期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
High strength-ductility synergy in refractory multi-principal element alloys via special deformation mechanisms and dislocation behaviors
1
作者 Zhi-Wen Li Bao-Xian Su +7 位作者 Liang Wang Chen Liu Zhe Li Qing-Da Zhang Bin-Bin Wang Xiang Xue Rui-Run Chen Yan-Qing Su 《Rare Metals》 2025年第1期608-622,共15页
Ti-Zr-Nb refractory multi-principal element alloys(RMPEAs)have attracted increased attention due to their excellent mechanical properties.In this study,(TiZr)_(80-x)Nb_(20)Mo_(x)(x=0,5 and 10)alloys were designed,and ... Ti-Zr-Nb refractory multi-principal element alloys(RMPEAs)have attracted increased attention due to their excellent mechanical properties.In this study,(TiZr)_(80-x)Nb_(20)Mo_(x)(x=0,5 and 10)alloys were designed,and the intrinsic conflicts between strength and ductility were overcome via composition optimization and recrystallization.The causes of the superior strength-ductility synergy were investigated in terms of their deformation mechanism and dislocation behavior.The results show that the strength improvement can be attributed to the deformation mechanism transition caused by local chemical fluctuations and lattice distortion.Specifically,the slip band widths decrease after Mo addition,and the measured slip traces in the fracture samples are associated with high-order{112}and{123}slip planes.Furthermore,the grain refinement achieved via recrystallization promotes multi-slip system activation and shortens the slip-band spacing,which reduces the stress concentration and inhibits crack source formation,thereby allowing the alloy to ensure sufficient ductility.Consequently,the Ti_(35)Zr_(35)Nb_(20)Mo_(10)alloy annealed at 900℃ exhibits high yield strength and elongation.These findings provide a new strategy for designing high-strength RMPEAs and addressing room-temperature brittleness. 展开更多
关键词 Refractory multi-principal element alloy Mechanical property Strengthening mechanism Deformation substructure dislocation behavior
原文传递
Atomistic simulations of dislocation behaviors in Cr-Mn-Fe-Co-Ni high-entropy alloys with different Cr/Ni ratio
2
作者 Yu Tian Fei Chen 《Journal of Materials Science & Technology》 2025年第17期30-42,共13页
Pronounced compositional fluctuations in CrMnFeCoNi high-entropy alloys(HEAs)lead to variations of the stacking-fault energy(SFE),which dominates the dislocation behavior and mechanical properties.However,studies on t... Pronounced compositional fluctuations in CrMnFeCoNi high-entropy alloys(HEAs)lead to variations of the stacking-fault energy(SFE),which dominates the dislocation behavior and mechanical properties.However,studies on the underlying dislocation behaviors and deformation mechanisms as a function of composition(Cr/Ni ratio)within CrMnFeCoNi HEAs are largely lacking,which hinders further understanding of the composition-structure-property relationships for the rational design of HEAs.Atomistic simulations were employed in this study to investigate the core structures and dynamic behaviors of a/2<110>edge dislocations in non-equiatomic CrMnFeCoNi HEA,as well as its plasticity mechanisms.The results show that the core structure of a/2<110>edge dislocations is planar after energy minimization,but with significant variations in the separation distance between two partial dislocations along the dislocation line owing to the complex local composition.The effects of the Cr/Ni ratio on the dislocation-solute interactions during dislocation gliding were calculated and discussed.Additionally,snapshots of dislocation motion under shear stress were analyzed.The observations indicate that the strengthening of the non-equiatomic CrMnFeCoNi HEA with increasing Cr concentration is not contributed by the expected solute/dislocation interactions,but the observed events of edge extended dislocation climbing through jog nucleation.The unusual but reasonable dislocation climbing phenomenon and the resultant strengthening observed in this study open extraordinary opportunities for obtaining outstanding mechanical properties in non-equiatomic CrMnFeCoNi HEAs by tailoring the compositional variations. 展开更多
