluminescence quantum yield,and particularly,the soft nature of lattice.At present,substantial efforts have been made for FPeLEDs with encouraging external quantum efficiency(EQE)of 24.5%.Herein,we summarize the recent progress in FPeLEDs,focusing on the strategy developed for perovskite emission layers and flexible electrodes to facilitate the optoelectrical and mechanical performance.In addition,we present relevant applications of FPeLEDs in displays and beyond.Finally,perspective toward the future development and applications of flexible PeLEDs are also discussed.展开更多
Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an ...Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an imaging space meliorate the defects, such as the smaller image space, the fewer voxels and the severer voxel overlap dead zone caused by planar rotating screen. DMD with spatial light modular (SLM) technology increases the transmission bandwidth of 3-D data in the voxel activation subsystem and activate multi-voxel once time. The volumetric-swept system based on helix rotating screen and DMD is developed. The experimental results show that the image space, the vision dead zone, the voxels on slice, and the voxel activation capacity of the designed proto are superior to the plane rotating screen system.展开更多
Quantum technologies rely on creating and manipulating entangled sources,which are essential for quantum information,communication,and imaging.By integrating quantum technologies and all-dielectric metasurfaces,the pe...Quantum technologies rely on creating and manipulating entangled sources,which are essential for quantum information,communication,and imaging.By integrating quantum technologies and all-dielectric metasurfaces,the performance of miniature display devices can be enhanced to a higher level.Miniature display technology,such as virtual reality display,has achieved original commercial success,and was initially applied to immersive games and interactive scenes.While the consumer market has quickly adopted this technology,several areas remain for improvement,including concerns around bulkiness,dual-channel display,and noise reduction.Here,we experimentally realize a quantum meta-hologram concept demonstration of a miniature display.We fabricate an ultracompact meta-hologram based on 1μm thick titanium dioxide(TiO_(2)).The meta-hologram can be remotely switched with heralding technique and is robust against noise with the quantum entangled source.The platform can alter the miniature display channel by manipulating heralding photons’polarization,removing speckles and multiple reflective light noise,improving imaging contrast,and potentially decreasing device weight.Imaging contrast increases from 0.36 dB under speckle noise influences to 6.8 dB in quantum correlation imaging.This approach has the potential to miniaturize quantum displays and quantum communication devices.展开更多
Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots ...Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry.展开更多
High-performance carbon dots(CDs)allowing the application in high-end display devices are highly desirable and usually limited by the absence of simple and easy synthesis methods.In this work,we exploited an easy-to-i...High-performance carbon dots(CDs)allowing the application in high-end display devices are highly desirable and usually limited by the absence of simple and easy synthesis methods.In this work,we exploited an easy-to-implement strategy for the one-step synthesis of green-emitting CDs(G-CDs)with superb optical properties.The G-CDs were synthesized using m-phenylenediamine(m-PD)as a single precursor,and the reaction reacted at 180℃for 12 h The resultant G-CDs exhibit high-purity and excitationindependent green fluorescence with the photoluminescence(PL)peak located at 516 nm,full width at half maximum(FWHM)of 46 nm,and PL quantum yield(QY)of∼80%under the 470nm excitation light.The G-CDs and corresponding composite film prepared with polyvinyl butyral(G-CDs@PVB)exhibit good PL stability after undergoing long-time storage for one year and 360 h exposure under 460nm blue light.The G-CDs@PVB film was used as color-conversion materials in green-emitting light-emitting diode(LED)application,exhibiting a Commission internationale de l’Eclairage(CIE)chromaticity coordinate of(0.21,0.44).The film was also used in CD-based liquid crystal display(CD-LCD)application,achieving a color gamut value of 85%.This work will offer a working basis for the synthesis of high-performance CDs as well as their application in displays.展开更多
Water covers most of the Earth’s surface and is nowhere near a good ecological or recreational state in many areas of the world.Moreover,only a small fraction of the water is potable.As climate change-induced extreme...Water covers most of the Earth’s surface and is nowhere near a good ecological or recreational state in many areas of the world.Moreover,only a small fraction of the water is potable.As climate change-induced extreme weather events become ever more prevalent,more and more issues arise,such as worsening water quality problems.Therefore,protecting invaluable and useable drinking water is critical.Environmental agencies must continuously check water sources to determine whether they are in a good or healthy state regarding pollutant levels and ecological status.The currently available tools are better suited for stationary laboratory use,and domain specialists lack suitable tools for onsite visualisation and interactive exploration of environmental data.Meanwhile,data collection for laboratory analysis requires substantial time and significant effort.We,therefore,developed an augmented reality system with a Microsoft HoloLens 2 device to explore the visualisation of water quality and status in situ.The developed prototype visualises geo-referenced sensor measurements incorporated into the perspective of the surroundings.Any users interested in water bodies’conditions can quickly examine and retrieve an overview of water body status using augmented reality and then take necessary steps to address the current situation.展开更多
