期刊文献+
共找到1,438篇文章
< 1 2 72 >
每页显示 20 50 100
Flicker minimization in power-saving displays enabled by measurement of difference in flexoelectric coefficients and displacementcurrent in positive dielectric anisotropy liquid crystals
1
作者 Junho Jung HaYoung Jung +10 位作者 GyuRi Choi HanByeol Park Sun-Mi Park Ki-Sun Kwon Heui-Seok Jin Dong-Jin Lee Hoon Jeong JeongKi Park Byeong Koo Kim Seung Hee Lee MinSu Kim 《Opto-Electronic Advances》 2025年第9期26-38,共13页
Balancing high display performance with energy efficiency is crucial for global sustainability.Lowering operating frequencies—such as enabling 1 Hz operation in fringe-field switching(FFS)liquid crystal displays—red... Balancing high display performance with energy efficiency is crucial for global sustainability.Lowering operating frequencies—such as enabling 1 Hz operation in fringe-field switching(FFS)liquid crystal displays—reduces power consumption but is hindered by image flicker.While negative dielectric anisotropy liquid crystals(nLCs)mitigate flicker,their high driving voltages and production costs limit adoption.Positive dielectric anisotropy liquid crystals(pLCs)offer lower operating voltages,faster response times,and broader applicability,making them a more viable alternative.This study introduces a novel approach to minimizing flexoelectric effects in pLCs by investigating how single components influence flexoelectric behavior in mixtures through an effective experimental methodology.Two innovative measurement techniques—(1)flexoelectric coefficient difference analysis and(2)displacement-current measurement(DCM)—are presented,marking the first application of DCM for verifying flexoelectric effects.The proposed system eliminates uncertainties associated with previous methods,providing a reliable framework for selecting liquid crystal components with minimal flexoelectric effects while preserving key electro-optic properties.Given pLCs'higher reliability,lower production costs,and broader material selection,these advancements hold significant potential for low-power displays.We believe this work enhances flexoelectric analysis in nematic liquid crystals and contributes to sustainable innovation in the display industry,aligning with global energy-saving goals. 展开更多
关键词 low power displays various refresh rate flexoelectric effect FLICKER fringe-field switching(FFS) liquid crystal displays(LCDs)
在线阅读 下载PDF
Direct Photolithography of WO_(x) Nanoparticles for High‑Resolution Non‑Emissive Displays 被引量:2
2
作者 Chang Gu Guojian Yang +7 位作者 Wenxuan Wang Aiyan Shi Wenjuan Fang Lei Qian Xiaofei Hu Ting Zhang Chaoyu Xiang Yu‑Mo Zhang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期297-309,共13页
High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental sta... High-resolution non-emissive displays based on electrochromic tungsten oxides(WOx)are crucial for future near-eye virtual/augmented reality interactions,given their impressive attributes such as high environmental stability,ideal outdoor readability,and low energy consumption.However,the limited intrinsic structure of inorganic materials has presented a significant challenge in achieving precise patterning/pixelation at the micron scale.Here,we successfully developed the direct photolithography for WOx nanoparticles based on in situ photo-induced ligand exchange.This strategy enabled us to achieve ultra-high resolution efficiently(line width<4μm,the best resolution for reported inorganic electrochromic materials).Additionally,the resulting device exhibited impressive electrochromic performance,such as fast response(<1 s at 0 V),high coloration efficiency(119.5 cm^(2) C^(−1)),good optical modulation(55.9%),and durability(>3600 cycles),as well as promising applications in electronic logos,pixelated displays,flexible electronics,etc.The success and advancements presented here are expected to inspire and accelerate research and development(R&D)in high-resolution non-emissive displays and other ultra-fine micro-electronics. 展开更多
关键词 Electrochromic Direct photolithography WOx nanoparticles In situ photo-induced ligand exchange High-resolution displays
在线阅读 下载PDF
Structural Color Dynamic Graphics Display Based on Microlens Array 被引量:1
3
作者 LI Xue-han LIU Ling-zhi +1 位作者 HUANG Min LI Xiu 《印刷与数字媒体技术研究》 北大核心 2025年第2期162-168,共7页
