We construct optimal k-step, 5- to 10-stage, explicit, strong-stability-preserving Hermite-Birkhoff (SSP HB) methods of order 12 with nonnegative coefficients by combining linear k-step methods of order 9 with 5- to 1...We construct optimal k-step, 5- to 10-stage, explicit, strong-stability-preserving Hermite-Birkhoff (SSP HB) methods of order 12 with nonnegative coefficients by combining linear k-step methods of order 9 with 5- to 10-stage Runge-Kutta (RK) methods of order 4. Since these methods maintain the monotonicity property, they are well suited for solving hyperbolic PDEs by the method of lines after a spatial discretization. It is seen that the 8-step 7-stage HB methods have largest effective SSP coefficient among the HB methods of order 12 on hand. On Burgers’ equations, some of the new HB methods have larger maximum effective CFL numbers than Huang’s 7-step hybrid method of order 7, thus allowing larger step size.展开更多
In this paper,we extend the work of Brenner and Sung[Math.Comp.59,321–338(1992)]and present a regularity estimate for the elastic equations in concave domains.Based on the regularity estimate we prove that the consta...In this paper,we extend the work of Brenner and Sung[Math.Comp.59,321–338(1992)]and present a regularity estimate for the elastic equations in concave domains.Based on the regularity estimate we prove that the constants in the error estimates of the nonconforming Crouzeix-Raviart element approximations for the elastic equations/eigenvalue problem are independent of Laméconstant,which means the nonconforming Crouzeix-Raviart element approximations are locking-free.We also establish two kinds of two-grid discretization schemes for the elastic eigenvalue problem,and analyze that when the mesh sizes of coarse grid and fine grid satisfy some relationship,the resulting solutions can achieve the optimal accuracy.Numerical examples are provided to show the efficiency of two-grid schemes for the elastic eigenvalue problem.展开更多
A 32-channel charge-sensitive amplifier(CSA)is designed for fast timing in the delay-line readout of a parallel plate avalanche counter(PPAC)array.It is realized on a PCB with operational amplifiers and other discrete...A 32-channel charge-sensitive amplifier(CSA)is designed for fast timing in the delay-line readout of a parallel plate avalanche counter(PPAC)array.It is realized on a PCB with operational amplifiers and other discrete components.Each channel consists of an integrator,a pole-zero cancellation net,and a linear amplification stage,which can be adapted to accommodate either positive or negative input signals.The RMS equivalent input noise charges are 3.3 fC,the conversion gains are approximately±2 mV∕fC,and the intrinsic time resolution reaches 32 ps.In the prototype PPAC application,the CSA performs as well as the commercial FTA820A amplifier,providing a position resolution as good as 0.17 mm,and exhibiting reliable stability during several hours of continuous data acquisition.展开更多
In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical m...In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical model,and its validity was verified using a simple impact test.A crushable discrete element method(DEM)framework is built based on the previously established theoretical model.The tensile strength,which considers the fractal theory,size effect,and Weibull variation,was assigned to each generated particle.The assigned strength is then used for crush detection by comparing it with its maximum tensile stress.Mass conservation is ensured by inserting a series of sub-particles whose total mass was equal to the quality loss.Based on the crushable DEM framework,a numerical simulation of the crushing behavior of a pebble bed with hollow cylindrical geometry under a uniaxial compression test was performed.The results of this investigation showed that the particle withstands the external load by contact and sliding at the beginning of the compression process,and the results confirmed that crushing can be considered an important method of resisting the increasing external load.A relatively regular particle arrangement aids in resisting the load and reduces the occurrence of particle crushing.However,a limit exists to the promotion of resistance.When the strain increases beyond this limit,the distribution of the crushing position tends to be isotropic over the entire pebble bed.The theoretical model and crushable DEM framework provide a new method for exploring the pebble bed in a fusion reactor,considering particle crushing.展开更多
Some two-scale finite element discretizations are introduced for a class of linear partial differential equations. Both boundary value and eigenvalue problems are studied. Based on the two-scale error resolution techn...Some two-scale finite element discretizations are introduced for a class of linear partial differential equations. Both boundary value and eigenvalue problems are studied. Based on the two-scale error resolution techniques, several two-scale finite element algorithms are proposed and analyzed. It is shown that this type of two-scale algorithms not only significantly reduces the number of degrees of freedom but also produces very accurate approximations.展开更多