Molecular imaging plays important roles in many fields,including disease diagnosis,therapeutic efficacy evaluation,intraoperative imaging guidance,drug metabolism monitoring,and patient selection for appropriate treat...Molecular imaging plays important roles in many fields,including disease diagnosis,therapeutic efficacy evaluation,intraoperative imaging guidance,drug metabolism monitoring,and patient selection for appropriate treatment.As a key component,the targeting ligand determines the specificity,affinity,and in vivo performance of molecular imaging probes.In this review,highthroughput screening and biological display platforms for the discovery of ligands applicable to molecular imaging are briefly reviewed.Basic information on ligand development for molecular imaging is first introduced,followed by a presentation of various selection platforms and typical or iterative cases.The features,advantages,limitations,and application scope of screening and display platforms are compared and discussed.Last,a basic selection strategy and a perspective for protein-based ligands are provided.展开更多
Laser display technology is the most promising display technology in the market and is widely used in many fields. However, laser speckle has been troubling the application and expansion of this technology in some fie...Laser display technology is the most promising display technology in the market and is widely used in many fields. However, laser speckle has been troubling the application and expansion of this technology in some fields. In order to better evaluate the speckle, speckle measurement methods must be studied. In this study, a dynamic measurement method for laser speckles is proposed according to the optical superposition characteristics of speckle, which can reduce the influence of non-coherent factors on the speckle measurement results. The feasibility of the dynamic speckle measurement method is verified by designing an experimental scheme.展开更多
A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system de...A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system design is introduced and key components are described. Experimental results show that the 3-D system can guide people freely walk around the display to inspect the true 3-D image without goggles.展开更多
Trehalose production via a one-step enzymatic route using trehalose synthase(TreS)holds significant promise for industrial-scale applications due to its simplicity and utilization of low-cost substrates.However,the de...Trehalose production via a one-step enzymatic route using trehalose synthase(TreS)holds significant promise for industrial-scale applications due to its simplicity and utilization of low-cost substrates.However,the development of a robust whole-cell biocatalyst expressing TreS remains crucial for enabling practical and economically viable production.In this study,a high-sugar tolerant strain of S.cerevisiae was screened and employed as a host cell for the cell surface display of TreS from Acidiplasma aeolicum.The resultant strain,S.cerevisiae I3A,exhibited remarkable surface displayed TreS activity of 3358 U/g CDW and achieved approximately 64%trehalose yield(10.8 g/L/h productivity)from maltose.Interestingly,no glucose by-product was observed during trehalose production.The S.cerevisiae I3A cells exhibited reusability for up to 12 cycles leading to potential cost reduction of trehalose products.Therefore,our study demonstrated the development of a high-sugar tolerant S.cerevisiae strain expressing TreS on its surface as a whole-cell biocatalyst for efficient and economical trehalose production with potential applications in the food and pharmaceutical industries.展开更多
SimWall is a user-friendly, stereo tiled display wall system composed of 18 commodity projectors operated by a Linux graphics cluster. Collaborating together, these projectors work as a single logical display capable ...SimWall is a user-friendly, stereo tiled display wall system composed of 18 commodity projectors operated by a Linux graphics cluster. Collaborating together, these projectors work as a single logical display capable of giving a high-resolution show, large-scale, and passive stereo scene. In order to avoid tedious system setup and maintenance, software-based automatic geometry and photometric calibration are used. The software calibration is integrated to the system seamlessly by an on-card transform method and is transparent to users. To end-users, SimWall works just as a common PC, but provides super computing, rendering and displaying ability. In addition, SimWall has stereoscopic function that gives users a semi-immersive experience in polarized passive way. This paper presents system architecture, implementation, and other technical issues such as hardware constraints, projectors alignment, geometry and photometric calibration, implementation of passive stereo, and development of overall soft- ware environment.展开更多
基金supported by Basic Science Research Program through the National Research Foundation(NRF)of Korea,funded by the Ministry of Science and ICT(MSIT),Korea[2022R1A2C2091671]by ITECH R&D Program of MOTIE/KEIT(Ministry of Trade,Industry&Energy/Korea Evaluation Institute of Industrial Technology)[20016808].
