In this work,the B2 partial disordered structure of the austenitic parent phase,martensitic transformation,elastic and magnetic properties of the Ni8 Mn4+xTi4-x(x=0,1 and 2) Heusler alloys have been systematically inv...In this work,the B2 partial disordered structure of the austenitic parent phase,martensitic transformation,elastic and magnetic properties of the Ni8 Mn4+xTi4-x(x=0,1 and 2) Heusler alloys have been systematically investigated by the first-principles calculations.The preferential atomic occupation of B2 structure is one Ti atom exchange with the nearest neighboring Mn atom from the view of lowest energy principle.This disordered exchange sites(Mn-Ti) and the excess Mn atoms occupying the Ti sites(MnTi)could reduce the nearest Mn-Mn distance,resulting in the anti ferromagnetic state in the austenitic and martensitic phases of the alloys.The total magnetic moment of the alloy decreases with the increasing Mn content;it is ascribed to the antiferromagnetic magnetic moments of the excess Mn atoms.When x=0,the alloy does not undergo martensitic transformation since the austenite has absolute phase stability.The martensitic transformation will occur during cooling process for x=1 or 2,owing to the energy difference between the austenite and the martensite could provide the driving force for the phase transformation.The elastic properties of the cubic austenitic phase for the Ni2 MnTi alloy is calculated,and the results reveal the reason why Ni-Mn-Ti alloy has excellent mechanical properties.The origin of martensitic transformation and magnetic properties was discussed based on the electronic density of states.展开更多
The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from struc...The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs.展开更多
Charge density wave(CDW) in kagome materials with the geometric frustration is able to carry unconventional characteristics.Recently, a CDW has been observed below the antiferromagnetic order in kagome FeGe, in which ...Charge density wave(CDW) in kagome materials with the geometric frustration is able to carry unconventional characteristics.Recently, a CDW has been observed below the antiferromagnetic order in kagome FeGe, in which magnetism and CDW are intertwined to form an emergent quantum ground state. However, the CDW is only short-ranged and the structural modulation originating from it has yet to be determined experimentally. Here we realize a long-range CDW order by post-annealing process,and resolve the structure model through single crystal X-ray diffraction. Occupational disorder of Ge resulting from short-range CDW correlations above T_(CDW) is identified from structure refinements. The partial dimerization of Ge along the c axis is unveiled to be the dominant distortion for the CDW. Occupational disorder of Ge is also proved to exist in the CDW phase due to the random selection of partially dimerized Ge sites. Our work provides useful insights for understanding the unconventional nature of the CDW in FeGe.展开更多
Considering the mechnoelectrical coupling, the localization of SH-waves in disordered periodic layered piezoelectric structures is studied. The waves propagating in directions normal and tangential to the layers are c...Considering the mechnoelectrical coupling, the localization of SH-waves in disordered periodic layered piezoelectric structures is studied. The waves propagating in directions normal and tangential to the layers are considered. The transfer matrices between two consecutive unit cells are obtained according to the continuity conditions. The expressions of localization factor and localization length in the disordered periodic structures are presented. For the disordered periodic piezoelectric structures, the numerical results of localization factor and localization length are presented and discussed. It can be seen from the results that the frequency passbands and stopbands appear for the ordered periodic structures and the wave localization phenomenon occurs in the disordered periodic ones, and the larger the coefficient of variation is, the greater the degree of wave localization is. The widths of stopbands in the ordered periodic structures are very narrow when the properties of the consecutive piezoelectric materials are similar and the intervals of stopbands become broader when a certain material parameter has large changes. For the wave propagating in the direction normal to the layers the localization length has less dependence on the frequency, but for the wave propagating in the direction tangential to the layers the localization length is strongly dependent on the frequency.展开更多
A Yb^(3+):KBaY(MoO_(4))_(3)(Yb^(3+):KBYM)crystal with dimensions of 51 mm×27 mm × 10 mm was successfully grown by the TSSG method.The characteristics of the crystal structure and probability of good optical ...A Yb^(3+):KBaY(MoO_(4))_(3)(Yb^(3+):KBYM)crystal with dimensions of 51 mm×27 mm × 10 mm was successfully grown by the TSSG method.The characteristics of the crystal structure and probability of good optical properties were analyzed.The absorption and emission spectra of Yb^(3+):KBYM crystal exhibit broadened bands,with the maximum absorption cross-sections of 1.17 × 10^(-20),1.44×10^(-20) and 1.37 × 10^(-20) cm^(2) at976 nm for X-,Y-and Z-polarizations,respectively.The corresponding absorption FWHMs are as wide as 77,46 and 55 nm.The well-known re-absorption effect of Yb^(3+) in the crystal is discussed.Two methods,the Fiichtbauer-Ladenburg method(FL)and reciprocity method(RM)were adopted to compute the emission cross-sections and results show a certain discrepancy but the errors are allowable.The laser potentiality of the Yb^(3+):KBYM crystal was also evaluated by calculations of minimum inversion fractionβmin,saturation pump intensity Isat,the minimum pump intensity Imin and gain cross-sections spectra.Laser experiment was carried out and Watt-level continuous wave laser has been realized.Results indicate that the Yb^(3+):KBYM crystal with a disordered structure may be a potential laser media that can be used to generate tunable and ultrashort pulse laser emissions with high quality beam.展开更多
High‐entropy amorphous catalysts(HEACs)integrate multielement synergy with structural disorder,making them promising candidates for water splitting.Their distinctive features—including flexible coordination environm...High‐entropy amorphous catalysts(HEACs)integrate multielement synergy with structural disorder,making them promising candidates for water splitting.Their distinctive features—including flexible coordination environments,tunable electronic structures,abundant unsaturated active sites,and dynamic structural reassembly—collectively enhance electrochemical activity and durability under operating conditions.This review summarizes recent advances in HEACs for hydrogen evolution,oxygen evolution,and overall water splitting,highlighting their disorder-driven advantages over crystalline counterparts.Catalytic performance benchmarks are presented,and mechanistic insights are discussed,focusing on how multimetallic synergy,amorphization effect,and in‐situ reconstruction cooperatively regulate reaction pathways.These insights provide guidance for the rational design of next‐generation amorphous high‐entropy electrocatalysts with improved efficiency and durability.展开更多