关键词 High-entropy alloy Atomistic simulations dislocation behaviors Strengthening mechanism
原文传递
Dislocation behavior in a polycrystalline Mg-Y alloy using multi-scale characterization and VPSC simulation 被引量:2
3
作者 Bijin Zhou Leyun Wang +6 位作者 Jinhui Wang Alireza Maldar Gaoming Zhu Hailong Jia Peipeng Jin Xiaoqin Zeng Yanjun Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第3期87-98,共12页
In this study,the dislocation behavior of a polycrystalline Mg-5Y alloy during tensile deformation was quantitatively studied by an in-situ tensile test,visco-plastic self-consistent(VPSC)modeling,and transmission ele... In this study,the dislocation behavior of a polycrystalline Mg-5Y alloy during tensile deformation was quantitatively studied by an in-situ tensile test,visco-plastic self-consistent(VPSC)modeling,and transmission electron microscopy(TEM).The results of the in-situ tensile test show that<a>dislocations contribute to most of the deformation,while a small fraction of<c+a>dislocations are also activated near grain boundaries(GBs).The critical resolved shear stresses(CRSSs)of different dislocation slip systems were estimated.The CRSS ratio between prismatic and basal<a>dislocation slip in the Mg-Y alloy(~13)is lower than that of pure Mg(~80),which is considered as a major reason for the high ductility of the alloy.TEM study shows that the<c+a>dislocations in the alloy have high mobility,which also helps to accommodate the deformation near GBs. 展开更多
关键词 Mg-Y alloy dislocation behavior Deformation mechanisms Critical resolved shear stress
原文传递
Effect of Twin Boundary–Dislocation–Solute Interaction on Detwinning in a Mg–3Al–1Zn Alloy 被引量:1
4
作者 Jing Xu Bo Guan +3 位作者 Huihui Yu Xuezhen Cao Yunchang Xin Qing Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第12期1239-1244,共6页
In the present study,the influence of solute atoms together with dislocations at {101^-2} twin boundary(TB) on mechanical behavior of a detwinning predominant deformation in a Mg alloy AZ31 plate was systematically ... In the present study,the influence of solute atoms together with dislocations at {101^-2} twin boundary(TB) on mechanical behavior of a detwinning predominant deformation in a Mg alloy AZ31 plate was systematically studied.The results show that a large number of {101^-2} twins disappear during recompression along the normal direction.Both the TB-dislocation interaction and TB-solute-dislocation interaction can greatly enhance the yield stress of the recompression along the normal direction(ND).However,the solute segregation at {1012} TBs with an intensive interaction with 〈a〉 dislocations cannot further enhance the yield stress of ND recompression.The samples with TB-dislocation interaction show a similar working hardening performance with that subjected to a TB-solute-dislocation interaction.Both the TB-dislocation interaction and TB-solute-dislocation interaction greatly reduce the value of work hardening peaks during a detwinning predominant deformation. 展开更多
关键词 Magnesium alloy Mechanical behavior Twinning dislocation
原文传递
Correlation between the Cyclic Stress Behavior and Microstructure in 316LN based on the Analysis of Hysteresis Loops
5
作者 常波 张峥 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2014年第4期780-785,共6页
Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stre... Total strain controlled cyclic test was performed on 316 LN under uniaxial loadings. Through the partitioning of hysteresis loops, the evolution of two components of cyclic flow stress, the internal and effective stresses, was reported. The former one determines the cyclic stress response. Based on the transmission electron microscopic(TEM) observation on specimens loaded with scheduled cycles, it is found that planar dislocation structures prevail during the entire cyclic process at low strain amplitude, while a remarkable dislocation rearrangement from planar structures to heterogeneous spatial distributions is companied by a cyclic softening behavior at high strain amplitude. The competition between the evolution of the intergranular and the intragranular components of the internal stress caused by the transition of slip mode induces the cyclic hardening and softening at high strain levels. The intergranular internal stress represents the most part of the internal stress at low strain level. 展开更多