文摘Balancing high display performance with energy efficiency is crucial for global sustainability.Lowering operating frequencies—such as enabling 1 Hz operation in fringe-field switching(FFS)liquid crystal displays—reduces power consumption but is hindered by image flicker.While negative dielectric anisotropy liquid crystals(nLCs)mitigate flicker,their high driving voltages and production costs limit adoption.Positive dielectric anisotropy liquid crystals(pLCs)offer lower operating voltages,faster response times,and broader applicability,making them a more viable alternative.This study introduces a novel approach to minimizing flexoelectric effects in pLCs by investigating how single components influence flexoelectric behavior in mixtures through an effective experimental methodology.Two innovative measurement techniques—(1)flexoelectric coefficient difference analysis and(2)displacement-current measurement(DCM)—are presented,marking the first application of DCM for verifying flexoelectric effects.The proposed system eliminates uncertainties associated with previous methods,providing a reliable framework for selecting liquid crystal components with minimal flexoelectric effects while preserving key electro-optic properties.Given pLCs'higher reliability,lower production costs,and broader material selection,these advancements hold significant potential for low-power displays.We believe this work enhances flexoelectric analysis in nematic liquid crystals and contributes to sustainable innovation in the display industry,aligning with global energy-saving goals.
基金supported by the National Key R&D Program of China(2022YFB3606501,2022YFB3602902)the Key projects of National Natural Science Foundation of China(62234004)+8 种基金the National Natural Science Foundation of China(U23A2092)Pioneer and Leading Goose R&D Program of Zhejiang(2024C01191,2024C01092)Innovation and Entrepreneurship Team of Zhejiang Province(2021R01003)Ningbo Key Technologies R&D Program(2022Z085),Ningbo 3315 Programme(2020A-01-B)YONGJIANG Talent Introduction Programme(2021A-038-B,2021A-159-G)“Innovation Yongjiang 2035”Key R&D Programme(2024Z146)Ningbo JiangBei District public welfare science and technology project(2022C07)the China National Postdoctoral Program for Innovative Talents(grant no.BX20240391)the China Postdoctoral Science Foundation(grant no.2023M743623).
文摘High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics.
文摘It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display.
基金supported by the Research Projects of Department of Education of Guangdong Province-024CJPT002Special Project of Guangdong Provincial Department of Education in Key Areas (No. 6021210075K)Shenzhen Polytechnic University Research Fund. (No. 6024310006K)
文摘Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancements have been made in the performance of cadmium-free QLEDs.However,several challenges persist in the industrialization of ecofriendly QLED displays.For instance,(1)the poor performance,characterized by low photoluminescence quantum yield(PLQY),unstable ligand,and charge imbalance,cannot be effectively addressed with a solitary strategy;(2)the degradation mechanism,involving emission quenching,morphological inhomogeneity,and field-enhanced electron delocalization remains unclear;(3)the lack of techniques for color patterning,such as optical lithography and transfer printing.Herein,we undertake a specific review of all technological breakthroughs that endeavor to tackle the above challenges associated with cadmium-free QLED displays.We begin by reviewing the evolution,architecture,and operational characteristics of eco-friendly QLEDs,highlighting the photoelectric properties of QDs,carrier transport layer stability,and device lifetime.Subsequently,we focus our attention not only on the latest insights into device degradation mechanisms,particularly,but also on the remarkable technological progress in color patterning techniques.To conclude,we provide a synthesis of the promising prospects,current challenges,potential solutions,and emerging research trends for QLED displays.
