This paper presents an optimization technique coupling two optimization techniques for solving Economic Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both genetic alg...This paper presents an optimization technique coupling two optimization techniques for solving Economic Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both genetic algorithm (GA) and local search (LS), where it maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on the concept of ε-dominance. To improve the solution quality, local search technique was applied as neighborhood search engine, where it intends to explore the less-crowded area in the current archive to possibly obtain more non-dominated solutions. TOPSIS technique can incorporate relative weights of criterion importance, which has been implemented to identify best compromise solution, which will satisfy the different goals to some extent. Several optimization runs of the proposed approach are carried out on the standard IEEE 30-bus 6-genrator test system. The comparison demonstrates the superiority of the proposed approach and confirms its potential to solve the multiobjective EELD problem.展开更多
This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) pr...This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided.展开更多
In the recent restructured power system scenario and complex market strategy, operation at absolute minimum cost is no longer the only criterion for dispatching electric power. The economic load dispatch (ELD) problem...In the recent restructured power system scenario and complex market strategy, operation at absolute minimum cost is no longer the only criterion for dispatching electric power. The economic load dispatch (ELD) problem which accounts for minimization of both generation cost and power loss is itself a multiple conflicting objective function problem. In this paper, a modified shuffled frog-leaping algorithm (MSFLA), which is an improved version of memetic algorithm, is proposed for solving the ELD problem. It is a relatively new evolutionary method where local search is applied during the evolutionary cycle. The idea of memetic algorithm comes from memes, which unlike genes can adapt themselves. The performance of MSFLA has been shown more efficient than traditional evolutionary algorithms for such type of ELD problem. The application and validity of the proposed algorithm are demonstrated for IEEE 30 bus test system as well as a practical power network of 203 bus 264 lines 23 machines system.展开更多
The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving...The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving ELD problems. The goal of this study was to examine the performance of DP and GA while they were applied to ELD. We established numerical experiments to conduct performance comparisons between DP and GA with two given schemes. The schemes included comparing the CPU time of the algorithms when they had the same solution quality, and comparing the solution quality when they had the same CPU time. The numerical experiments were applied to the Three Gorges Reservoir in China, which is equipped with 26 hydro generation units. We found the relation between the performance of algorithms and the number of units through experiments. Results show that GA is adept at searching for optimal solutions in low-dimensional cases. In some cases, such as with a number of units of less than 10, GA's performance is superior to that of a coarse-grid DP. However, GA loses its superiority in high-dimensional cases. DP is powerful in obtaining stable and high-quality solutions. Its performance can be maintained even while searching over a large solution space. Nevertheless, due to its exhaustive enumerating nature, it costs excess time in low-dimensional cases.展开更多
It is important to distribute the load efficiently to minimize the cost of the economic dispatch of electrical power system. The uncertainty and volatility of wind energy make the economic dispatch much more complex w...It is important to distribute the load efficiently to minimize the cost of the economic dispatch of electrical power system. The uncertainty and volatility of wind energy make the economic dispatch much more complex when the general power systems are combined with wind farms. The short term wind power prediction method was discussed in this paper. The method was based on the empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD). Furthermore,the effect of wind farms on the traditional economic dispatch of electrical power system was analyzed. The mathematical model of the economic dispatch was established considering the environmental factors and extra spinning reserve cost. The multi-objective co-evolutionary algorithm was used to figure out the model. And the results were compared with the NSGA-Ⅱ(non-dominated sorting genetic algorithm-Ⅱ) to verify its feasibility.展开更多
Combined Heat and Power Economic Dispatch(CHPED)is an important problem in the energy field,and it is beneficial for improving the utilization efficiency of power and heat energies.This paper proposes a Modified Genet...Combined Heat and Power Economic Dispatch(CHPED)is an important problem in the energy field,and it is beneficial for improving the utilization efficiency of power and heat energies.This paper proposes a Modified Genetic Algorithm(MGA)to determine the power and heat outputs of three kinds of units for CHPED.First,MGA replaces the simulated binary crossover by a new one based on the uniform and guassian distributions,and its convergence can be enhanced.Second,MGA modi-fies the mutation operator by introducing a disturbance coefficient based on guassian distribution,which can decrease the risk of being trapped into local optima.Eight instances with or without prohibited operating zones are used to investigate the efficiencies of MGA and other four genetic algorithms for CHPED.In comparison with the other algorithms,MGA has reduced generation costs by at least 562.73$,1068.7$,522.68$and 1016.24$,respectively,for instances 3,4,7 and 8,and it has reduced generation costs by at most 848.22$,3642.85$,897.63$and 3812.65$,respectively,for instances 3,4,7 and 8.Therefore,MGA has desirable convergence and stability for CHPED in comparison with the other four genetic algorithms.展开更多