It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be... It is of great scientific significance to construct a 3D dynamic structural color with a special color effect based on the microlens array.However,the problems of imperfect mechanisms and poor color quality need to be solved.A method of 3D structural color turning on periodic metasurfaces fabricated by the microlens array and self-assembly technology was proposed in this study.In the experiment,Polydimethylsiloxane(PDMS)flexible film was used as a substrate,and SiO2 microspheres were scraped into grooves of the PDMS film to form 3D photonic crystal structures.By adjusting the number of blade-coated times and microsphere concentrations,high-saturation structural color micropatterns were obtained.These films were then matched with microlens arrays to produce dynamic graphics with iridescent effects.The results showed that by blade-coated two times and SiO2 microsphere concentrations of 50%are the best conditions.This method demonstrates the potential for being widely applied in the anticounterfeiting printing and ultra-high-resolution display. 展开更多
关键词 Structural color Microlens array Dynamic graphics display Moirémagnification Optical anti-counterfeiting
在线阅读 下载PDF
Eco-friendly quantum-dot light-emitting diode display technologies:prospects and challenges
4
作者 Peili Gao Chan Li +4 位作者 Hao Zhou Songhua He Zhen Yin Kar Wei Ng Shuangpeng Wang 《Opto-Electronic Science》 2025年第6期11-33,共23页
Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancement... Eco-friendly quantum-dot light-emitting diodes(QLEDs),which employ colloidal quantum dots(QDs)such as InP,and ZnSe,stand out due to their low toxicity,color purity,and high efficiency.Currently,significant advancements have been made in the performance of cadmium-free QLEDs.However,several challenges persist in the industrialization of ecofriendly QLED displays.For instance,(1)the poor performance,characterized by low photoluminescence quantum yield(PLQY),unstable ligand,and charge imbalance,cannot be effectively addressed with a solitary strategy;(2)the degradation mechanism,involving emission quenching,morphological inhomogeneity,and field-enhanced electron delocalization remains unclear;(3)the lack of techniques for color patterning,such as optical lithography and transfer printing.Herein,we undertake a specific review of all technological breakthroughs that endeavor to tackle the above challenges associated with cadmium-free QLED displays.We begin by reviewing the evolution,architecture,and operational characteristics of eco-friendly QLEDs,highlighting the photoelectric properties of QDs,carrier transport layer stability,and device lifetime.Subsequently,we focus our attention not only on the latest insights into device degradation mechanisms,particularly,but also on the remarkable technological progress in color patterning techniques.To conclude,we provide a synthesis of the promising prospects,current challenges,potential solutions,and emerging research trends for QLED displays. 展开更多
关键词 quantum dots ECO-FRIENDLY light-emitting diodes degradation mechanisms displayS
在线阅读 下载PDF
Next generation High-Mobility 2D chalcogenides TFT for display backplane
5
作者 Prashant Bisht Junoh Shim +7 位作者 Jooon Oh Jieun Lee Hoseong Shin Hyeonho Jeong Jimin Kim Junho Lee Hyuk-Jun Kwon Sunkook Kim 《International Journal of Extreme Manufacturing》 2025年第5期169-209,共41页
The evolution of display backplane technologies has been driven by the relentless pursuit of higher form factor and superior performance coupled with lower power consumption.Current state-of-the-art backplane technolo... The evolution of display backplane technologies has been driven by the relentless pursuit of higher form factor and superior performance coupled with lower power consumption.Current state-of-the-art backplane technologies based on amorphous Si,poly Si,and IGZO,face challenges in meeting the requirements of next-generation displays,including larger dimensions,higher refresh rates,increased pixel density,greater brightness,and reduced power consumption.In this context,2D chalcogenides have emerged as promising candidates for thin-film transistors(TFTs)in display backplanes,offering advantages such as high mobility,low leakage current,mechanical robustness,and transparency.This comprehensive review explores the significance of 2D chalcogenides as materials for TFTs in next-generation display backplanes.We delve into the structural characteristics,electronic properties,and synthesis methods of 2D chalcogenides,emphasizing scalable growth strategies that are relevant to large-area display backplanes.Additionally,we discuss mechanical flexibility and strain engineering,crucial for the development of flexible displays.Performance enhancement strategies for 2D chalcogenide TFTs have been explored encompassing techniques in device engineering and geometry optimization,while considering scaling over a large area.Active-matrix implementation of 2D TFTs in various applications is also explored,benchmarking device performance on a large scale which is a necessary aspect of TFTs used in display backplanes.Furthermore,the latest development on the integration of 2D chalcogenide TFTs with different display technologies,such as OLED,quantum dot,and MicroLED displays has been reviewed in detail.Finally,challenges and opportunities in the field are discussed with a brief insight into emerging trends and research directions. 展开更多