基金supported in part by the National Research Foundation of Korea Grant Number:RS-2024-00448809National Research Foundation of Korea Grant Number:RS-2025-00517255+1 种基金National Research Foundation of Korea Grant Number:No.2021M3H4A1A02056037supported by Basic Science Research Program through the National Research Foundation of Korean(NRF)funded by the Ministry of Education(2020R1A6A1A03040516).
文摘The evolution of display backplane technologies has been driven by the relentless pursuit of higher form factor and superior performance coupled with lower power consumption.Current state-of-the-art backplane technologies based on amorphous Si,poly Si,and IGZO,face challenges in meeting the requirements of next-generation displays,including larger dimensions,higher refresh rates,increased pixel density,greater brightness,and reduced power consumption.In this context,2D chalcogenides have emerged as promising candidates for thin-film transistors(TFTs)in display backplanes,offering advantages such as high mobility,low leakage current,mechanical robustness,and transparency.This comprehensive review explores the significance of 2D chalcogenides as materials for TFTs in next-generation display backplanes.We delve into the structural characteristics,electronic properties,and synthesis methods of 2D chalcogenides,emphasizing scalable growth strategies that are relevant to large-area display backplanes.Additionally,we discuss mechanical flexibility and strain engineering,crucial for the development of flexible displays.Performance enhancement strategies for 2D chalcogenide TFTs have been explored encompassing techniques in device engineering and geometry optimization,while considering scaling over a large area.Active-matrix implementation of 2D TFTs in various applications is also explored,benchmarking device performance on a large scale which is a necessary aspect of TFTs used in display backplanes.Furthermore,the latest development on the integration of 2D chalcogenide TFTs with different display technologies,such as OLED,quantum dot,and MicroLED displays has been reviewed in detail.Finally,challenges and opportunities in the field are discussed with a brief insight into emerging trends and research directions.
基金upported by the National Natural Science Foundation of China(Grant No.62274138)the Natural Science Foundation of Fujian Province of China(Grant No.2023J06012)+2 种基金the Science and Technology Plan Project in Fujian Province of China(Grant No.2021H0011)the Funda-mental Research Funds for the Central Universities(Grant No.20720230029)the Compound Semiconductor Technology Collaborative Innovation Platform Project of FuXiaQuan National Independent Innovation Demonstration Zone(Grant No.3502ZCQXT2022005).
文摘In recent years,artificial intelligence(AI)has demonstrated immense potential in driving breakthroughs in the semiconductor industry,particularly in full-color display technologies.Benefiting from the deep integration of AI,these technologies are experiencing unprecedented innovation and industrial transformation,garnering significant attention.These advancements provide a solid foundation for displays with higher color gamut and resolution.In addition,the integration of deep learning with dimming technologies has enabled new display systems to deliver superior viewing experiences with reduced energy consumption.This review highlights recent progress in four key areas of AI application in full-color display technologies:epitaxial structure design,defect detection and repair,perovskite synthesis,and dynamic dimming.AI-driven advancements in these domains are paving the way for smarter,more efficient display technologies.By leveraging AI’s powerful data processing and optimization capabilities,full-color display systems are poised to achieve enhanced performance,energy efficiency,and user satisfaction,marking a significant step toward a more intelligent and innovative future.
基金supported by the National Natural Science Foundation of China(No.22174055)Key R&D Program of Zhenjiang City(No.NY2022012)。
文摘Wearable flexible sensor devices have the characteristics of lightweight and miniaturization.Currently,power supply and detection components limit the portability of wearable flexible sensor devices.Meanwhile,conventional liquid electrolytes are unsuitable for the integration of sensing devices.To address these constraints,wearable biofuel cells and flexible electrochromic displays have been introduced,which can improve integration with other devices,safety,and color-coded display data.Meanwhile,electrode chips prepared through screen printing technology can further improve portability.In this work,a wearable sensor device with screen-printed chips was constructed and used for non-invasive detection of glucose.Agarose gel electrolytes doped with PDA-CNTs were prepared,and the mechanical strength and moisture retention were significantly improved compared with traditional gel electrolytes.Glucose in interstitial fluid was non-invasive extracted to the skin surface using reverse iontophoresis.As a biofuel for wearable biofuel cells,glucose drives self-powered sensor and electrochromic display to produce color change,allowing for visually measurement of glucose levels in body fluids.Accurate detection results can be visualized by reading the RGB value with a cell phone.