In this paper, we use Hermite weighted essentially non-oscillatory (HWENO) schemes with a Lax-Wendroff time discretization procedure, termed HWENO-LW schemes, to solve Hamilton-Jacobi equations. The idea of the reco...In this paper, we use Hermite weighted essentially non-oscillatory (HWENO) schemes with a Lax-Wendroff time discretization procedure, termed HWENO-LW schemes, to solve Hamilton-Jacobi equations. The idea of the reconstruction in the HWENO schemes comes from the original WENO schemes, however both the function and its first derivative values are evolved in time and are used in the reconstruction. One major advantage of HWENO schemes is its compactness in the reconstruction. We explore the possibility in avoiding the nonlinear weights for part of the procedure, hence reducing the cost but still maintaining non-oscillatory properties for problems with strong discontinuous derivative. As a result, comparing with HWENO with Runge-Kutta time discretizations schemes (HWENO-RK) of Qiu and Shu [19] for Hamilton-Jacobi equations, the major advantages of HWENO-LW schemes are their saving of computational cost and their compactness in the reconstruction. Extensive numerical experiments are performed to illustrate the capability of the method.展开更多
In this paper,we discuss the local discontinuous Galerkin methods coupled with two specific explicitimplicit-null time discretizations for solving one-dimensional nonlinear diffusion problems Ut=(a(U)Ux)x.The basic id...In this paper,we discuss the local discontinuous Galerkin methods coupled with two specific explicitimplicit-null time discretizations for solving one-dimensional nonlinear diffusion problems Ut=(a(U)Ux)x.The basic idea is to add and subtract two equal terms a0 Uxx the right-hand side of the partial differential equation,then to treat the term a0 Uxx implicitly and the other terms(a(U)Ux)x-a0 Uxx explicitly.We give stability analysis for the method on a simplified model by the aid of energy analysis,which gives a guidance for the choice of a0,i.e.,a0≥max{a(u)}/2 to ensure the unconditional stability of the first order and second order schemes.The optimal error estimate is also derived for the simplified model,and numerical experiments are given to demonstrate the stability,accuracy and performance of the schemes for nonlinear diffusion equations.展开更多
This paper studies the two-stage fourth-order accurate time discretization[J.Q.Li and Z.F.Du,SIAM J.Sci.Comput.,38(2016)]and its application to the special relativistic hydrodynamical equations.Our analysis reveals th...This paper studies the two-stage fourth-order accurate time discretization[J.Q.Li and Z.F.Du,SIAM J.Sci.Comput.,38(2016)]and its application to the special relativistic hydrodynamical equations.Our analysis reveals that the new two-stage fourth-order accurate time discretizations can be proposed.With the aid of the direct Eulerian GRP(generalized Riemann problem)methods and the analytical resolution of the local“quasi 1D”GRP,the two-stage fourth-order accurate time discretizations are successfully implemented for the 1D and 2D special relativistic hydrodynamical equations.Several numerical experiments demonstrate the performance and accuracy as well as robustness of our schemes.展开更多
Upwind algorithms are becoming progressively popular for river flood routing due to their capability of resolving trans-critical flow regimes. For consistency, these algorithms suggest natural upwind discretization of...Upwind algorithms are becoming progressively popular for river flood routing due to their capability of resolving trans-critical flow regimes. For consistency, these algorithms suggest natural upwind discretization of the source term, which may be essential for natural channels with irregular geometry. Yet applications of these upwind algorithms to natural river flows are rare, and in such applications the traditional and simpler pointwise, rather than upwind discretization of the source term is used. Within the framework of a first-order upwind algorithm, this paper presents a comparison of upwind and pointwise discretizations of the source term. Numerical simulations were carried out for a selected irregular channel comprising a pool-riffle sequence Jn the River Lune, England with observed data. It is Shown that the impact of pointwise discretization, compared to the upwind, is appreciable mainly in flow zones with the Froude number closer to or larger than unity. The discrepancy due to pointwise and upwind discretizations of the source term is negligible in flow depth and hence in water surface elevation, but well manifested in mean velocity and derived flow quantities. Also the occurrence of flow reversal and equalisation over the pool-riffle sequence in response to increasing discharges is demonstrated.展开更多
Integrable discretizations of are proposed. N-soliton solutions for analogues of the complex and real Dym the complex and real Dym equations both semi-discrete and fully discrete equations are also presented.