Six novel tetrazoles were designed, synthesized and characterized by NMR and elemental analysis. 2-Dehydroabietyl-5-ethylsulfanyl-1,2,3,4-tetrazole (4b), C23H34N4S, was structurally determined by single-crystal X-ra...Six novel tetrazoles were designed, synthesized and characterized by NMR and elemental analysis. 2-Dehydroabietyl-5-ethylsulfanyl-1,2,3,4-tetrazole (4b), C23H34N4S, was structurally determined by single-crystal X-ray diffraction. It crystallizes in the orthorhombic system, space group P212121, with a = 7.391(3), b = 12.580(3), c = 24.036(8) A^°, V= 2234.8(13) A^°^3, Z = 4, M, = 398.60, Dc = 1.185 g/cm^3, μ = 0.160 mm^-1, F(000) = 864, the final R = 0.0499 and wR = 0.0638 for 1228 observed reflections with I 〉 2σ(I). There are four rings in the crystal structure, and C(14) adopts the R absolute configuration. In addition, disordered C(19), C(20), C(21), C(22) and C(23) exist in the crystal structure.展开更多
The dynamic properties of proton conductivity along hydrogen-bonded molecular systems, for example, ice crystal, with structure disorder or damping and finite temperatures exposed in an externally applied electric-fie...The dynamic properties of proton conductivity along hydrogen-bonded molecular systems, for example, ice crystal, with structure disorder or damping and finite temperatures exposed in an externally applied electric-field have been numerically studied by Runge-Kutta way in our soliton model. The results obtained show that the proton-soliton is very robust against the structure disorder including the fluctuation of the force constant and disorder in the sequence of masses and thermal perturbation and damping of medium, the velocity of its conductivity increases with increasing of the externally applied electric-field and decreasing of the damping coefficient of medium, but the proton-soliton disperses for quite great fluctuation of the "force constant and damping coefficient. In the numerical simulation we find that the proton-soliton in our model is thermally stable in a large region of temperature of T ≤ 273 K under influences of damping and externally applied electric-field in ice crvstal. This shows that our model is available and appropriate to ice.展开更多
Thermal transport properties of low-dimensional nanomaterials are highly anisotropic and sensitive to the structural disorder,which can greatly limit their applications in heat dissipation.In this work,we unveil that ...Thermal transport properties of low-dimensional nanomaterials are highly anisotropic and sensitive to the structural disorder,which can greatly limit their applications in heat dissipation.In this work,we unveil that the carbon honeycomb structures which have high in-plane thermal conductivity simultaneously possess high axial thermal conductivity.Based on non-equilibrium molecular dynamics simulations,we find that the intrinsic axial thermal conductivity of carbon honeycomb structure reaches 746 W·m^(-1)·K^(-1)at room temperature,comparable to that of good heat dissipation materials such as hexagonal boron nitride.By comparing the phonon transmission spectrum between carbon honeycombs and few layer graphene,the physical mechanism responsible for the high axial thermal conductivity of carbon honeycombs is discussed.More importantly,our simulation results further demonstrate that the high axial thermal conductivity of carbon honeycomb structure is robust to the structural disorder,which is a common issue during the mass production of the carbon honeycomb structure.Our study suggests that the carbon honeycomb structure has unique advantages to serve as the thermal management material for practical applications.展开更多
The crystal structure of the title compound 2-ethoxycarbonylmethyl-8-chloro-3a,4-dihydro-3a-methyl-chromeno[4,3-c]pyrazol-3(2H)-one(C15H15ClN2O4,Mr = 322.74) has been prepared and determined by single-crystal X-ra...The crystal structure of the title compound 2-ethoxycarbonylmethyl-8-chloro-3a,4-dihydro-3a-methyl-chromeno[4,3-c]pyrazol-3(2H)-one(C15H15ClN2O4,Mr = 322.74) has been prepared and determined by single-crystal X-ray diffraction.The crystal is of orthorhombic,space group Pccn with a = 16.7246(10),b = 19.6626(12),c = 9.3013(6) ,V = 3058.7(3) 3,Z = 8,Dc = 1.402 g/cm3,μ = 0.269 mm-1,F(000) = 1344,the final R = 0.0506 and wR = 0.1464 for 2568 reflections with I 〉 2σ(I).In addition,disordered C(14) and C(15) atoms exist in the crystal structure.展开更多
The practical application of room-temperature sodium-sulfur(RT Na-S)batteries is hindered by sluggish reaction kinetics and deleterious side reactions.To address these challenges,a defective carbon is designed as a su...The practical application of room-temperature sodium-sulfur(RT Na-S)batteries is hindered by sluggish reaction kinetics and deleterious side reactions.To address these challenges,a defective carbon is designed as a sulfur host through a simple temperature-controlled method.The abundant porosity and surface roughness enhance sulfur encapsulation and mitigate side reactions.Prominently,highly disordered structure facilitates the chemical adsorption towards NaPSs and accelerates sulfur conversion.Furthermore,electrochemical characterizations reveal that concentration polarization during the formation of long-chain NaPSs emerges as the key polarization and activation polarization dominates the nucleation of Na_(2)S during discharge,while they both significantly affect the formation of S_(8)/long-chain NaPSs during charge.Owing to the improved adsorption capability and electrocalatytic sites,S/CZ-900presents lower concentration polarization and activation polarization during both discharge and charge.Consequently,S/CZ-900 cathode achieves 1031,914,and 671 mAh g^(-1)at 1,2,and 5 C.The cathode with a high sulfur loading of 6.4 mg cm^(-2)delivers an impressive areal capacity of 14.3 mAh cm^(-2).Moreover,the S/CZ-900||Na/CZ-900(Al)full cell exhibits robust cycling stability,maintaining 1094 mAh g^(-1)after 40 cycles at 0.1 C.The insights provide a workable solution of metal-free carbonaceous host materials for the evolution of RT Na-S batteries.展开更多