关键词 thin film transistors display backplane active-matrix OLED micro-LED mobility
在线阅读 下载PDF
Artificial-intelligence-aided fabrication of high-performance full-color displays
6
作者 Yuxuan Liu ChaoHsu Lai +6 位作者 Huaxin Xiong Lijie Zheng Shirui Cai Zongmin Lin Shouqiang Lai Tingzhu Wu Zhong Chen 《Advanced Photonics Nexus》 2025年第3期1-21,共21页
In recent years,artificial intelligence(AI)has demonstrated immense potential in driving breakthroughs in the semiconductor industry,particularly in full-color display technologies.Benefiting from the deep integration... In recent years,artificial intelligence(AI)has demonstrated immense potential in driving breakthroughs in the semiconductor industry,particularly in full-color display technologies.Benefiting from the deep integration of AI,these technologies are experiencing unprecedented innovation and industrial transformation,garnering significant attention.These advancements provide a solid foundation for displays with higher color gamut and resolution.In addition,the integration of deep learning with dimming technologies has enabled new display systems to deliver superior viewing experiences with reduced energy consumption.This review highlights recent progress in four key areas of AI application in full-color display technologies:epitaxial structure design,defect detection and repair,perovskite synthesis,and dynamic dimming.AI-driven advancements in these domains are paving the way for smarter,more efficient display technologies.By leveraging AI’s powerful data processing and optimization capabilities,full-color display systems are poised to achieve enhanced performance,energy efficiency,and user satisfaction,marking a significant step toward a more intelligent and innovative future. 展开更多
关键词 artificial intelligence full-color display epitaxial design defect detection quantum dot dynamic dimming
在线阅读 下载PDF
A wearable sensor device based on screen-printed chip with biofuel cell-driven electrochromic display for noninvasive monitoring of glucose concentration
7
作者 Kezuo Di Jie Wei +6 位作者 Lijun Ding Zhiying Shao Junling Sha Xilong Zhou Huadong Heng Xujing Feng Kun Wang 《Chinese Chemical Letters》 2025年第2期413-417,共5页
Wearable flexible sensor devices have the characteristics of lightweight and miniaturization.Currently,power supply and detection components limit the portability of wearable flexible sensor devices.Meanwhile,conventi... Wearable flexible sensor devices have the characteristics of lightweight and miniaturization.Currently,power supply and detection components limit the portability of wearable flexible sensor devices.Meanwhile,conventional liquid electrolytes are unsuitable for the integration of sensing devices.To address these constraints,wearable biofuel cells and flexible electrochromic displays have been introduced,which can improve integration with other devices,safety,and color-coded display data.Meanwhile,electrode chips prepared through screen printing technology can further improve portability.In this work,a wearable sensor device with screen-printed chips was constructed and used for non-invasive detection of glucose.Agarose gel electrolytes doped with PDA-CNTs were prepared,and the mechanical strength and moisture retention were significantly improved compared with traditional gel electrolytes.Glucose in interstitial fluid was non-invasive extracted to the skin surface using reverse iontophoresis.As a biofuel for wearable biofuel cells,glucose drives self-powered sensor and electrochromic display to produce color change,allowing for visually measurement of glucose levels in body fluids.Accurate detection results can be visualized by reading the RGB value with a cell phone. 展开更多
关键词 Wearable flexible sensor device Electrochromic display VISUALIZATION Biofuel cell Screen-printed chip
原文传递
Solvent engineering in perovskite nanocrystal colloid inks for super-fine electrohydrodynamic inkjet printing of color conversion microstructures in micro-LED displays
8
作者 Shuli Wang Xuemin Kong +7 位作者 Siting Cai Yunshu Luo Yuxuan Gu Xiaotong Fan Guolong Chen Xiao Yang Zhong Chen Yue Lin 《Chinese Chemical Letters》 2025年第8期554-559,共6页
Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor m... Super-fine electrohydrodynamic inkjet(SIJ)printing of perovskite nanocrystal(PNC)colloid ink exhibits significant potential in the fabrication of high-resolution color conversion microstructures arrays for fullcolor micro-LED displays.However,the impact of solvent on both the printing process and the morphology of SIJ-printed PNC color conversion microstructures remains underexplored.In this study,we prepared samples of CsPbBr3PNC colloid inks in various solvents and investigated the solvent's impact on SIJ printed PNC microstructures.Our findings reveal that the boiling point of the solvent is crucial to the SIJ printing process of PNC colloid inks.Only does the boiling point of the solvent fall in the optimal range,the regular positioned,micron-scaled,conical PNC microstructures can be successfully printed.Below this optimal range,the ink is unable to be ejected from the nozzle;while above this range,irregular positioned microstructures with nanoscale height and coffee-ring-like morphology are produced.Based on these observations,high-resolution color conversion PNC microstructures were effectively prepared using SIJ printing of PNC colloid ink dispersed in dimethylbenzene solvent. 展开更多
关键词 SOLVENT Perovskite nanocrystal Electrohydrodynamic inkjet printing Color conversion microstructures arrays Micro-LED display
原文传递
3D Printed PEDOT:PSS Flexible Electrochromic Devices for Patterned Displays
9
作者 Manting Song Changchen Gong Ximei Liu 《Journal of Polymer Materials》 2025年第1期111-123,共13页
Flexible electrochromic devices(FECDs)demonstrate significant potential for applications in wearable elec-tronics,military camouflage,and flexible smart displays.As a crucial electrochromic material,poly(3,4-ethylened... Flexible electrochromic devices(FECDs)demonstrate significant potential for applications in wearable elec-tronics,military camouflage,and flexible smart displays.As a crucial electrochromic material,poly(3,4-ethylenedioxythiophene):polystyrene sulfonate(PEDOT:PSS)is widely used in FECDs due to its excellent mechanical flexibility,tunable conductivity,and non-toxicity.However,the manufacturing process for patterned PEDOT:PSS electrochromic devices remains intricate,costly,and challenging to personalize.To address this challenge,we have developed a 3D-printable ink with controllable rheological properties through a concentration-tuning strategy,enabling programmable,patterned printing of PEDOT-based conductive polymer electrochromic layers.The 3D-printed FECDs exhibit outstanding electrochromic performance,including a high optical contrast(up to 47.9%at 635 nm),fast response times(t_(c)=1.6 s;t_(b)=0.6 s),high coloration efficiency(352 cm^(2) C^(-1)),and good cycling stability(with only a 9.3%decrease in optical contrast after 100 electrochemical cycles).Finally,we utilize 3D printing technology to construct flexible,patterned PEDOT:PSS electrochromic devices with bespoke butterfly designs.This work establishes the theoretical foundation for the application of 3D printing technology in PEDOT:PSS flexible electrochromic devices. 展开更多
关键词 3D printing PEDOT:PSS flexible electrochromic device patterned displays
在线阅读 下载PDF
Flexible perovskite light-emitting diodes for display applications and beyond 被引量:2
10
作者 Yongqi Zhang Shahbaz Ahmed Khan +1 位作者 Dongxiang Luo Guijun Li 《Journal of Semiconductors》 EI CAS CSCD 2024年第5期8-25,共18页
The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical pro... The flexible perovskite light-emitting diodes(FPeLEDs),which can be expediently integrated to portable and wearable devices,have shown great potential in various applications.The FPeLEDs inherit the unique optical properties of metal halide perovskites,such as tunable bandgap,narrow emission linewidth,high photoluminescence quantum yield,and particularly,the soft nature of lattice.At present,substantial efforts have been made for FPeLEDs with encouraging external quantum efficiency(EQE)of 24.5%.Herein,we summarize the recent progress in FPeLEDs,focusing on the strategy developed for perovskite emission layers and flexible electrodes to facilitate the optoelectrical and mechanical performance.In addition,we present relevant applications of FPeLEDs in displays and beyond.Finally,perspective toward the future development and applications of flexible PeLEDs are also discussed. 展开更多
关键词 metal halide perovskite flexible light-emitting diodes optical properties mechanical flexibility display
在线阅读 下载PDF
VOLUMETRIC-SWEPT DISPLAY SYSTEM BASED ON HELIX ROTATING SCREEN AND DMD
11
作者 岳键 赵晓庚 +2 位作者 邢建芳 潘文平 沈春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第4期367-371,共5页
Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an ... Based on the helix rotating screen and the digital micro-mirror device (DMD), the former proto of volumetric-swept display system is improved. The 3-D display system adopting a helix rotating screen to construct an imaging space meliorate the defects, such as the smaller image space, the fewer voxels and the severer voxel overlap dead zone caused by planar rotating screen. DMD with spatial light modular (SLM) technology increases the transmission bandwidth of 3-D data in the voxel activation subsystem and activate multi-voxel once time. The volumetric-swept system based on helix rotating screen and DMD is developed. The experimental results show that the image space, the vision dead zone, the voxels on slice, and the voxel activation capacity of the designed proto are superior to the plane rotating screen system. 展开更多