基金supported by the National Natural Science Foundation of China(No.62374142)Fundamental Research Funds for the Central Universities(Nos.20720220085 and 20720240064)+2 种基金External Cooperation Program of Fujian(No.2022I0004)Major Science and Technology Project of Xiamen in China(No.3502Z20191015)Xiamen Natural Science Foundation Youth Project(No.3502Z202471002)。
文摘Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor micro-LED displays.However,the impact of solvent on both the printing process and the morphology of SIJ-printed PNC color conversion microstructures remains underexplored.In this study,we prepared samples of CsPbBr3PNC colloid inks in various solvents and investigated the solvent's impact on SIJ printed PNC microstructures.Our findings reveal that the boiling point of the solvent is crucial to the SIJ printing process of PNC colloid inks.Only does the boiling point of the solvent fall in the optimal range,the regular positioned,micron-scaled,conical PNC microstructures can be successfully printed.Below this optimal range,the ink is unable to be ejected from the nozzle;while above this range,irregular positioned microstructures with nanoscale height and coffee-ring-like morphology are produced.Based on these observations,high-resolution color conversion PNC microstructures were effectively prepared using SIJ printing of PNC colloid ink dispersed in dimethylbenzene solvent.
基金supported by the Natural Science Foundation of Jiangxi Province(20232ACB204002&20232BAB202044)Jiangxi Provincial Key Laboratory of Flexible Electronics(20212BCD42004&20242BCC32010).
文摘Flexible electrochromic devices(FECDs)demonstrate significant potential for applications in wearable elec-tronics,military camouflage,and flexible smart displays.As a crucial electrochromic material,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)is widely used in FECDs due to its excellent mechanical flexibility,tunable conductivity,and non-toxicity.However,the manufacturing process for patterned PEDOT:PSS electrochromic devices remains intricate,costly,and challenging to personalize.To address this challenge,we have developed a 3D-printable ink with controllable rheological properties through a concentration-tuning strategy,enabling programmable,patterned printing of PEDOT-based conductive polymer electrochromic layers.The 3D-printed FECDs exhibit outstanding electrochromic performance,including a high optical contrast(up to 47.9%at 635 nm),fast response times(t_(c)=1.6 s;t_(b)=0.6 s),high coloration efficiency(352 cm^(2) C^(-1)),and good cycling stability(with only a 9.3%decrease in optical contrast after 100 electrochemical cycles).Finally,we utilize 3D printing technology to construct flexible,patterned PEDOT:PSS electrochromic devices with bespoke butterfly designs.This work establishes the theoretical foundation for the application of 3D printing technology in PEDOT:PSS flexible electrochromic devices.
基金supported by the Science and Technology Program of Shenzhen(Grant Nos.SGDX20201103095607022 and JCYJ20210324095003011)supported by the Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province.
文摘The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical properties of metal halide perovskites,such as tunable bandgap,narrow emission linewidth,high photoluminescence quantum yield,and particularly,the soft nature of lattice.At present,substantial efforts have been made for FPeLEDs with encouraging external quantum efficiency(EQE)of 24.5%.Herein,we summarize the recent progress in FPeLEDs,focusing on the strategy developed for perovskite emission layers and flexible electrodes to facilitate the optoelectrical and mechanical performance.In addition,we present relevant applications of FPeLEDs in displays and beyond.Finally,perspective toward the future development and applications of flexible PeLEDs are also discussed.
基金Supported by the National High Technology Research and Development Program of China(″863″Program)(2007AA01Z338)the National Science Foundation for Post-doctoral Scientists of China(20080441051)the Jiangsu Province Science Foundation for Post-doctoral Scientists(0802014c)~~
文摘Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an imaging space meliorate the defects, such as the smaller image space, the fewer voxels and the severer voxel overlap dead zone caused by planar rotating screen. DMD with spatial light modular (SLM) technology increases the transmission bandwidth of 3-D data in the voxel activation subsystem and activate multi-voxel once time. The volumetric-swept system based on helix rotating screen and DMD is developed. The experimental results show that the image space, the vision dead zone, the voxels on slice, and the voxel activation capacity of the designed proto are superior to the plane rotating screen system.