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract...To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.展开更多
Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hyd...Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hydraulic fracturing process in lab-scale coal samples with DFNs and the induced seismic activities by the discrete element method(DEM).The effects of DFNs on hydraulic fracturing,induced seismicity and elastic property changes have been concluded.Denser DFNs can comprehensively decrease the peak injection pressure and injection duration.The proportion of strong seismic events increases first and then decreases with increasing DFN density.In addition,the relative modulus of the rock mass is derived innovatively from breakdown pressure,breakdown fracture length and the related initiation time.Increasing DFN densities among large(35–60 degrees)and small(0–30 degrees)fracture dip angles show opposite evolution trends in relative modulus.The transitional point(dip angle)for the opposite trends is also proportionally affected by the friction angle of the rock mass.The modelling results have much practical meaning to infer the density and geometry of pre-existing fractures and the elastic property of rock mass in the field,simply based on the hydraulic fracturing and induced seismicity monitoring data.展开更多
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o...Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.展开更多
This paper focuses on the use of rotary-percussive drilling for hard rocks.In order to improve efficiency and reduce costs,it is essential to understand how operational parameters,bit wear,and drilling performance are...This paper focuses on the use of rotary-percussive drilling for hard rocks.In order to improve efficiency and reduce costs,it is essential to understand how operational parameters,bit wear,and drilling performance are related.A model is presented therein that combines multibody dynamics and discrete element method(DEM)to investigate the influences of operational parameters and bit wear on the rate of penetration and wear characteristics.The model accurately captures the motion of the bit and recreates rock using the cutting sieving result.Field experimental results validate the rod dynamic behavior,rock recreating model,and coupling model in the simulation.The findings indicate that hammer pressure significantly influences the rate of penetration and wear depth of the bit,and there is an optimal range for economical hammer pressure.The wear coefficient has a major effect on the rate of penetration,when wear coefficient is between 1/3 and 2/3.Increasing the wear coefficient can reduce drill bit button pressure and wear depth at the same drill distance.Gauge button loss increases the rate of penetration due to higher pressure on the remaining buttons,which also accelerates destruction of the bit.Furthermore,a more evenly distributed button on the bit enhances the rate of penetration(ROP)when the same number of buttons is lost.展开更多
Accurate satellite data assimilation under all-sky conditions requires enhanced parameterization of scattering properties for frozen hydrometeors in clouds.This study aims to develop a nonspherical scattering look-up ...Accurate satellite data assimilation under all-sky conditions requires enhanced parameterization of scattering properties for frozen hydrometeors in clouds.This study aims to develop a nonspherical scattering look-up table that contains the optical properties of five hydrometeor types—rain,cloud water,cloud ice,graupel,and snow—for the Advanced Radiative Transfer Modeling System(ARMS)at frequencies below 220 GHz.The discrete dipole approximation(DDA)method is employed to compute the single-scattering properties of solid cloud particles,modeling these particles as aggregated roughened bullet rosettes.The bulk optical properties of the cloud layer are derived by integrating the singlescattering properties with a modified Gamma size distribution,specifically for distributions with 18 effective radii.The bulk phase function is then projected onto a series of generalized spherical functions,applying the delta-M method for truncation.The results indicate that simulations using the newly developed nonspherical scattering look-up table exhibit significant consistency with observations under deep convection conditions.In contrast,assuming spherical solid cloud particles leads to excessive scattering at mid-frequency channels and insufficient scattering at high-frequency channels.This improvement in radiative transfer simulation accuracy for cloudy conditions will better support the assimilation of allsky microwave observations into numerical weather prediction models.·Frozen cloud particles were modeled as aggregates of bullet rosettes and the optical properties at microwave range were computed by DDA.·A complete process and technical details for constructing a look-up table of ARMS are provided.·The ARMS simulations generally show agreement with observations of MWTS and MWHS under typhoon conditions using the new look-up table.展开更多
Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely.However,the majority of such wellbore breakout a...Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely.However,the majority of such wellbore breakout analyses were based on continuum mechanics.In addition to failure in intact rocks,wellbore breakouts can also be initiated along natural discontinuities,e.g.weak planes and fractures.Furthermore,the conventional models in wellbore breakouts with uniform distribution fractures could not reflect the real drilling situation.This paper presents a fully coupled hydro-mechanical model of the SB-X well in the Tarim Basin,China for evaluating wellbore breakouts in heavily fractured rocks under anisotropic stress states using the distinct element method(DEM)and the discrete fracture network(DFN).The developed model was validated against caliper log measurement,and its stability study was carried out by stress and displacement analyses.A parametric study was performed to investigate the effects of the characteristics of fracture distribution(orientation and length)on borehole stability by sensitivity studies.Simulation results demonstrate that the increase of the standard deviation of orientation when the fracture direction aligns parallel or perpendicular to the principal stress direction aggravates borehole instability.Moreover,an elevation in the average fracture length causes the borehole failure to change from the direction of the minimum in-situ horizontal principal stress(i.e.the direction of wellbore breakouts)towards alternative directions,ultimately leading to the whole wellbore failure.These findings provide theoretical insights for predicting wellbore breakouts in heavily fractured rocks.展开更多
An H-polygon is a polygon with corners in the set of vertices of a tiling of R~2 by regular hexagons of unit edge.It is known that any H-triangle with exactly k interior H-points can have at most 3k+7 boundary H-point...An H-polygon is a polygon with corners in the set of vertices of a tiling of R~2 by regular hexagons of unit edge.It is known that any H-triangle with exactly k interior H-points can have at most 3k+7 boundary H-points.In this note we prove that any convex H-quadrilateral with exactly k interior H-points can have at most 3k+7 boundary H-points.展开更多
As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness dis...As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness distribution functions of the Bakhtiary dam site and Oskarshamn/Forsmark mountain were fitted using statistical methods.The COMSOL Multiphysics finite element software was utilized to analyze the effects of fracture roughness distribution types and empirical formulas for fracture hydraulic aperture on the seepage field and temperature field of rock masses.The results show that:(1)The fracture roughness at the Bakhtiary dam site and Oskarshamn/Forsmark mountain follows lognormal and normal distributions,respectively;(2)For rock masses with the same expected value and standard deviation of fracture roughness,the outflow from rock masses with lognormal distribution of fracture roughness is significantly larger than that of rock masses with normal distribution of fracture roughness;(3)The fracture hydraulic aperture,outflow,and cold front distance of the Li and Jiang model are significantly larger than those of the Barton model;(4)The outflow,hydraulic pressure distribution,and temperature distribution of the Barton model are more sensitive to the fracture roughness distribution type than those of the Li and Jiang model.展开更多