This study reports the response of helium(He)ion irradiation on binary-phase structured alloy V_(34)Ti_(25)Cr_(10)Ni_(30)Pd1.The alloy consists of a VCr matrix with nano-sized TiNi precipitates and a B2 TiNi matrix wi...This study reports the response of helium(He)ion irradiation on binary-phase structured alloy V_(34)Ti_(25)Cr_(10)Ni_(30)Pd1.The alloy consists of a VCr matrix with nano-sized TiNi precipitates and a B2 TiNi matrix with nano-sized VCr precipitates.VCr is chemical-disordered and TiNi has a B2-ordered structure.The alloy was subjected to 400 keV He ion irradiation with a fluence of 1×10^(17)ions cm^(−2)at 450℃.The results show He bubbles within the chemical-disordered VCr matrix exhibit a near-spherical shape with a smaller size and higher density compared to that in chemical-ordered TiNi phase with a larger size,lower density,and faceted shape.This indicates the chemical-disordered VCr phase effectively suppresses He accumulation compared to the B2-ordered TiNi phase,emphasizing the dominance of chemical struc-tures in He bubble formation.The calculation of density functional theory(DFT)shows that Ti and Ni have lower vacancy formation energy than that of V and Cr,respectively,which results in the increased vacancy production in TiNi.Consequently,He bubbles in TiNi have a larger bubble size consistent with experimental observations of radiation-induced Ni segregation.These findings elucidate the roles of or-dered and disordered chemical structures in He bubble evolution,offering insights for the development of gas ion irradiation-resistant materials.展开更多
Sodium-ion batteries(SIBs)employ P2-type layered transition metal oxides as promising cathode materials,primarily due to their abundant natural reserves and environmentally friendly characteristics.However,structural ...Sodium-ion batteries(SIBs)employ P2-type layered transition metal oxides as promising cathode materials,primarily due to their abundant natural reserves and environmentally friendly characteristics.However,structural instability and complex phase transitions during electrochemical cycling pose significant challenges to their practical applications.Employing cation substitution serves as a straightforward yet effective strategy for stabilizing the structure and improving the kinetics of the active material.In this study,we introduce a Ni-rich honeycomb-layered Na_(2+x)Ni_(2)TeO_(6)(NNTO)cathode material with variable sodium content(x=0,0.03,0.05,0.10).Physicochemical characterizations reveal that excess sodium content at the atomic scale modifies the surface and suppresses phase transitions,while preserving the crystal structure.This results in enhanced cyclic performance and improved electrochemical kinetics at room temperature.Furthermore,we investigate the performance of the NNTO cathode material containing 10%excess sodium at a relatively high temperature of 60℃,where it exhibits 71.6%capacity retention compared to 60%for the pristine.Overall,our results confirm that a preconstructed surface layer(induced by excess sodium)effectively safeguards the Ni-based cathode material from surface degradation and phase transitions during the electrochemical processes,thus exhibiting superior capacity retention relative to the pristine NNTO cathode.This study of the correlation between structure and performance can potentially be applied to the commercialization of SIBs.展开更多
Understanding how structural disorder affects phonon transport is critical for controlling thermal conduction in nanoscale materials.In this work,we investigate thermal transport in Si-like nanowires composed of layer...Understanding how structural disorder affects phonon transport is critical for controlling thermal conduction in nanoscale materials.In this work,we investigate thermal transport in Si-like nanowires composed of layered atoms with one-dimensional correlated disorder.Using the nonequilibrium Green’s function method,we reveal that introducing correlation among atomic layers induces phonon Anderson localization at low-frequencies,leading to a nonmonotonic length dependence of thermal conductivity:it increases at short lengths but decreases beyond a critical size,in sharp contrast to the monotonic trend observed in random disorder.Despite having fewer mass interfaces,the correlated nanowires exhibit lower thermal conductivity than their random disorder counterparts when the nanowire length exceeds 70 nm.Frequency-resolved analysis shows that spatial correlation suppresses the transmission of low-frequency phonons and promotes their localization,while concurrently extending the localization length of mid-and high-frequency modes.This selective reshaping of phonon localization is responsible for the anomalous transport behavior.Our findings provide new insights into heat transport engineering via tailored disorder in low-dimensional materials.展开更多
Limited by the sluggish kinetics at the cathode of proton exchange membrane fuel cells(PEMFCs),optimizing platinum-based alloy catalysts for oxygen reduction reaction remains a key target toward industrialization.Stra...Limited by the sluggish kinetics at the cathode of proton exchange membrane fuel cells(PEMFCs),optimizing platinum-based alloy catalysts for oxygen reduction reaction remains a key target toward industrialization.Strain engineering is widely employed to tune Pt-M catalysts,but its impact on the structure-property relationship is often interwoven with multiple factors.In this work,we propose a bi-stage strain tuning method and demonstrate it on the most common PtCo catalysts.Macro-strain is introduced by synthesizing single-crystal PtCo nanodendrites,whereas mild acid etching introduces micro-strain to the surface.The half-wave potential of as-treated catalysts reaches 0.959 V,and mass activity is up to 0.69 A mg^(−1)_(Pt).A minimal decrease of 2 mV is observed for half-wave potential after 10,000 cycles.Detailed analysis using advanced transmission electron microscopy,wide-angle X-ray scattering,etc.provides direct evidence that surface disorder at the atomic scale accounts for the enhanced activity and stability.In contrast,the simplicity of this approach allows for scaling up on Pt-M catalysts,as demonstrated on PEMFCs.The bi-stage strain tuning strategy provides a new perspective and reference for improving the activity and durability of Pt-M catalysts.展开更多