关键词 true 3-D display volumetric 3-D display volumetric-swept display helix rotating screen digital micro-mirror device (DMD)
在线阅读 下载PDF
Dual-channel quantum meta-hologram for display 被引量:1
12
作者 Yubin Fan Hong Liang +6 位作者 Yuhan Wang Shufan Chen Fangxing Lai Mu Ku Chen Shumin Xiao Jensen Li Din Ping Tsai 《Advanced Photonics Nexus》 2024年第1期86-92,共7页
Quantum technologies rely on creating and manipulating entangled sources,which are essential for quantum information,communication,and imaging.By integrating quantum technologies and all-dielectric metasurfaces,the pe... Quantum technologies rely on creating and manipulating entangled sources,which are essential for quantum information,communication,and imaging.By integrating quantum technologies and all-dielectric metasurfaces,the performance of miniature display devices can be enhanced to a higher level.Miniature display technology,such as virtual reality display,has achieved original commercial success,and was initially applied to immersive games and interactive scenes.While the consumer market has quickly adopted this technology,several areas remain for improvement,including concerns around bulkiness,dual-channel display,and noise reduction.Here,we experimentally realize a quantum meta-hologram concept demonstration of a miniature display.We fabricate an ultracompact meta-hologram based on 1μm thick titanium dioxide(TiO_(2)).The meta-hologram can be remotely switched with heralding technique and is robust against noise with the quantum entangled source.The platform can alter the miniature display channel by manipulating heralding photons’polarization,removing speckles and multiple reflective light noise,improving imaging contrast,and potentially decreasing device weight.Imaging contrast increases from 0.36 dB under speckle noise influences to 6.8 dB in quantum correlation imaging.This approach has the potential to miniaturize quantum displays and quantum communication devices. 展开更多
关键词 QUANTUM meta-hologram display metasurface dual channel
在线阅读 下载PDF
Atomic layer deposition in advanced display technologies:from photoluminescence to encapsulation
13
作者 Rong Chen Kun Cao +4 位作者 Yanwei Wen Fan Yang Jian Wang Xiao Liu Bin Shan 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第2期65-82,共18页
Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots ... Driven by the growing demand for next-generation displays,the development of advanced luminescent materials with exceptional photoelectric properties is rapidly accelerating,with such materials including quantum dots and phosphors,etc.Nevertheless,the primary challenge preventing the practical application of these luminescent materials lies in meeting the required durability standards.Atomic layer deposition(ALD)has,therefore,been employed to stabilize luminescent materials,and as a result,flexible display devices have been fabricated through material modification,surface and interface engineering,encapsulation,cross-scale manufacturing,and simulations.In addition,the appropriate equipment has been developed for both spatial ALD and fluidized ALD to satisfy the low-cost,high-efficiency,and high-reliability manufacturing requirements.This strategic approach establishes the groundwork for the development of ultra-stable luminescent materials,highly efficient light-emitting diodes(LEDs),and thin-film packaging.Ultimately,this significantly enhances their potential applicability in LED illumination and backlighted displays,marking a notable advancement in the display industry. 展开更多
关键词 atomic layer deposition display LUMINESCENT ENCAPSULATION
在线阅读 下载PDF
Facile synthesis of high-brightness green-emitting carbon dots with narrow bandwidth towards backlight display
14
作者 Rui Cheng Tingting Zhang +1 位作者 Xin Huang Jian Yu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第5期277-282,共6页
High-performance carbon dots(CDs)allowing the application in high-end display devices are highly desirable and usually limited by the absence of simple and easy synthesis methods.In this work,we exploited an easy-to-i... High-performance carbon dots(CDs)allowing the application in high-end display devices are highly desirable and usually limited by the absence of simple and easy synthesis methods.In this work,we exploited an easy-to-implement strategy for the one-step synthesis of green-emitting CDs(G-CDs)with superb optical properties.The G-CDs were synthesized using m-phenylenediamine(m-PD)as a single precursor,and the reaction reacted at 180℃for 12 h The resultant G-CDs exhibit high-purity and excitationindependent green fluorescence with the