基金supported by the University Grants Committee/Research Grants Council of the Hong Kong Special Administrative Region,China (Grant No.AoE/P-502/20,CRF Project:C5031-22G and C1015-21E,and GRF Project:15303521,11310522,11305223,11300123,16304020,and 16306521)the Department of Science and Technology of Guangdong Province (Grant No.2020B1515120073)+1 种基金the City University of Hong Kong (Grant Nos.9380131,9610628,and 7005867)the National Key R&D Program of China (Grant No.2022YFA1404700).
文摘Quantum technologies rely on creating and manipulating entangled sources,which are essential for quantum information,communication,and imaging.By integrating quantum technologies and all-dielectric metasurfaces,the performance of miniature display devices can be enhanced to a higher level.Miniature display technology,such as virtual reality display,has achieved original commercial success,and was initially applied to immersive games and interactive scenes.While the consumer market has quickly adopted this technology,several areas remain for improvement,including concerns around bulkiness,dual-channel display,and noise reduction.Here,we experimentally realize a quantum meta-hologram concept demonstration of a miniature display.We fabricate an ultracompact meta-hologram based on 1μm thick titanium dioxide(TiO_(2)).The meta-hologram can be remotely switched with heralding technique and is robust against noise with the quantum entangled source.The platform can alter the miniature display channel by manipulating heralding photons’polarization,removing speckles and multiple reflective light noise,improving imaging contrast,and potentially decreasing device weight.Imaging contrast increases from 0.36 dB under speckle noise influences to 6.8 dB in quantum correlation imaging.This approach has the potential to miniaturize quantum displays and quantum communication devices.
基金supported by the National Natural Science Foundation of China(51835005,52273237)the National Key R&D Program of China(2022YFF1500400)。
文摘Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry.
基金supported by the Jiangsu Funding Program for Excellent Postdoctoral Talent(No.2022ZB369)Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘High-performance carbon dots(CDs)allowing the application in high-end display devices are highly desirable and usually limited by the absence of simple and easy synthesis methods.In this work,we exploited an easy-to-implement strategy for the one-step synthesis of green-emitting CDs(G-CDs)with superb optical properties.The G-CDs were synthesized using m-phenylenediamine(m-PD)as a single precursor,and the reaction reacted at 180℃for 12 h The resultant G-CDs exhibit high-purity and excitationindependent green fluorescence with the photoluminescence(PL)peak located at 516 nm,full width at half maximum(FWHM)of 46 nm,and PL quantum yield(QY)of∼80%under the 470nm excitation light.The G-CDs and corresponding composite film prepared with polyvinyl butyral(G-CDs@PVB)exhibit good PL stability after undergoing long-time storage for one year and 360 h exposure under 460nm blue light.The G-CDs@PVB film was used as color-conversion materials in green-emitting light-emitting diode(LED)application,exhibiting a Commission internationale de l’Eclairage(CIE)chromaticity coordinate of(0.21,0.44).The film was also used in CD-based liquid crystal display(CD-LCD)application,achieving a color gamut value of 85%.This work will offer a working basis for the synthesis of high-performance CDs as well as their application in displays.
基金supported by the Freshwater Competence Centre,Academy of Finland(Decision No.345008)the Nordic University Cooperation on Edge Intelligence(Grant No.168043).
文摘Water covers most of the Earth’s surface and is nowhere near a good ecological or recreational state in many areas of the world.Moreover,only a small fraction of the water is potable.As climate change-induced extreme weather events become ever more prevalent,more and more issues arise,such as worsening water quality problems.Therefore,protecting invaluable and useable drinking water is critical.Environmental agencies must continuously check water sources to determine whether they are in a good or healthy state regarding pollutant levels and ecological status.The currently available tools are better suited for stationary laboratory use,and domain specialists lack suitable tools for onsite visualisation and interactive exploration of environmental data.Meanwhile,data collection for laboratory analysis requires substantial time and significant effort.We,therefore,developed an augmented reality system with a Microsoft HoloLens 2 device to explore the visualisation of water quality and status in situ.The developed prototype visualises geo-referenced sensor measurements incorporated into the perspective of the surroundings.Any users interested in water bodies’conditions can quickly examine and retrieve an overview of water body status using augmented reality and then take necessary steps to address the current situation.