The role of androgen receptor (AR) in the initiation and progression of prostate cancer (PCa) is well established. Competitive inhibition of the AR ligand-binding domain (LBD) has been the staple of antiandrogen...The role of androgen receptor (AR) in the initiation and progression of prostate cancer (PCa) is well established. Competitive inhibition of the AR ligand-binding domain (LBD) has been the staple of antiandrogen therapies employed to combat the disease in recent years. However, their efficacy has often been limited by the emergence of resistance, mediated through point mutations, and receptor truncations. As a result, the prognosis for patients with malignant castrate resistant disease remains poor. The amino-terminal domain (NTD) of the AR has been shown to be critical for AR function. Its modular activation function (AF-1) is important for both gene regulation and participation in protein-protein interactions. However, due to the intrinsically disordered structure of the domain, its potential as a candidate for therapeutic intervention has been dismissed in the past. The recent emergence of the small molecule EPI-O01 has provided evidence that AR-NTD can be targeted therapeutically, independent of the LBD. Targeting of AR-NTD has the potential to disrupt multiple intermolecular interactions between AR and its coregulatory binding partners, in addition to intramolecular cross-talk between the domains of the AR. Therapeutics targeting these protein-protein interactions or NTD directly should also have efficacy against emerging AR splice variants which may play a role in PCa progression. This review will discuss the role of intrinsic disorder in AR function and illustrate how emerging therapies might target NTD in PCa.展开更多
Dirac particle penetration is studied theoretically with Dirac equation in one-dimensional systems. We investigate a one-dimensional system with N barriers where both barrier height and well width are constants random...Dirac particle penetration is studied theoretically with Dirac equation in one-dimensional systems. We investigate a one-dimensional system with N barriers where both barrier height and well width are constants randomly distributed in certain range. The one-parameter scaling theory for nonrelatiyistic particles is still valid for massive Dirac particles. In the same disorder sample, we find that the localization length of relativistic particles is always larger than that of nonrelativistic particles and the transmission coefficient related to incident particle in both cases fits the form T~ exp(-αL). More interesting, massless relativistic particles are entirely delocalized no matter how big the energy of incident particles is.展开更多
The role of the microalloying process in relaxation behavior and crystallization evolution of Zr_(20) Cu_(20) Ni_(20) Ti_(20) Hf_(20) high entropy bulk metallic glass(HEBMG) was investigated. We selected Al and Nb ele...The role of the microalloying process in relaxation behavior and crystallization evolution of Zr_(20) Cu_(20) Ni_(20) Ti_(20) Hf_(20) high entropy bulk metallic glass(HEBMG) was investigated. We selected Al and Nb elements as minor elements, which led to the negative and positive effects on the heat of mixing in the master HEBMG composition, respectively. According to the results, both elements intensified β relaxation in the structure;however, α relaxation remained stable. By using different frequencies in dynamic mechanical analysis, it was revealed that the activation energy of β relaxation for the Nb-added sample was much higher, which was due to the creation of significant structural heterogeneity under the microalloying process. Moreover, it was found that Nb addition led to a diversity in crystallization stages at the supercooled liquid region.It was suggested that the severe structural heterogeneity in the Nb-added sample provided multiple energy-level sites in the structure for enhancing the crystallization stages.展开更多
We investigate the transport properties of a random binary side-coupled chain by using the transfer-matrix technique. It is found that there are resonant states in the systems with short-range correlations between the...We investigate the transport properties of a random binary side-coupled chain by using the transfer-matrix technique. It is found that there are resonant states in the systems with short-range correlations between the host chain atoms and the side-coupled atoms. The analytic expressions for the extended states are also presented in the systems with the side couplings between like atoms and between unlike atoms.展开更多
We investigate the transport properties of a ladder with two random dimer (RD) chains. It is found that there are two extended states in the ladder with identical RD chains and a critical state regarded as an extend...We investigate the transport properties of a ladder with two random dimer (RD) chains. It is found that there are two extended states in the ladder with identical RD chains and a critical state regarded as an extended state in the ladder with pairing RD chains. Such a critical state is caused by the chiral symmetry. The ladder with identical RD chains can be decoupled into two isolated RD chains and the ladder with pairing RD chains can not. The analytic expressions of the extended states are presented for the ladder with identical RD chains.展开更多
基金supported financially by the National Natural Science Foundation of China (No.51771044)the Natural Science Foundation of Hebei Province (No.E2019501061)+2 种基金the Fundamental Research Funds for the Central Universities (No.N2023027)the Programme of Introducing Talents of Discipline Innovation to Universities 2.0 (the"111 Project"of China 2.0,No.BP0719037)the LiaoNing Revitalization Talents Program (No.XLYC1802023)。
文摘In this work,the B2 partial disordered structure of the austenitic parent phase,martensitic transformation,elastic and magnetic properties of the Ni8 Mn4+xTi4-x(x=0,1 and 2) Heusler alloys have been systematically investigated by the first-principles calculations.The preferential atomic occupation of B2 structure is one Ti atom exchange with the nearest neighboring Mn atom from the view of lowest energy principle.This disordered exchange sites(Mn-Ti) and the excess Mn atoms occupying the Ti sites(MnTi)could reduce the nearest Mn-Mn distance,resulting in the anti ferromagnetic state in the austenitic and martensitic phases of the alloys.The total magnetic moment of the alloy decreases with the increasing Mn content;it is ascribed to the antiferromagnetic magnetic moments of the excess Mn atoms.When x=0,the alloy does not undergo martensitic transformation since the austenite has absolute phase stability.The martensitic transformation will occur during cooling process for x=1 or 2,owing to the energy difference between the austenite and the martensite could provide the driving force for the phase transformation.The elastic properties of the cubic austenitic phase for the Ni2 MnTi alloy is calculated,and the results reveal the reason why Ni-Mn-Ti alloy has excellent mechanical properties.The origin of martensitic transformation and magnetic properties was discussed based on the electronic density of states.