The electric power generation system has always the significant location in the power system, and it should have an efficient and economic operation. This consists of the generating unit’s allocation with minimum fue...The electric power generation system has always the significant location in the power system, and it should have an efficient and economic operation. This consists of the generating unit’s allocation with minimum fuel cost and also considers the emission cost. In this paper we have intended to propose a hybrid technique to optimize the economic and emission dispatch problem in power system. The hybrid technique is used to minimize the cost function of generating units and emission cost by balancing the total load demand and to decrease the power loss. This proposed technique employs Particle Swarm Optimization (PSO) and Neural Network (NN). PSO is one of the computational techniques that use a searching process to obtain an optimal solution and neural network is used to predict the load demand. Prior to performing this, the neural network training method is used to train all the generating power with respect to the load demand. The economic and emission dispatch problem will be solved by the optimized generating power and predicted load demand. The proposed hybrid intelligent technique is implemented in MATLAB platform and its performance is evaluated.展开更多
As a key to improve the performance of the interbay automated material handling system (AMHS) in 300 mm semiconductor wafer fabrication system, the real- time overhead hoist transport (OHT) dispatching problem has...As a key to improve the performance of the interbay automated material handling system (AMHS) in 300 mm semiconductor wafer fabrication system, the real- time overhead hoist transport (OHT) dispatching problem has received much attention. This problem is first formu- lated as a special form of assignment problem and it is proved that more than one solution will be obtained by Hungarian algorithm simultaneously. Through proposing and strictly proving two propositions related to the char- acteristics of these solutions, a modified Hungarian algo- rithm is designed to distinguish these solutions. Finally, a new real-time OHT dispatching method is carefully designed by implementing the solution obtained by the modified Hungarian algorithm. The experimental results of discrete event simulations show that, compared with con- ventional Hungarian algorithm dispatching method, the proposed dispatching method that chooses the solution with the maximum variance respectively reduces on average 4 s of the average waiting time and average lead time of wafer lots, and its performance is rather stable in multiple dif- ferent scenarios of the interbay AMHS with different quantities of shortcuts. This research provides an efficient real-time OHT dispatching mechanism for the interbay AMHS with shortcuts and bypasses.展开更多
Power generation dispatching is a large complex system problem with multi-dimensional and nonlinear characteristics. A mathematical model was established based on the principle of reservoir operation. A large quantity...Power generation dispatching is a large complex system problem with multi-dimensional and nonlinear characteristics. A mathematical model was established based on the principle of reservoir operation. A large quantity of optimal scheduling processes were obtained by calculating the daily runoff process within three typical years, and a large number of simulated daily runoff processes were obtained using the progressive optimality algorithm (POA) in combination with the genetic algorithm (GA). After analyzing the optimal scheduling processes, the corresponding scheduling rules were determined, and the practical formulas were obtained. These rules can make full use of the rolling runoff forecast and carry out the rolling scheduling. Compared with the optimized results, the maximum relative difference of the annual power generation obtained by the scheduling rules is no more than 1%. The effectiveness and practical applicability of the scheduling rules are demonstrated by a case study. This study provides a new perspective for formulating the rules of power generation dispatching.展开更多
To improve the performance of an automated material handling system (AMHS) in 300 mm semiconductor fabrication plants (FABs), an overhead-hoist-transport (OHT) vehicle dispatching problem was described for semiconduct...To improve the performance of an automated material handling system (AMHS) in 300 mm semiconductor fabrication plants (FABs), an overhead-hoist-transport (OHT) vehicle dispatching problem was described for semiconductor FABs. An original wafer lot dispatching policy was proposed. To minimize costs due to transportation logic, a dispatching rule based on an adapted Hungarian algorithm was presented, and six factors were considered. In addition to the recurring parameters, two original parameters of the vehicles utilization and wafer lot priority were considered to evaluate system performance. To obtain a balanced efficiency regarding the FAB output factors, simulation and sensitive analysis were used to find the best weight parameters of the cost matrix. In particular, a high rate of priority wafer lots (greater than 20%) and vehicles utilization (greater than 75%) are obtained without penalizing the efficiency of the FABs. The results indicate that the proposed dispatching policy is valid and practical.展开更多