基金Key Laboratory of Bioresource Research and Development of Liaoning Province,Grant/Award Number:2022JH13/10200026National Natural Science Foundation of China,Grant/Award Number:U2267221。
文摘Molecular imaging plays important roles in many fields,including disease diagnosis,therapeutic efficacy evaluation,intraoperative imaging guidance,drug metabolism monitoring,and patient selection for appropriate treatment.As a key component,the targeting ligand determines the specificity,affinity,and in vivo performance of molecular imaging probes.In this review,highthroughput screening and biological display platforms for the discovery of ligands applicable to molecular imaging are briefly reviewed.Basic information on ligand development for molecular imaging is first introduced,followed by a presentation of various selection platforms and typical or iterative cases.The features,advantages,limitations,and application scope of screening and display platforms are compared and discussed.Last,a basic selection strategy and a perspective for protein-based ligands are provided.
基金supported by the National Natural Science Foundation of China (No.62076160)the Natural Science Foundation of Shanghai (No.21ZR1424700)。
文摘Laser display technology is the most promising display technology in the market and is widely used in many fields. However, laser speckle has been troubling the application and expansion of this technology in some fields. In order to better evaluate the speckle, speckle measurement methods must be studied. In this study, a dynamic measurement method for laser speckles is proposed according to the optical superposition characteristics of speckle, which can reduce the influence of non-coherent factors on the speckle measurement results. The feasibility of the dynamic speckle measurement method is verified by designing an experimental scheme.
文摘A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system design is introduced and key components are described. Experimental results show that the 3-D system can guide people freely walk around the display to inspect the true 3-D image without goggles.
基金financially supported by the National Science,Research and Innovation Fund,Thailand Science Research and Innovation(TSRI)[Grant No.:FFB670076/0337]the National Science and Technology Development Agency(NSTDA)[grant number P-20-51068]the NSRF via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation[grant number B13F670055].
文摘Trehalose production via a one-step enzymatic route using trehalose synthase(TreS)holds significant promise for industrial-scale applications due to its simplicity and utilization of low-cost substrates.However,the development of a robust whole-cell biocatalyst expressing TreS remains crucial for enabling practical and economically viable production.In this study,a high-sugar tolerant strain of S.cerevisiae was screened and employed as a host cell for the cell surface display of TreS from Acidiplasma aeolicum.The resultant strain,S.cerevisiae I3A,exhibited remarkable surface displayed TreS activity of 3358 U/g CDW and achieved approximately 64%trehalose yield(10.8 g/L/h productivity)from maltose.Interestingly,no glucose by-product was observed during trehalose production.The S.cerevisiae I3A cells exhibited reusability for up to 12 cycles leading to potential cost reduction of trehalose products.Therefore,our study demonstrated the development of a high-sugar tolerant S.cerevisiae strain expressing TreS on its surface as a whole-cell biocatalyst for efficient and economical trehalose production with potential applications in the food and pharmaceutical industries.
基金Project supported by the National Natural Science Foundation of China for Distinguished Young Scholars (No. 60225009)the Major Research Plan of China (No. 90405003)
文摘SimWall is a user-friendly, stereo tiled display wall system composed of 18 commodity projectors operated by a Linux graphics cluster. Collaborating together, these projectors work as a single logical display capable of giving a high-resolution show, large-scale, and passive stereo scene. In order to avoid tedious system setup and maintenance, software-based automatic geometry and photometric calibration are used. The software calibration is integrated to the system seamlessly by an on-card transform method and is transparent to users. To end-users, SimWall works just as a common PC, but provides super computing, rendering and displaying ability. In addition, SimWall has stereoscopic function that gives users a semi-immersive experience in polarized passive way. This paper presents system architecture, implementation, and other technical issues such as hardware constraints, projectors alignment, geometry and photometric calibration, implementation of passive stereo, and development of overall soft- ware environment.