photoluminescence(PL)peak located at 516 nm,full width at half maximum(FWHM)of 46 nm,and PL quantum yield(QY)of∼80%under the 470nm excitation light.The G-CDs and corresponding composite film prepared with polyvinyl butyral(G-CDs@PVB)exhibit good PL stability after undergoing long-time storage for one year and 360 h exposure under 460nm blue light.The G-CDs@PVB film was used as color-conversion materials in green-emitting light-emitting diode(LED)application,exhibiting a Commission internationale de l’Eclairage(CIE)chromaticity coordinate of(0.21,0.44).The film was also used in CD-based liquid crystal display(CD-LCD)application,achieving a color gamut value of 85%.This work will offer a working basis for the synthesis of high-performance CDs as well as their application in displays. 展开更多
关键词 Carbon dots One-step synthesis Narrow bandwidth High quantum yield display
原文传递
Head-mounted display-based augmented reality for water quality visualisation
15
作者 Jacky Cao Xiaoli Liu +9 位作者 Xiang Su Jonas Eilertsen Hædahl Thomas Berg Fjellestad Donjete Haziri AndréHoang-An Vu Jari Koskiaho Satu Maaria Karjalainen Anna-kaisa Ronkanen Sasu Tarkoma Pan Hui 《Water Science and Engineering》 CSCD 2024年第3期236-248,共13页
Water covers most of the Earth’s surface and is nowhere near a good ecological or recreational state in many areas of the world.Moreover,only a small fraction of the water is potable.As climate change-induced extreme... Water covers most of the Earth’s surface and is nowhere near a good ecological or recreational state in many areas of the world.Moreover,only a small fraction of the water is potable.As climate change-induced extreme weather events become ever more prevalent,more and more issues arise,such as worsening water quality problems.Therefore,protecting invaluable and useable drinking water is critical.Environmental agencies must continuously check water sources to determine whether they are in a good or healthy state regarding pollutant levels and ecological status.The currently available tools are better suited for stationary laboratory use,and domain specialists lack suitable tools for onsite visualisation and interactive exploration of environmental data.Meanwhile,data collection for laboratory analysis requires substantial time and significant effort.We,therefore,developed an augmented reality system with a Microsoft HoloLens 2 device to explore the visualisation of water quality and status in situ.The developed prototype visualises geo-referenced sensor measurements incorporated into the perspective of the surroundings.Any users interested in water bodies’conditions can quickly examine and retrieve an overview of water body status using augmented reality and then take necessary steps to address the current situation. 展开更多
关键词 Water quality Visualisation Augmented reality Smart sensing Head-mounted display
在线阅读 下载PDF
High-throughput screening and biological display technology:Applications in molecular imaging 被引量:1
16
作者 Renli Luo Hongguang Liu Zhen Cheng 《iRADIOLOGY》 2023年第1期18-35,共18页
Molecular imaging plays important roles in many fields,including disease diagnosis,therapeutic efficacy evaluation,intraoperative imaging guidance,drug metabolism monitoring,and patient selection for appropriate treat... Molecular imaging plays important roles in many fields,including disease diagnosis,therapeutic efficacy evaluation,intraoperative imaging guidance,drug metabolism monitoring,and patient selection for appropriate treatment.As a key component,the targeting ligand determines the specificity,affinity,and in vivo performance of molecular imaging probes.In this review,highthroughput screening and biological display platforms for the discovery of ligands applicable to molecular imaging are briefly reviewed.Basic information on ligand development for molecular imaging is first introduced,followed by a presentation of various selection platforms and typical or iterative cases.The features,advantages,limitations,and application scope of screening and display platforms are compared and discussed.Last,a basic selection strategy and a perspective for protein-based ligands are provided. 展开更多
关键词 molecular imaging high-throughput screening ligand selection phage display yeast display ribosome display mRNA display
暂未订购
Research on dynamic measurement method of speckle in laser display
17
作者 LIU Hong LIU Yaning ZHANG Xiaoyu 《Optoelectronics Letters》 EI 2024年第6期360-366,共7页