基金supported by the National Research Foundation of Korea(NRF)grants funded by the Korean Government(NRF-2021R1A4A1030318,NRF-2022R1C1C1011386,NRF-2020M3H4A1A03084258)supported by the"Regional Innovation Strategy(RIS)"through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(MOE)(2021RIS-003)
文摘The layeredδ-MnO_(2)(dMO)is an excellent cathode material for rechargeable aqueous zinc-ion batteries owing to its large interlayer distance(~0.7 nm),high capacity,and low cost;however,such cathodes suffer from structural degradation during the long-term cycling process,leading to capacity fading.In this study,a Co-doped dMO composite with reduced graphene oxide(GC-dMO)is developed using a simple cost-effective hydrothermal method.The degree of disorderness increases owing to the hetero-atom doping and graphene oxide composites.It is demonstrated that layered dMO and GC-dMO undergo a structural transition from K-birnessite to the Zn-buserite phase upon the first discharge,which enhances the intercalation of Zn^(2+)ions,H_(2)O molecules in the layered structure.The GC-dMO cathode exhibits an excellent capacity of 302 mAh g^(-1)at a current density of 100 mAg^(-1)after 100 cycles as compared with the dMO cathode(159 mAhg^(-1)).The excellent electrochemical performance of the GC-dMO cathode owing to Co-doping and graphene oxide sheets enhances the interlayer gap and disorderness,and maintains structural stability,which facilitates the easy reverse intercalation and de-intercalation of Zn^(2+)ions and H_(2)O molecules.Therefore,GC-dMO is a promising cathode material for large-scale aqueous ZIBs.
基金the National Natural Science Foundation of China (Grant No.12204298)the National Natural Science Foundation of China (Grant No.12074242)+4 种基金the National Natural Science Foundation of China (Grant No.12174334)the National Natural Science Foundation of China (Grant Nos.52272265,U1932217,11974246,and 12004252)the Science and Technology Commission of Shanghai Municipality (Grant No.21JC1402600)the Zhejiang Provincial Natural Science Foundation of China (Grant No.LQ23A040009)supported by the Deutsche Forschungsgemeinschaft (DFG,German Research Foundation) (Grant No.406658237)。
文摘Charge density wave(CDW) in kagome materials with the geometric frustration is able to carry unconventional characteristics.Recently, a CDW has been observed below the antiferromagnetic order in kagome FeGe, in which magnetism and CDW are intertwined to form an emergent quantum ground state. However, the CDW is only short-ranged and the structural modulation originating from it has yet to be determined experimentally. Here we realize a long-range CDW order by post-annealing process,and resolve the structure model through single crystal X-ray diffraction. Occupational disorder of Ge resulting from short-range CDW correlations above T_(CDW) is identified from structure refinements. The partial dimerization of Ge along the c axis is unveiled to be the dominant distortion for the CDW. Occupational disorder of Ge is also proved to exist in the CDW phase due to the random selection of partially dimerized Ge sites. Our work provides useful insights for understanding the unconventional nature of the CDW in FeGe.
基金The project supported by National Natural Science Foundation of China (10632020, 10672017 and 20451057)
文摘Considering the mechnoelectrical coupling, the localization of SH-waves in disordered periodic layered piezoelectric structures is studied. The waves propagating in directions normal and tangential to the layers are considered. The transfer matrices between two consecutive unit cells are obtained according to the continuity conditions. The expressions of localization factor and localization length in the disordered periodic structures are presented. For the disordered periodic piezoelectric structures, the numerical results of localization factor and localization length are presented and discussed. It can be seen from the results that the frequency passbands and stopbands appear for the ordered periodic structures and the wave localization phenomenon occurs in the disordered periodic ones, and the larger the coefficient of variation is, the greater the degree of wave localization is. The widths of stopbands in the ordered periodic structures are very narrow when the properties of the consecutive piezoelectric materials are similar and the intervals of stopbands become broader when a certain material parameter has large changes. For the wave propagating in the direction normal to the layers the localization length has less dependence on the frequency, but for the wave propagating in the direction tangential to the layers the localization length is strongly dependent on the frequency.
基金supported by the National Natural Science Foundation of China(61765002,11647107,51762003,11764004,11764014)the Natural Science Foundation of Jiangxi Province(20171BAB202038,20202ACBL214020,20202ACBL202003,GJJ180753)。
文摘A Yb^(3+):KBaY(MoO_(4))_(3)(Yb^(3+):KBYM)crystal with dimensions of 51 mm×27 mm × 10 mm was successfully grown by the TSSG method.The characteristics of the crystal structure and probability of good optical properties were analyzed.The absorption and emission spectra of Yb^(3+):KBYM crystal exhibit broadened bands,with the maximum absorption cross-sections of 1.17 × 10^(-20),1.44×10^(-20) and 1.37 × 10^(-20) cm^(2) at976 nm for X-,Y-and Z-polarizations,respectively.The corresponding absorption FWHMs are as wide as 77,46 and 55 nm.The well-known re-absorption effect of Yb^(3+) in the crystal is discussed.Two methods,the Fiichtbauer-Ladenburg method(FL)and reciprocity method(RM)were adopted to compute the emission cross-sections and results show a certain discrepancy but the errors are allowable.The laser potentiality of the Yb^(3+):KBYM crystal was also evaluated by calculations of minimum inversion fractionβmin,saturation pump intensity Isat,the minimum pump intensity Imin and gain cross-sections spectra.Laser experiment was carried out and Watt-level continuous wave laser has been realized.Results indicate that the Yb^(3+):KBYM crystal with a disordered structure may be a potential laser media that can be used to generate tunable and ultrashort pulse laser emissions with high quality beam.
