We propose a near-field thermophotovoltaic system utilizing magnetic Weyl semimetals,which exhibit a distinct gyrotropic effect originating from their intrinsic axion field.Critically,we demonstrate that intentional b...We propose a near-field thermophotovoltaic system utilizing magnetic Weyl semimetals,which exhibit a distinct gyrotropic effect originating from their intrinsic axion field.Critically,we demonstrate that intentional band dislocation,achieved by layer-specific tuning of the chemical potential,significantly enhances the energyconversion efficiency.This effect arises from the formation of quasi-flat bands in momentum space,which broaden the spectral heat flux and amplify photon tunneling above the bandgap.At optimized chemical potential mismatches,the system achieves a 65%Carnot efficiency and a power density of 7×10^(4)W·m^(-2),surpassing symmetric configurations by 7%.The optimization of the Weyl semimetals thickness further demonstrates a clear tuning window where both the output power and energy-conversion efficiency are significantly improved.These results establish chemical-potential engineering toward high-efficiency near-field thermophotovoltaics for waste heat recovery and infrared energy applications.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12125504 and 12305050)the National Key R&D Program of China(Grant No.2022YFA1404400)+2 种基金the Hundred Talents Program of the Chinese Academy of Sciences,the Natural Science Foundation of Jiangsu Higher Education Institutions of China(Grant No.23KJB140017)the Opening Project of Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology(Grant No.Ammt2023B-1)the Guangdong University of Technology SPOE Seed Foundation(Grant No.SF2024111502).
文摘We propose a near-field thermophotovoltaic system utilizing magnetic Weyl semimetals,which exhibit a distinct gyrotropic effect originating from their intrinsic axion field.Critically,we demonstrate that intentional band dislocation,achieved by layer-specific tuning of the chemical potential,significantly enhances the energyconversion efficiency.This effect arises from the formation of quasi-flat bands in momentum space,which broaden the spectral heat flux and amplify photon tunneling above the bandgap.At optimized chemical potential mismatches,the system achieves a 65%Carnot efficiency and a power density of 7×10^(4)W·m^(-2),surpassing symmetric configurations by 7%.The optimization of the Weyl semimetals thickness further demonstrates a clear tuning window where both the output power and energy-conversion efficiency are significantly improved.These results establish chemical-potential engineering toward high-efficiency near-field thermophotovoltaics for waste heat recovery and infrared energy applications.