Laser display technology is the most promising display technology in the market and is widely used in many fields. However, laser speckle has been troubling the application and expansion of this technology in some fie... Laser display technology is the most promising display technology in the market and is widely used in many fields. However, laser speckle has been troubling the application and expansion of this technology in some fields. In order to better evaluate the speckle, speckle measurement methods must be studied. In this study, a dynamic measurement method for laser speckles is proposed according to the optical superposition characteristics of speckle, which can reduce the influence of non-coherent factors on the speckle measurement results. The feasibility of the dynamic speckle measurement method is verified by designing an experimental scheme. 展开更多
关键词 Research on dynamic measurement method of speckle in laser display
原文传递
NOVEL VOLUMETRIC THREE-DIMENSIONAL DISPLAY SYSTEM 被引量:2
18
作者 李莉 龚华军 +1 位作者 沈春林 谭皓 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第1期32-36,共5页
A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system de... A novel volumetric three-dimensional(3-D) display system is developed based on the human eye persistence and the system fuses a time-series of image slices into a single hologram like 3-D aerial image. The system design is introduced and key components are described. Experimental results show that the 3-D system can guide people freely walk around the display to inspect the true 3-D image without goggles. 展开更多
关键词 display devices model buildings 3-D volumetric display eye persistence
在线阅读 下载PDF
Engineering a high-sugar tolerant strain of Saccharomyces cerevisiae for efficient trehalose production using a cell surface display approach
19
作者 Kan Tulsook Piyada Bussadee +5 位作者 Jantima Arnthong Wuttichai Mhuantong Panida U-thai Srisakul Trakarnpaiboon Verawat Champreda Surisa Suwannarangsee 《Bioresources and Bioprocessing》 2024年第1期1312-1323,共12页
Trehalose production via a one-step enzymatic route using trehalose synthase(TreS)holds significant promise for industrial-scale applications due to its simplicity and utilization of low-cost substrates.However,the de... Trehalose production via a one-step enzymatic route using trehalose synthase(TreS)holds significant promise for industrial-scale applications due to its simplicity and utilization of low-cost substrates.However,the development of a robust whole-cell biocatalyst expressing TreS remains crucial for enabling practical and economically viable production.In this study,a high-sugar tolerant strain of S.cerevisiae was screened and employed as a host cell for the cell surface display of TreS from Acidiplasma aeolicum.The resultant strain,S.cerevisiae I3A,exhibited remarkable surface displayed TreS activity of 3358 U/g CDW and achieved approximately 64%trehalose yield(10.8 g/L/h productivity)from maltose.Interestingly,no glucose by-product was observed during trehalose production.The S.cerevisiae I3A cells exhibited reusability for up to 12 cycles leading to potential cost reduction of trehalose products.Therefore,our study demonstrated the development of a high-sugar tolerant S.cerevisiae strain expressing TreS on its surface as a whole-cell biocatalyst for efficient and economical trehalose production with potential applications in the food and pharmaceutical industries. 展开更多
关键词 Trehalose production Trehalose synthase Saccharomyces cerevisiae Cell surface display MALTOSE Acidiplasma aeolicum
在线阅读 下载PDF
SimWall:a practical user-friendly stereo tiled display wall system 被引量:2
20
作者 XIE Li-jun ZHENG Yao +2 位作者 YANG Ting-jun GAO Wen-xuan PAN Ning-he 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第4期596-604,共9页
SimWall is a user-friendly, stereo tiled display wall system composed of 18 commodity projectors operated by a Linux graphics cluster. Collaborating together, these projectors work as a single logical display capable ... SimWall is a user-friendly, stereo tiled display wall system composed of 18 commodity projectors operated by a Linux graphics cluster. Collaborating together, these projectors work as a single logical display capable of giving a high-resolution show, large-scale, and passive stereo scene. In order to avoid tedious system setup and maintenance, software-based automatic geometry and photometric calibration are used. The software calibration is integrated to the system seamlessly by an on-card transform method and is transparent to users. To end-users, SimWall works just as a common PC, but provides super computing, rendering and displaying ability. In addition, SimWall has stereoscopic function that gives users a semi-immersive experience in polarized passive way. This paper presents system architecture, implementation, and other technical issues such as hardware constraints, projectors alignment, geometry and photometric calibration, implementation of passive stereo, and development of overall soft- ware environment. 展开更多
关键词 Tiled display wall Stereoscopic display Multi-projectors display Parallel rendering Camera-based geometry and photometric calibration
在线阅读 下载PDF
上一页 1 2 72 下一页 到第
使用帮助 返回顶部