基金supported by the Australian Research Council(ARC)Projects(DP220101139,DP220101142,and LP240100542).
文摘High‐entropy amorphous catalysts(HEACs)integrate multielement synergy with structural disorder,making them promising candidates for water splitting.Their distinctive features—including flexible coordination environments,tunable electronic structures,abundant unsaturated active sites,and dynamic structural reassembly—collectively enhance electrochemical activity and durability under operating conditions.This review summarizes recent advances in HEACs for hydrogen evolution,oxygen evolution,and overall water splitting,highlighting their disorder-driven advantages over crystalline counterparts.Catalytic performance benchmarks are presented,and mechanistic insights are discussed,focusing on how multimetallic synergy,amorphization effect,and in‐situ reconstruction cooperatively regulate reaction pathways.These insights provide guidance for the rational design of next‐generation amorphous high‐entropy electrocatalysts with improved efficiency and durability.
基金Supported by the Foundation of 100 Young and Middle-aged Disciplinary Leaders of Guangxi Province in the 21st century (No. 2004219)the Natural Science Foundation of Guangxi Province (No. 0731054)
文摘Six novel tetrazoles were designed, synthesized and characterized by NMR and elemental analysis. 2-Dehydroabietyl-5-ethylsulfanyl-1,2,3,4-tetrazole (4b), C23H34N4S, was structurally determined by single-crystal X-ray diffraction. It crystallizes in the orthorhombic system, space group P212121, with a = 7.391(3), b = 12.580(3), c = 24.036(8) A^°, V= 2234.8(13) A^°^3, Z = 4, M, = 398.60, Dc = 1.185 g/cm^3, μ = 0.160 mm^-1, F(000) = 864, the final R = 0.0499 and wR = 0.0638 for 1228 observed reflections with I 〉 2σ(I). There are four rings in the crystal structure, and C(14) adopts the R absolute configuration. In addition, disordered C(19), C(20), C(21), C(22) and C(23) exist in the crystal structure.
基金The project supported by National Natural Science Foundation of China under Grant No. 90306015
文摘The dynamic properties of proton conductivity along hydrogen-bonded molecular systems, for example, ice crystal, with structure disorder or damping and finite temperatures exposed in an externally applied electric-field have been numerically studied by Runge-Kutta way in our soliton model. The results obtained show that the proton-soliton is very robust against the structure disorder including the fluctuation of the force constant and disorder in the sequence of masses and thermal perturbation and damping of medium, the velocity of its conductivity increases with increasing of the externally applied electric-field and decreasing of the damping coefficient of medium, but the proton-soliton disperses for quite great fluctuation of the "force constant and damping coefficient. In the numerical simulation we find that the proton-soliton in our model is thermally stable in a large region of temperature of T ≤ 273 K under influences of damping and externally applied electric-field in ice crvstal. This shows that our model is available and appropriate to ice.
基金financially supported by the grants from the National Natural Science Foundation of China(Nos.12075168 and 11890703)the Science and Technology Commission of Shanghai Municipality(No.21JC1405600)the Fundamental Research Funds for the Central Universities(No.22120220060)。
文摘Thermal transport properties of low-dimensional nanomaterials are highly anisotropic and sensitive to the structural disorder,which can greatly limit their applications in heat dissipation.In this work,we unveil that the carbon honeycomb structures which have high in-plane thermal conductivity simultaneously possess high axial thermal conductivity.Based on non-equilibrium molecular dynamics simulations,we find that the intrinsic axial thermal conductivity of carbon honeycomb structure reaches 746 W·m^(-1)·K^(-1)at room temperature,comparable to that of good heat dissipation materials such as hexagonal boron nitride.By comparing the phonon transmission spectrum between carbon honeycombs and few layer graphene,the physical mechanism responsible for the high axial thermal conductivity of carbon honeycombs is discussed.More importantly,our simulation results further demonstrate that the high axial thermal conductivity of carbon honeycomb structure is robust to the structural disorder,which is a common issue during the mass production of the carbon honeycomb structure.Our study suggests that the carbon honeycomb structure has unique advantages to serve as the thermal management material for practical applications.
基金supported by the Medical Research Foundation of Science and Technology of Guangdong Province (No. B2008103)the Natural Science Foundation of Guangdong Province (No. 9451051501002541)
文摘The crystal structure of the title compound 2-ethoxycarbonylmethyl-8-chloro-3a,4-dihydro-3a-methyl-chromeno[4,3-c]pyrazol-3(2H)-one(C15H15ClN2O4,Mr = 322.74) has been prepared and determined by single-crystal X-ray diffraction.The crystal is of orthorhombic,space group Pccn with a = 16.7246(10),b = 19.6626(12),c = 9.3013(6) ,V = 3058.7(3) 3,Z = 8,Dc = 1.402 g/cm3,μ = 0.269 mm-1,F(000) = 1344,the final R = 0.0506 and wR = 0.1464 for 2568 reflections with I 〉 2σ(I).In addition,disordered C(14) and C(15) atoms exist in the crystal structure.