关键词 cyclic stress behavior partitioning of hysteresis loops microstructure dislocation rearrangement internal stress
原文传递
Achieving high strength and large ductility in a Cr_(30)Co_(30)Ni_(30)Al_(5)Ti_(5) alloy through intergranular precipitation
6
作者 Jiawei Zou Siyu Chen +12 位作者 Pengming Cheng Jun Ding Chongle Zhang Shengze Zhang Bozhao Zhang Xiaoqian Fu Yujie Chen Yuping Zhao Xu Qi Lin Gu Ze Zhang Gang Sha Qian Yu 《Journal of Materials Science & Technology》 2025年第12期167-179,共13页
Precipitation at grain boundaries is typically not regarded as an efficient method for strengthening materials since it can induce grain boundary embrittlement, which detrimentally affects ductility. In this research,... Precipitation at grain boundaries is typically not regarded as an efficient method for strengthening materials since it can induce grain boundary embrittlement, which detrimentally affects ductility. In this research, we developed a multi-principal element alloy (MPEA) with the composition Cr_(30)Co_(30)Ni_(30)Al_(5)Ti_(5) (at.%), incorporating both intragranular and intergranular nanoprecipitates. Utilizing multiscale, three-dimensional, and in-situ electron microscopy techniques, coupled with computational simulations, we established that intergranular nanoprecipitation in this material plays a crucial role in enhancing strength and promoting dislocation plasticity. The structure of intergranular nanoprecipitation comprises multiple phases with varying composition and structure. Despite the diversity, the crystal planes conducive to the easy glide of dislocations are well-matched, allowing for the sustained continuity of dislocation slipping across different phase structures. Simultaneously, this structure generates an undulated stress field near grain boundaries, amplifying the strengthening effect and facilitating multiple slip and cross-slip during deformation. Consequently, it promotes the proliferation and storage of dislocations. As a result, our material exhibits a yield strength of approximately 1010 MPa and an ultimate tensile strength of around 1500 MPa, accompanied by a significant fracture elongation of 41 %. Our findings illuminate the potential for harnessing intergranular nanoprecipitation to optimize the strength-ductility trade-off in MPEAs, emphasizing the strategy of leveraging complex compositions for the design of sophisticated functional microstructures. 展开更多
关键词 Multi-principal element alloy Intergranular precipitation In-situ electron microscopy characterization dislocation behavior Strain hardening
原文传递
Superb creep lives of Ni-based single crystal superalloy through size effects and strengthening heterostructure γ/γ' interfaces
7
作者 Haibo Long Yunsong Zhao +8 位作者 Junbo Zhao Xiaoyi Yuan Hao Fan Yushi Luo Wei Li Zibing An Shengcheng Mao Gang Liu Xiaodong Han 《National Science Open》 2024年第4期145-155,共11页
This study presents a design strategy to enhance the high-temperature creep resistance of Ni-based superalloys.This strategy focuses on two principles:(1)minimizing the dimensions ofγ/γ′interfaces andγchannels by ... This study presents a design strategy to enhance the high-temperature creep resistance of Ni-based superalloys.This strategy focuses on two principles:(1)minimizing the dimensions ofγ/γ′interfaces andγchannels by reducing the size of theγ′phase;(2)key alloy composition control to strengthen the heterostructureγ/γ′interfaces.This strategy proved very effective by the designed three superalloys'prolonged creep lives.An alloy exhibits ultra-long creep life by 388 h at 1100°C/137 MPa,which runs at the highest level among those alloys without Ru addition.With Ru addition,an alloy that lasted for 748 h with a creep strain of~6%at 1110°C/137 MPa is developed.This study provides a new route of high-temperature creep lives through heterostructure interfacial design with size effects and key alloying elements. 展开更多
关键词 Ni-based single crystal superalloy creep properties dislocation behavior interface structure size effect alloy composition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部