Precast concrete pavements(PCPs)represent an innovative solution in the construction industry,addressing the need for rapid,intelligent,and low-carbon pavement technologies that significantly reduce construction time ...Precast concrete pavements(PCPs)represent an innovative solution in the construction industry,addressing the need for rapid,intelligent,and low-carbon pavement technologies that significantly reduce construction time and environmental impact.However,the integration of prefabricated technology in pavement surface and base layers lacks systematic classification and understanding.This paper aims to fill this gap by introducing a detailed analysis of discretization and assembly connection technology for cement concrete pavement(CCP)structures.Through a comprehensive review of domestic and international literature,the study classifies prefabricated pavement technology based on discrete assembly structural layers and presents specific conclusions(i)surface layer discrete units are categorized into bottom plates,top plates,plate-rod separated assemblies,and prestressed connections,with optimal material compositions identified to enhance mechanical properties;(ii)base layer discrete units include block-type,plate-type,and beam-type elements,highlighting their contributions to sustainability by incorporating recycled materials(iii)planar assembly connection types are assessed,ranking them by load transfer efficiency,with specific dimensions provided for optimal performance;and(iv)vertical assembly connections are defined by their leveling and sealing layers,suitable for both new constructions and repairs of existing roads.The insights gained from this review not only clarify the distinctions between various structural layers but also provide practical guidelines for enhancing the design and implementation of PCP.This work contributes to advancing sustainable and resilient road construction practices,making it a significant reference for researchers and practitioners in the field.展开更多
Ensuring digital media security through robust image watermarking is essential to prevent unauthorized distribution,tampering,and copyright infringement.This study introduces a novel hybrid watermarking framework that...Ensuring digital media security through robust image watermarking is essential to prevent unauthorized distribution,tampering,and copyright infringement.This study introduces a novel hybrid watermarking framework that integrates Discrete Wavelet Transform(DWT),Redundant Discrete Wavelet Transform(RDWT),and Möbius Transformations(MT),with optimization of transformation parameters achieved via a Genetic Algorithm(GA).By combining frequency and spatial domain techniques,the proposed method significantly enhances both the imper-ceptibility and robustness of watermark embedding.The approach leverages DWT and RDWT for multi-resolution decomposition,enabling watermark insertion in frequency subbands that balance visibility and resistance to attacks.RDWT,in particular,offers shift-invariance,which improves performance under geometric transformations.Möbius transformations are employed for spatial manipulation,providing conformal mapping and spatial dispersion that fortify watermark resilience against rotation,scaling,and translation.The GA dynamically optimizes the Möbius parameters,selecting configurations that maximize robustness metrics such as Peak Signal-to-Noise Ratio(PSNR),Structural Similarity Index Measure(SSIM),Bit Error Rate(BER),and Normalized Cross-Correlation(NCC).Extensive experiments conducted on medical and standard benchmark images demonstrate the efficacy of the proposed RDWT-MT scheme.Results show that PSNR exceeds 68 dB,SSIM approaches 1.0,and BER remains at 0.0000,indicating excellent imperceptibility and perfect watermark recovery.Moreover,the method exhibits exceptional resilience to a wide range of image processing attacks,including Gaussian noise,JPEG compression,histogram equalization,and cropping,achieving NCC values close to or equal to 1.0.Comparative evaluations with state-of-the-art watermarking techniques highlight the superiority of the proposed method in terms of robustness,fidelity,and computational efficiency.The hybrid framework ensures secure,adaptive watermark embedding,making it highly suitable for applications in digital rights management,content authentication,and medical image protection.The integration of spatial and frequency domain features with evolutionary optimization presents a promising direction for future watermarking technologies.展开更多
文摘We construct optimal k-step, 5- to 10-stage, explicit, strong-stability-preserving Hermite-Birkhoff (SSP HB) methods of order 12 with nonnegative coefficients by combining linear k-step methods of order 9 with 5- to 10-stage Runge-Kutta (RK) methods of order 4. Since these methods maintain the monotonicity property, they are well suited for solving hyperbolic PDEs by the method of lines after a spatial discretization. It is seen that the 8-step 7-stage HB methods have largest effective SSP coefficient among the HB methods of order 12 on hand. On Burgers’ equations, some of the new HB methods have larger maximum effective CFL numbers than Huang’s 7-step hybrid method of order 7, thus allowing larger step size.
