The rotating disk cavity is an important part of the cooling-air system of the aero engine,and it has obviously significance to study the internal flow and heat transfer characteristics of the disc cavity,which will b...The rotating disk cavity is an important part of the cooling-air system of the aero engine,and it has obviously significance to study the internal flow and heat transfer characteristics of the disc cavity,which will be helpful to improve the efficiency of the aero engine.This paper summarizes the existing research results of domestic and overseas.The present work considers the test methods and calculation methods of the flow and heat transfer characteristics of the rotating disc cavity of the aircraft engine.It points out that,the main factors which affect the heat transfer characteristics are the disc chamber speed,the intake volume,the design of the disc cavity pre-rotation/despin structure,and the type of disc cavity system.The influence of these factors on the characteristics of flow heat transfer is summarized.Based on these factors,the disc cavity structure can be optimized and designed,which provides suggestions for reducing the weight of the turbine,improving the thrust-to-weight ratio of the aero engine,and improving the cooling efficiency.展开更多
The Secondary Air System(SAS)plays an important role in the safe operation and performance of aeroengines.The traditional 1D-3D coupling method loses information when used for secondary air systems,which affects the c...The Secondary Air System(SAS)plays an important role in the safe operation and performance of aeroengines.The traditional 1D-3D coupling method loses information when used for secondary air systems,which affects the calculation accuracy.In this paper,a Cross-dimensional Data Transmission method(CDT)from 3D to 1D is proposed by introducing flow field uniformity into the data transmission.First,a uniformity index was established to quantify the flow field parameter distribution characteristics,and a uniformity index prediction model based on the locally weighted regression method(Lowess)was established to quickly obtain the flow field information.Then,an information selection criterion in 3D to 1D data transmission was established based on the Spearman rank correlation coefficient between the uniformity index and the accuracy of coupling calculation,and the calculation method was automatically determined according to the established criterion.Finally,a modified function was obtained by fitting the ratio of the 3D mass-average parameters to the analytical solution,which are then used to modify the selected parameters at the 1D-3D interface.Taking a typical disk cavity air system as an example,the results show that the calculation accuracy of the CDT method is greatly improved by a relative 53.88%compared with the traditional 1D-3D coupling method.Furthermore,the CDT method achieves a speedup of 2 to 3 orders of magnitude compared to the 3D calculation.展开更多
文摘The rotating disk cavity is an important part of the cooling-air system of the aero engine,and it has obviously significance to study the internal flow and heat transfer characteristics of the disc cavity,which will be helpful to improve the efficiency of the aero engine.This paper summarizes the existing research results of domestic and overseas.The present work considers the test methods and calculation methods of the flow and heat transfer characteristics of the rotating disc cavity of the aircraft engine.It points out that,the main factors which affect the heat transfer characteristics are the disc chamber speed,the intake volume,the design of the disc cavity pre-rotation/despin structure,and the type of disc cavity system.The influence of these factors on the characteristics of flow heat transfer is summarized.Based on these factors,the disc cavity structure can be optimized and designed,which provides suggestions for reducing the weight of the turbine,improving the thrust-to-weight ratio of the aero engine,and improving the cooling efficiency.
基金supported by the National Science and Technology Major Project,China(No.2017-III-0010-0036).
文摘The Secondary Air System(SAS)plays an important role in the safe operation and performance of aeroengines.The traditional 1D-3D coupling method loses information when used for secondary air systems,which affects the calculation accuracy.In this paper,a Cross-dimensional Data Transmission method(CDT)from 3D to 1D is proposed by introducing flow field uniformity into the data transmission.First,a uniformity index was established to quantify the flow field parameter distribution characteristics,and a uniformity index prediction model based on the locally weighted regression method(Lowess)was established to quickly obtain the flow field information.Then,an information selection criterion in 3D to 1D data transmission was established based on the Spearman rank correlation coefficient between the uniformity index and the accuracy of coupling calculation,and the calculation method was automatically determined according to the established criterion.Finally,a modified function was obtained by fitting the ratio of the 3D mass-average parameters to the analytical solution,which are then used to modify the selected parameters at the 1D-3D interface.Taking a typical disk cavity air system as an example,the results show that the calculation accuracy of the CDT method is greatly improved by a relative 53.88%compared with the traditional 1D-3D coupling method.Furthermore,the CDT method achieves a speedup of 2 to 3 orders of magnitude compared to the 3D calculation.