基金financially supported by the National Natural Science Foundation of China(51977071)the Natural Science Foundation of Hunan Province(2017JJ2040)the Science and Technology Innovation Program of Hunan Province(2021RC3066)。
文摘The practical application of room-temperature sodium-sulfur(RT Na-S)batteries is hindered by sluggish reaction kinetics and deleterious side reactions.To address these challenges,a defective carbon is designed as a sulfur host through a simple temperature-controlled method.The abundant porosity and surface roughness enhance sulfur encapsulation and mitigate side reactions.Prominently,highly disordered structure facilitates the chemical adsorption towards NaPSs and accelerates sulfur conversion.Furthermore,electrochemical characterizations reveal that concentration polarization during the formation of long-chain NaPSs emerges as the key polarization and activation polarization dominates the nucleation of Na_(2)S during discharge,while they both significantly affect the formation of S_(8)/long-chain NaPSs during charge.Owing to the improved adsorption capability and electrocalatytic sites,S/CZ-900presents lower concentration polarization and activation polarization during both discharge and charge.Consequently,S/CZ-900 cathode achieves 1031,914,and 671 mAh g^(-1)at 1,2,and 5 C.The cathode with a high sulfur loading of 6.4 mg cm^(-2)delivers an impressive areal capacity of 14.3 mAh cm^(-2).Moreover,the S/CZ-900||Na/CZ-900(Al)full cell exhibits robust cycling stability,maintaining 1094 mAh g^(-1)after 40 cycles at 0.1 C.The insights provide a workable solution of metal-free carbonaceous host materials for the evolution of RT Na-S batteries.
基金supported by the National Magnetic Con-finement Fusion Energy Research Project from the Ministry of Science and Technology of China(No.2022YFE03030004 and 2019YFE03120003)the National Natural Science Foundation of China(No.12275010,12275176,12275001,12335017,11921006,U21B2082,U22B2064 and U20B2025)+3 种基金the Beijing Municipal Natural Science Foundation(No.1222023)the Shenzhen Science and Technology Program(No.RCYX20210609103904028)Engang Fu acknowledges the support from the Science Fund or Creative Research Groups of NSFC,the Ion Beam Materials Laboratory(IBML)and Electron Microscopy Laboratory(EML)the High-performance Computing Platform(HPC)at Peking University.Xing Liu acknowledges the discussion with Prof.Ning Gao and Dr.Yifan Zhang.
文摘This study reports the response of helium(He)ion irradiation on binary-phase structured alloy V_(34)Ti_(25)Cr_(10)Ni_(30)Pd1.The alloy consists of a VCr matrix with nano-sized TiNi precipitates and a B2 TiNi matrix with nano-sized VCr precipitates.VCr is chemical-disordered and TiNi has a B2-ordered structure.The alloy was subjected to 400 keV He ion irradiation with a fluence of 1×10^(17)ions cm^(−2)at 450℃.The results show He bubbles within the chemical-disordered VCr matrix exhibit a near-spherical shape with a smaller size and higher density compared to that in chemical-ordered TiNi phase with a larger size,lower density,and faceted shape.This indicates the chemical-disordered VCr phase effectively suppresses He accumulation compared to the B2-ordered TiNi phase,emphasizing the dominance of chemical struc-tures in He bubble formation.The calculation of density functional theory(DFT)shows that Ti and Ni have lower vacancy formation energy than that of V and Cr,respectively,which results in the increased vacancy production in TiNi.Consequently,He bubbles in TiNi have a larger bubble size consistent with experimental observations of radiation-induced Ni segregation.These findings elucidate the roles of or-dered and disordered chemical structures in He bubble evolution,offering insights for the development of gas ion irradiation-resistant materials.
基金Korea Institute of Science and Technology,Grant/Award Number:2E33270National Research Foundation of Korea,Grant/Award Number:2020M3H4A3081889。
文摘Sodium-ion batteries(SIBs)employ P2-type layered transition metal oxides as promising cathode materials,primarily due to their abundant natural reserves and environmentally friendly characteristics.However,structural instability and complex phase transitions during electrochemical cycling pose significant challenges to their practical applications.Employing cation substitution serves as a straightforward yet effective strategy for stabilizing the structure and improving the kinetics of the active material.In this study,we introduce a Ni-rich honeycomb-layered Na_(2+x)Ni_(2)TeO_(6)(NNTO)cathode material with variable sodium content(x=0,0.03,0.05,0.10).Physicochemical characterizations reveal that excess sodium content at the atomic scale modifies the surface and suppresses phase transitions,while preserving the crystal structure.This results in enhanced cyclic performance and improved electrochemical kinetics at room temperature.Furthermore,we investigate the performance of the NNTO cathode material containing 10%excess sodium at a relatively high temperature of 60℃,where it exhibits 71.6%capacity retention compared to 60%for the pristine.Overall,our results confirm that a preconstructed surface layer(induced by excess sodium)effectively safeguards the Ni-based cathode material from surface degradation and phase transitions during the electrochemical processes,thus exhibiting superior capacity retention relative to the pristine NNTO cathode.This study of the correlation between structure and performance can potentially be applied to the commercialization of SIBs.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A20210,52576070 for H.Y.and 12174276 for S.X.)+1 种基金the Basic and Applied Basic Research Foundation of Guangdong Province(Grant No.2024A1515010521 for S.X.)the China Scholarship Council(CSC)(Grant No.202406120152 for W.Z.)。
文摘Understanding how structural disorder affects phonon transport is critical for controlling thermal conduction in nanoscale materials.In this work,we investigate thermal transport in Si-like nanowires composed of layered atoms with one-dimensional correlated disorder.Using the nonequilibrium Green’s function method,we reveal that introducing correlation among atomic layers induces phonon Anderson localization at low-frequencies,leading to a nonmonotonic length dependence of thermal conductivity:it increases at short lengths but decreases beyond a critical size,in sharp contrast to the monotonic trend observed in random disorder.Despite having fewer mass interfaces,the correlated nanowires exhibit lower thermal conductivity than their random disorder counterparts when the nanowire length exceeds 70 nm.Frequency-resolved analysis shows that spatial correlation suppresses the transmission of low-frequency phonons and promotes their localization,while concurrently extending the localization length of mid-and high-frequency modes.This selective reshaping of phonon localization is responsible for the anomalous transport behavior.Our findings provide new insights into heat transport engineering via tailored disorder in low-dimensional materials.