In the power market environment, due to the uncertainty of the reservoir inflow and the pool purchase price, it is very important to research power generation risk dispatch of hydropower plants, taking into considerat...In the power market environment, due to the uncertainty of the reservoir inflow and the pool purchase price, it is very important to research power generation risk dispatch of hydropower plants, taking into consideration the benefits and risk control of both sides. This paper investigates power generation risk dispatch of hydropower plants in the market environment, and proposes a mathematical model which considers maximization of benefits and risk control, reflects control willingness of risk and benefits, resolves it with the PSO algorithm, finding more economic and reasonable results. The feasibility and validity of the model and resolving methods are verified by an example.展开更多
How to solve unit commitment and load dispatch of power system by genetic algorithms is discussed in this paper. A combination encoding scheme of binary encoding and floating number encoding and corresponding genetic ...How to solve unit commitment and load dispatch of power system by genetic algorithms is discussed in this paper. A combination encoding scheme of binary encoding and floating number encoding and corresponding genetic operators are developed. Meanwhile a contract mapping genetic algorithm is used to enhance traditional GA’s convergence. The result of a practical example shows that this algorithm is effective.展开更多
Economic dispatch problem lies at the kernel among different issues in GTCC units’ operation, which is about minimizing the fuel consumption for a period of operation so as to accomplish optimal load dispatch among u...Economic dispatch problem lies at the kernel among different issues in GTCC units’ operation, which is about minimizing the fuel consumption for a period of operation so as to accomplish optimal load dispatch among units. This paper has analyzed the load dispatch model of gas turbine combined-cycle (GTCC) units and utilizes a quantum genetic algorithm to optimize the solution of the model. The performance of gas turbine combined-cycle units varies with many factors and this directly leads to variation of model parameters. To solve the dispatch problem, variable constraints are adopted to correct the parameters influenced by ambient conditions. In the simulation, comparison of dispatch models for GTCC units considering and not considering the influence of ambient conditions indicates that it is necessary to adopt variable constraints for the dispatch model of GTCC units. To optimize the solution of the model, a Quantum Genetic Algorithm is used considering its advantages in searching performance. QGA combines the quantum theory with evolutionary theory of genetic algorithm. It is a new kind of intelligence algorithm which has been successfully employed in optimization problems. Utilizing quantum code, quantum gate and so on, QGA shows flexibility, high convergent rate, and global optimal capacity and so on. Simulations were performed by building up models and optimizing the solutions of the models by QGA. QGA shows better effect than equal micro incremental method used in the previous literature. The operational economy is proved by the results obtained by QGA. It can be concluded that QGA is quite effective in optimizing economic dispatch problem of GTCC units.展开更多
在综合能源系统(Integrated energy systems,IESs)经济调度问题的分布式优化框架中,节点协同机制的拓扑设计必然受到信息交互方式的约束。现有研究主要分为两类通信协议、同步通信和异步通信。然而,同步通信需要满足时序一致性,等待各...在综合能源系统(Integrated energy systems,IESs)经济调度问题的分布式优化框架中,节点协同机制的拓扑设计必然受到信息交互方式的约束。现有研究主要分为两类通信协议、同步通信和异步通信。然而,同步通信需要满足时序一致性,等待各通信者之间达成同步响应或确认后才能执行后续操作,这在大规模网络环境中很难实现。该文首先基于Gossip算法的异步特点,提出了一种基于Gossip的异步通信分布式经济调度算法。利用矩阵扰动理论和特征值定理,严格证明了算法的收敛性。进一步地,考虑了两种典型的网络攻击模型,拒绝服务攻击(denial of service,DoS)和虚假数据攻击(false data injection,FDI),设计了一种弹性安全策略以缓解网络攻击对最优经济调度的影响。最后,基于IEEE39-32节点的IES进行算例分析,结合不同的调度场景、攻击者的表现以及同步通信方式的对比,从多个角度验证了所提策略在通信方式和网络安全方面的有效性和优越性。展开更多
文摘This paper presents an optimization technique coupling two optimization techniques for solving Economic Emission Load Dispatch Optimization Problem EELD. The proposed approach integrates the merits of both genetic algorithm (GA) and local search (LS), where it maintains a finite-sized archive of non-dominated solutions which gets iteratively updated in the presence of new solutions based on the concept of ε-dominance. To improve the solution quality, local search technique was applied as neighborhood search engine, where it intends to explore the less-crowded area in the current archive to possibly obtain more non-dominated solutions. TOPSIS technique can incorporate relative weights of criterion importance, which has been implemented to identify best compromise solution, which will satisfy the different goals to some extent. Several optimization runs of the proposed approach are carried out on the standard IEEE 30-bus 6-genrator test system. The comparison demonstrates the superiority of the proposed approach and confirms its potential to solve the multiobjective EELD problem.
