期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Underwater Pulse Waveform Recognition Based on Hash Aggregate Discriminant Network
1
作者 WANG Fangchen ZHONG Guoqiang WANG Liang 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期654-660,共7页
Underwater pulse waveform recognition is an important method for underwater object detection.Most existing works focus on the application of traditional pattern recognition methods,which ignore the time-and space-vary... Underwater pulse waveform recognition is an important method for underwater object detection.Most existing works focus on the application of traditional pattern recognition methods,which ignore the time-and space-varying characteristics in sound propagation channels and cannot easily extract valuable waveform features.Sound propagation channels in seawater are time-and space-varying convolutional channels.In the extraction of the waveform features of underwater acoustic signals,the effect of high-accuracy underwater acoustic signal recognition is identified by eliminating the influence of time-and space-varying convolutional channels to the greatest extent possible.We propose a hash aggregate discriminative network(HADN),which combines hash learning and deep learning to minimize the time-and space-varying effects on convolutional channels and adaptively learns effective underwater waveform features to achieve high-accuracy underwater pulse waveform recognition.In the extraction of the hash features of acoustic signals,a discrete constraint between clusters within a hash feature class is introduced.This constraint can ensure that the influence of convolutional channels on hash features is minimized.In addition,we design a new loss function called aggregate discriminative loss(AD-loss).The use of AD-loss and softmax-loss can increase the discriminativeness of the learned hash features.Experimental results show that on pool and ocean datasets,which were collected in pools and oceans,respectively,by using acoustic collectors,the proposed HADN performs better than other comparative models in terms of accuracy and mAP. 展开更多
关键词 convolutional channel hash aggregate discriminative network aggregate discriminant loss waveform recognition
在线阅读 下载PDF
TDNN:A novel transfer discriminant neural network for gear fault diagnosis of ammunition loading system manipulator
2
作者 Ming Li Longmiao Chen +3 位作者 Manyi Wang Liuxuan Wei Yilin Jiang Tianming Chen 《Defence Technology(防务技术)》 2025年第3期84-98,共15页
The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fau... The ammunition loading system manipulator is susceptible to gear failure due to high-frequency,heavyload reciprocating motions and the absence of protective gear components.After a fault occurs,the distribution of fault characteristics under different loads is markedly inconsistent,and data is hard to label,which makes it difficult for the traditional diagnosis method based on single-condition training to generalize to different conditions.To address these issues,the paper proposes a novel transfer discriminant neural network(TDNN)for gear fault diagnosis.Specifically,an optimized joint distribution adaptive mechanism(OJDA)is designed to solve the distribution alignment problem between two domains.To improve the classification effect within the domain and the feature recognition capability for a few labeled data,metric learning is introduced to distinguish features from different fault categories.In addition,TDNN adopts a new pseudo-label training strategy to achieve label replacement by comparing the maximum probability of the pseudo-label with the test result.The proposed TDNN is verified in the experimental data set of the artillery manipulator device,and the diagnosis can achieve 99.5%,significantly outperforming other traditional adaptation methods. 展开更多
关键词 Manipulator gear fault diagnosis Reciprocating machine Domain adaptation Pseudo-label training strategy Transfer discriminant neural network
在线阅读 下载PDF
Learning a Discriminative Feature Attention Network for pancreas CT segmentation
3
作者 HUANG Mei-xiang WANG Yuan-jin +2 位作者 HUANG Chong-fei YUAN Jing KONG De-xing 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2022年第1期73-90,共18页