基金the National Natural Science Foundation of China(NO.12274010,12474003)Beijing Nova Program(20240484584)+2 种基金the support from the Shanghai Key Laboratory of Material Frontiers Research in Extreme Environments,China(No.22dz2260800)the Shanghai Science and Technology Committee,China(No.22JC1410300)the National Natural Science Foundation of China(No.52103330)。
文摘Limited by the sluggish kinetics at the cathode of proton exchange membrane fuel cells(PEMFCs),optimizing platinum-based alloy catalysts for oxygen reduction reaction remains a key target toward industrialization.Strain engineering is widely employed to tune Pt-M catalysts,but its impact on the structure-property relationship is often interwoven with multiple factors.In this work,we propose a bi-stage strain tuning method and demonstrate it on the most common PtCo catalysts.Macro-strain is introduced by synthesizing single-crystal PtCo nanodendrites,whereas mild acid etching introduces micro-strain to the surface.The half-wave potential of as-treated catalysts reaches 0.959 V,and mass activity is up to 0.69 A mg^(−1)_(Pt).A minimal decrease of 2 mV is observed for half-wave potential after 10,000 cycles.Detailed analysis using advanced transmission electron microscopy,wide-angle X-ray scattering,etc.provides direct evidence that surface disorder at the atomic scale accounts for the enhanced activity and stability.In contrast,the simplicity of this approach allows for scaling up on Pt-M catalysts,as demonstrated on PEMFCs.The bi-stage strain tuning strategy provides a new perspective and reference for improving the activity and durability of Pt-M catalysts.
文摘The role of androgen receptor (AR) in the initiation and progression of prostate cancer (PCa) is well established. Competitive inhibition of the AR ligand-binding domain (LBD) has been the staple of antiandrogen therapies employed to combat the disease in recent years. However, their efficacy has often been limited by the emergence of resistance, mediated through point mutations, and receptor truncations. As a result, the prognosis for patients with malignant castrate resistant disease remains poor. The amino-terminal domain (NTD) of the AR has been shown to be critical for AR function. Its modular activation function (AF-1) is important for both gene regulation and participation in protein-protein interactions. However, due to the intrinsically disordered structure of the domain, its potential as a candidate for therapeutic intervention has been dismissed in the past. The recent emergence of the small molecule EPI-O01 has provided evidence that AR-NTD can be targeted therapeutically, independent of the LBD. Targeting of AR-NTD has the potential to disrupt multiple intermolecular interactions between AR and its coregulatory binding partners, in addition to intramolecular cross-talk between the domains of the AR. Therapeutics targeting these protein-protein interactions or NTD directly should also have efficacy against emerging AR splice variants which may play a role in PCa progression. This review will discuss the role of intrinsic disorder in AR function and illustrate how emerging therapies might target NTD in PCa.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10174024 and 10474025
文摘Dirac particle penetration is studied theoretically with Dirac equation in one-dimensional systems. We investigate a one-dimensional system with N barriers where both barrier height and well width are constants randomly distributed in certain range. The one-parameter scaling theory for nonrelatiyistic particles is still valid for massive Dirac particles. In the same disorder sample, we find that the localization length of relativistic particles is always larger than that of nonrelativistic particles and the transmission coefficient related to incident particle in both cases fits the form T~ exp(-αL). More interesting, massless relativistic particles are entirely delocalized no matter how big the energy of incident particles is.
文摘The role of the microalloying process in relaxation behavior and crystallization evolution of Zr_(20) Cu_(20) Ni_(20) Ti_(20) Hf_(20) high entropy bulk metallic glass(HEBMG) was investigated. We selected Al and Nb elements as minor elements, which led to the negative and positive effects on the heat of mixing in the master HEBMG composition, respectively. According to the results, both elements intensified β relaxation in the structure;however, α relaxation remained stable. By using different frequencies in dynamic mechanical analysis, it was revealed that the activation energy of β relaxation for the Nb-added sample was much higher, which was due to the creation of significant structural heterogeneity under the microalloying process. Moreover, it was found that Nb addition led to a diversity in crystallization stages at the supercooled liquid region.It was suggested that the severe structural heterogeneity in the Nb-added sample provided multiple energy-level sites in the structure for enhancing the crystallization stages.
基金Project supported by the National Natural Science Foundation of China (Grant Nos 70471084 and 10775071)
文摘We investigate the transport properties of a random binary side-coupled chain by using the transfer-matrix technique. It is found that there are resonant states in the systems with short-range correlations between the host chain atoms and the side-coupled atoms. The analytic expressions for the extended states are also presented in the systems with the side couplings between like atoms and between unlike atoms.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.70471084 and 10775071)
文摘We investigate the transport properties of a ladder with two random dimer (RD) chains. It is found that there are two extended states in the ladder with identical RD chains and a critical state regarded as an extended state in the ladder with pairing RD chains. Such a critical state is caused by the chiral symmetry. The ladder with identical RD chains can be decoupled into two isolated RD chains and the ladder with pairing RD chains can not. The analytic expressions of the extended states are presented for the ladder with identical RD chains.