文摘This paper presents the solution to the combined heat and power economic dispatch problem using a direct solution algorithm for constrained optimization problems. With the potential of Combined Heat and Power (CHP) production to increase the efficiency of power and heat generation simultaneously having been researched and established, the increasing penetration of CHP systems, and determination of economic dispatch of power and heat assumes higher relevance. The Combined Heat and Power Economic Dispatch (CHPED) problem is a demanding optimization problem as both constraints and objective functions can be non-linear and non-convex. This paper presents an explicit formula developed for computing the system-wide incremental costs corresponding with optimal dispatch. The circumvention of the use of iterative search schemes for this crucial step is the innovation inherent in the proposed dispatch procedure. The feasible operating region of the CHP unit three is taken into account in the proposed CHPED problem model, whereas the optimal dispatch of power/heat outputs of CHP unit is determined using the direct Lagrange multiplier solution algorithm. The proposed algorithm is applied to a test system with four units and results are provided.
文摘In the recent restructured power system scenario and complex market strategy, operation at absolute minimum cost is no longer the only criterion for dispatching electric power. The economic load dispatch (ELD) problem which accounts for minimization of both generation cost and power loss is itself a multiple conflicting objective function problem. In this paper, a modified shuffled frog-leaping algorithm (MSFLA), which is an improved version of memetic algorithm, is proposed for solving the ELD problem. It is a relatively new evolutionary method where local search is applied during the evolutionary cycle. The idea of memetic algorithm comes from memes, which unlike genes can adapt themselves. The performance of MSFLA has been shown more efficient than traditional evolutionary algorithms for such type of ELD problem. The application and validity of the proposed algorithm are demonstrated for IEEE 30 bus test system as well as a practical power network of 203 bus 264 lines 23 machines system.
基金supported by the National Basic Research Program of China(973 Program,Grant No.2013CB036406)the National Natural Science Foundation of China(Grant No.51179044)the Research Innovation Program for College Graduates in Jiangsu Province of China(Grant No.CXZZ12-0242)
文摘The hydro unit economic load dispatch (ELD) is of great importance in energy conservation and emission reduction. Dynamic programming (DP) and genetic algorithm (GA) are two representative algorithms for solving ELD problems. The goal of this study was to examine the performance of DP and GA while they were applied to ELD. We established numerical experiments to conduct performance comparisons between DP and GA with two given schemes. The schemes included comparing the CPU time of the algorithms when they had the same solution quality, and comparing the solution quality when they had the same CPU time. The numerical experiments were applied to the Three Gorges Reservoir in China, which is equipped with 26 hydro generation units. We found the relation between the performance of algorithms and the number of units through experiments. Results show that GA is adept at searching for optimal solutions in low-dimensional cases. In some cases, such as with a number of units of less than 10, GA's performance is superior to that of a coarse-grid DP. However, GA loses its superiority in high-dimensional cases. DP is powerful in obtaining stable and high-quality solutions. Its performance can be maintained even while searching over a large solution space. Nevertheless, due to its exhaustive enumerating nature, it costs excess time in low-dimensional cases.
基金Innovation Program of Shanghai Municipal Education Commission,China(No.13YZ139)Climbing Peak Discipline Project of Shanghai Dianji University,China(No.15DFXK01)
文摘It is important to distribute the load efficiently to minimize the cost of the economic dispatch of electrical power system. The uncertainty and volatility of wind energy make the economic dispatch much more complex when the general power systems are combined with wind farms. The short term wind power prediction method was discussed in this paper. The method was based on the empirical mode decomposition (EMD) and ensemble empirical mode decomposition (EEMD). Furthermore,the effect of wind farms on the traditional economic dispatch of electrical power system was analyzed. The mathematical model of the economic dispatch was established considering the environmental factors and extra spinning reserve cost. The multi-objective co-evolutionary algorithm was used to figure out the model. And the results were compared with the NSGA-Ⅱ(non-dominated sorting genetic algorithm-Ⅱ) to verify its feasibility.