Accurate pancreas segmentation is critical for the diagnosis and management of diseases of the pancreas. It is challenging to precisely delineate pancreas due to the highly variations in volume, shape and location. In... Accurate pancreas segmentation is critical for the diagnosis and management of diseases of the pancreas. It is challenging to precisely delineate pancreas due to the highly variations in volume, shape and location. In recent years, coarse-to-fine methods have been widely used to alleviate class imbalance issue and improve pancreas segmentation accuracy. However,cascaded methods could be computationally intensive and the refined results are significantly dependent on the performance of its coarse segmentation results. To balance the segmentation accuracy and computational efficiency, we propose a Discriminative Feature Attention Network for pancreas segmentation, to effectively highlight pancreas features and improve segmentation accuracy without explicit pancreas location. The final segmentation is obtained by applying a simple yet effective post-processing step. Two experiments on both public NIH pancreas CT dataset and abdominal BTCV multi-organ dataset are individually conducted to show the effectiveness of our method for 2 D pancreas segmentation. We obtained average Dice Similarity Coefficient(DSC) of 82.82±6.09%, average Jaccard Index(JI) of 71.13± 8.30% and average Symmetric Average Surface Distance(ASD) of 1.69 ± 0.83 mm on the NIH dataset. Compared to the existing deep learning-based pancreas segmentation methods, our experimental results achieve the best average DSC and JI value. 展开更多
关键词 attention mechanism Discriminative Feature Attention network Improved Refinement Residual Block pancreas CT segmentation
在线阅读 下载PDF
Using discriminant analysis to detect intrusions in external communication for self-driving vehicles
4
作者 Khattab M.Ali Alheeti Anna Gruebler Klaus McDonald-Maier 《Digital Communications and Networks》 SCIE 2017年第3期180-187,共8页
Security systems are a necessity for the deployment of smart vehicles in our society. Security in vehicular ad hoe networks is crucial to the reliable exchange of information and control data. In this paper, we propos... Security systems are a necessity for the deployment of smart vehicles in our society. Security in vehicular ad hoe networks is crucial to the reliable exchange of information and control data. In this paper, we propose an intelligent Intrusion Detection System (IDS) to protect the external communication of self-driving and semi self-driving vehicles. This technology has the ability to detect Denial of Service (DOS) and black hole attacks on vehicular ad hoe networks (VANETs). The advantage of the proposed IDS over existing security systems is that it detects attacks before they causes significant damage. The intrusion prediction technique is based on Linear Discriminant Analysis (LDA) and Quadratic Diseriminant Analysis (QDA) which are used to predict attacks based on observed vehicle behavior. We perform simulations using Network Simulator 2 to demonstrate that the IDS achieves a low rate of false alarms and high accuracy in detection. 展开更多
关键词 Secure communication Vehicle ad hoc networks IDS Self-driving vehicles Linear and quadratic discriminant analysis
在线阅读 下载PDF
基于BP神经网络的膨胀土判别分级方法研究 被引量:2
5
作者 杨娱琦 朱晟 《水力发电》 CAS 2022年第3期24-29,93,共7页
以安康膨胀土为研究对象,选用粘粒含量、粉粒含量、液限和塑性指数4个分级指标,建立了两层无偏置的BP神经网络模型,研究膨胀土的判别分级问题。结果表明,该模型学习效果良好,能准确预测未知样本的膨胀性;对于安康膨胀土,粘粒含量和粉粒... 以安康膨胀土为研究对象,选用粘粒含量、粉粒含量、液限和塑性指数4个分级指标,建立了两层无偏置的BP神经网络模型,研究膨胀土的判别分级问题。结果表明,该模型学习效果良好,能准确预测未知样本的膨胀性;对于安康膨胀土,粘粒含量和粉粒含量对分级结果影响较大,而液限和塑性指数影响较小;相比于传统的指标分级法,该模型具有较好的容错能力,可有效减小指标测量误差对分级结果的影响;BP神经网络用于膨胀土的判别分级是合理可行的,具有一定的推广与应用价值。 展开更多
关键词 膨胀土 判别分级 分级指标 BP神经网络
在线阅读 下载PDF
Medical Diagnosis System Based on Fast-weights Scheme 被引量:1
6
作者 TIAN Shining LU Jihua +1 位作者 GU Boyu WANG Huan 《Instrumentation》 2020年第1期51-57,共7页
Clinical examination data often have the features of carrying vague information,missing data and incomplete examination records,which lead to higher probabilities of misdiagnosis.A variational recursive-discriminant j... Clinical examination data often have the features of carrying vague information,missing data and incomplete examination records,which lead to higher probabilities of misdiagnosis.A variational recursive-discriminant joint model with fast weights(FWs)scheme is proposed.MIMIC-III data sets are trained and tested,and the results are used to diagnosing.Variational recurrent neural network(VRNN)with FWs can better obtain the temporal features with partly missing data,and discriminant neural network(DNN)is for decision.Moreover,layer regularization(LN)avoids the overflow of loss function and stabilize the dynamic parameters of each layer.For the simulations,10 laboratory tests were selected to predict 10 diseases,1600 samples and 400 samples were used for training and testing,respectively.The test accuracy of disease diagnosis without FWs is 72.55%,and that with FWs is 85.80%.Simulations reveal that the FWs mechanism can effectively optimize the system model,abstracting the features for diagnose,and significantly improve the accuracy of decision-making. 展开更多
关键词 Fast Weights Scheme discriminant Neural network Variational Recurrent Neural network Diagnosis Accuracy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部