基金supported by the National Natural Science Foundation of China(NSFC)under Grant 61873272,62073327in part by the Natural Science Foundation of Jiangsu Province under Grant BK20200086,BK20200631.
文摘Combined Heat and Power Economic Dispatch(CHPED)is an important problem in the energy field,and it is beneficial for improving the utilization efficiency of power and heat energies.This paper proposes a Modified Genetic Algorithm(MGA)to determine the power and heat outputs of three kinds of units for CHPED.First,MGA replaces the simulated binary crossover by a new one based on the uniform and guassian distributions,and its convergence can be enhanced.Second,MGA modi-fies the mutation operator by introducing a disturbance coefficient based on guassian distribution,which can decrease the risk of being trapped into local optima.Eight instances with or without prohibited operating zones are used to investigate the efficiencies of MGA and other four genetic algorithms for CHPED.In comparison with the other algorithms,MGA has reduced generation costs by at least 562.73$,1068.7$,522.68$and 1016.24$,respectively,for instances 3,4,7 and 8,and it has reduced generation costs by at most 848.22$,3642.85$,897.63$and 3812.65$,respectively,for instances 3,4,7 and 8.Therefore,MGA has desirable convergence and stability for CHPED in comparison with the other four genetic algorithms.
文摘The electric power generation system has always the significant location in the power system, and it should have an efficient and economic operation. This consists of the generating unit’s allocation with minimum fuel cost and also considers the emission cost. In this paper we have intended to propose a hybrid technique to optimize the economic and emission dispatch problem in power system. The hybrid technique is used to minimize the cost function of generating units and emission cost by balancing the total load demand and to decrease the power loss. This proposed technique employs Particle Swarm Optimization (PSO) and Neural Network (NN). PSO is one of the computational techniques that use a searching process to obtain an optimal solution and neural network is used to predict the load demand. Prior to performing this, the neural network training method is used to train all the generating power with respect to the load demand. The economic and emission dispatch problem will be solved by the optimized generating power and predicted load demand. The proposed hybrid intelligent technique is implemented in MATLAB platform and its performance is evaluated.
基金Supported by National Natural Science Foundation of China(Grant No.51275307)
文摘As a key to improve the performance of the interbay automated material handling system (AMHS) in 300 mm semiconductor wafer fabrication system, the real- time overhead hoist transport (OHT) dispatching problem has received much attention. This problem is first formu- lated as a special form of assignment problem and it is proved that more than one solution will be obtained by Hungarian algorithm simultaneously. Through proposing and strictly proving two propositions related to the char- acteristics of these solutions, a modified Hungarian algo- rithm is designed to distinguish these solutions. Finally, a new real-time OHT dispatching method is carefully designed by implementing the solution obtained by the modified Hungarian algorithm. The experimental results of discrete event simulations show that, compared with con- ventional Hungarian algorithm dispatching method, the proposed dispatching method that chooses the solution with the maximum variance respectively reduces on average 4 s of the average waiting time and average lead time of wafer lots, and its performance is rather stable in multiple dif- ferent scenarios of the interbay AMHS with different quantities of shortcuts. This research provides an efficient real-time OHT dispatching mechanism for the interbay AMHS with shortcuts and bypasses.
基金supported by the National Key Basic Research Development Program of China (Grant No. 2002CCA00700)
文摘Power generation dispatching is a large complex system problem with multi-dimensional and nonlinear characteristics. A mathematical model was established based on the principle of reservoir operation. A large quantity of optimal scheduling processes were obtained by calculating the daily runoff process within three typical years, and a large number of simulated daily runoff processes were obtained using the progressive optimality algorithm (POA) in combination with the genetic algorithm (GA). After analyzing the optimal scheduling processes, the corresponding scheduling rules were determined, and the practical formulas were obtained. These rules can make full use of the rolling runoff forecast and carry out the rolling scheduling. Compared with the optimized results, the maximum relative difference of the annual power generation obtained by the scheduling rules is no more than 1%. The effectiveness and practical applicability of the scheduling rules are demonstrated by a case study. This study provides a new perspective for formulating the rules of power generation dispatching.
基金National Natural Science Foundations of China ( No. 71071115,No. 61273035)National High-Tech R&D Program for CIMS,China ( No. 2009AA043000)
文摘To improve the performance of an automated material handling system (AMHS) in 300 mm semiconductor fabrication plants (FABs), an overhead-hoist-transport (OHT) vehicle dispatching problem was described for semiconductor FABs. An original wafer lot dispatching policy was proposed. To minimize costs due to transportation logic, a dispatching rule based on an adapted Hungarian algorithm was presented, and six factors were considered. In addition to the recurring parameters, two original parameters of the vehicles utilization and wafer lot priority were considered to evaluate system performance. To obtain a balanced efficiency regarding the FAB output factors, simulation and sensitive analysis were used to find the best weight parameters of the cost matrix. In particular, a high rate of priority wafer lots (greater than 20%) and vehicles utilization (greater than 75%) are obtained without penalizing the efficiency of the FABs. The results indicate that the proposed dispatching policy is valid and practical.
文摘In the power market environment, due to the uncertainty of the reservoir inflow and the pool purchase price, it is very important to research power generation risk dispatch of hydropower plants, taking into consideration the benefits and risk control of both sides. This paper investigates power generation risk dispatch of hydropower plants in the market environment, and proposes a mathematical model which considers maximization of benefits and risk control, reflects control willingness of risk and benefits, resolves it with the PSO algorithm, finding more economic and reasonable results. The feasibility and validity of the model and resolving methods are verified by an example.
文摘How to solve unit commitment and load dispatch of power system by genetic algorithms is discussed in this paper. A combination encoding scheme of binary encoding and floating number encoding and corresponding genetic operators are developed. Meanwhile a contract mapping genetic algorithm is used to enhance traditional GA’s convergence. The result of a practical example shows that this algorithm is effective.
文摘Economic dispatch problem lies at the kernel among different issues in GTCC units’ operation, which is about minimizing the fuel consumption for a period of operation so as to accomplish optimal load dispatch among units. This paper has analyzed the load dispatch model of gas turbine combined-cycle (GTCC) units and utilizes a quantum genetic algorithm to optimize the solution of the model. The performance of gas turbine combined-cycle units varies with many factors and this directly leads to variation of model parameters. To solve the dispatch problem, variable constraints are adopted to correct the parameters influenced by ambient conditions. In the simulation, comparison of dispatch models for GTCC units considering and not considering the influence of ambient conditions indicates that it is necessary to adopt variable constraints for the dispatch model of GTCC units. To optimize the solution of the model, a Quantum Genetic Algorithm is used considering its advantages in searching performance. QGA combines the quantum theory with evolutionary theory of genetic algorithm. It is a new kind of intelligence algorithm which has been successfully employed in optimization problems. Utilizing quantum code, quantum gate and so on, QGA shows flexibility, high convergent rate, and global optimal capacity and so on. Simulations were performed by building up models and optimizing the solutions of the models by QGA. QGA shows better effect than equal micro incremental method used in the previous literature. The operational economy is proved by the results obtained by QGA. It can be concluded that QGA is quite effective in optimizing economic dispatch problem of GTCC units.
文摘在综合能源系统(Integrated energy systems,IESs)经济调度问题的分布式优化框架中,节点协同机制的拓扑设计必然受到信息交互方式的约束。现有研究主要分为两类通信协议、同步通信和异步通信。然而,同步通信需要满足时序一致性,等待各通信者之间达成同步响应或确认后才能执行后续操作,这在大规模网络环境中很难实现。该文首先基于Gossip算法的异步特点,提出了一种基于Gossip的异步通信分布式经济调度算法。利用矩阵扰动理论和特征值定理,严格证明了算法的收敛性。进一步地,考虑了两种典型的网络攻击模型,拒绝服务攻击(denial of service,DoS)和虚假数据攻击(false data injection,FDI),设计了一种弹性安全策略以缓解网络攻击对最优经济调度的影响。最后,基于IEEE39-32节点的IES进行算例分析,结合不同的调度场景、攻击者的表现以及同步通信方式的对比,从多个角度验证了所提策略在通信方式和网络安全方面的有效性和优越性。