基金supported by the National Natural Science Foundation of China (Grant No.11761022)。
文摘In this paper,we extend the work of Brenner and Sung[Math.Comp.59,321–338(1992)]and present a regularity estimate for the elastic equations in concave domains.Based on the regularity estimate we prove that the constants in the error estimates of the nonconforming Crouzeix-Raviart element approximations for the elastic equations/eigenvalue problem are independent of Laméconstant,which means the nonconforming Crouzeix-Raviart element approximations are locking-free.We also establish two kinds of two-grid discretization schemes for the elastic eigenvalue problem,and analyze that when the mesh sizes of coarse grid and fine grid satisfy some relationship,the resulting solutions can achieve the optimal accuracy.Numerical examples are provided to show the efficiency of two-grid schemes for the elastic eigenvalue problem.
基金supported by the National Natural Science Foundation of China(Nos.U2167202,12225504,12005276)the Natural Science Foundation of Shandong Province(No.ZR2024QA172)the Fundamental Research Funds of Shandong University.
文摘A 32-channel charge-sensitive amplifier(CSA)is designed for fast timing in the delay-line readout of a parallel plate avalanche counter(PPAC)array.It is realized on a PCB with operational amplifiers and other discrete components.Each channel consists of an integrator,a pole-zero cancellation net,and a linear amplification stage,which can be adapted to accommodate either positive or negative input signals.The RMS equivalent input noise charges are 3.3 fC,the conversion gains are approximately±2 mV∕fC,and the intrinsic time resolution reaches 32 ps.In the prototype PPAC application,the CSA performs as well as the commercial FTA820A amplifier,providing a position resolution as good as 0.17 mm,and exhibiting reliable stability during several hours of continuous data acquisition.
基金supported by Anhui Provincial Natural Science Foundation(2408085QA030)Natural Science Research Project of Anhui Educational Committee,China(2022AH050825)+3 种基金Medical Special Cultivation Project of Anhui University of Science and Technology(YZ2023H2C008)the Excellent Research and Innovation Team of Anhui Province,China(2022AH010052)the Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology,China(2021yjrc51)Collaborative Innovation Program of Hefei Science Center,CAS,China(2019HSC-CIP006).
文摘In this paper,a novel method for investigating the particle-crushing behavior of breeding particles in a fusion blanket is proposed.The fractal theory and Weibull distribution are combined to establish a theoretical model,and its validity was verified using a simple impact test.A crushable discrete element method(DEM)framework is built based on the previously established theoretical model.The tensile strength,which considers the fractal theory,size effect,and Weibull variation,was assigned to each generated particle.The assigned strength is then used for crush detection by comparing it with its maximum tensile stress.Mass conservation is ensured by inserting a series of sub-particles whose total mass was equal to the quality loss.Based on the crushable DEM framework,a numerical simulation of the crushing behavior of a pebble bed with hollow cylindrical geometry under a uniaxial compression test was performed.The results of this investigation showed that the particle withstands the external load by contact and sliding at the beginning of the compression process,and the results confirmed that crushing can be considered an important method of resisting the increasing external load.A relatively regular particle arrangement aids in resisting the load and reduces the occurrence of particle crushing.However,a limit exists to the promotion of resistance.When the strain increases beyond this limit,the distribution of the crushing position tends to be isotropic over the entire pebble bed.The theoretical model and crushable DEM framework provide a new method for exploring the pebble bed in a fusion reactor,considering particle crushing.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 10425105) and subsidized by the Special Funds for Major State Basic Research Projects (Grant No. 2005CB321704).
文摘Some two-scale finite element discretizations are introduced for a class of linear partial differential equations. Both boundary value and eigenvalue problems are studied. Based on the two-scale error resolution techniques, several two-scale finite element algorithms are proposed and analyzed. It is shown that this type of two-scale algorithms not only significantly reduces the number of degrees of freedom but also produces very accurate approximations.
基金Research partially supported by NNSFC grant 10371118,SRF for ROCS,SEM and Nanjing University Talent Development Foundation.
文摘In this paper, we use Hermite weighted essentially non-oscillatory (HWENO) schemes with a Lax-Wendroff time discretization procedure, termed HWENO-LW schemes, to solve Hamilton-Jacobi equations. The idea of the reconstruction in the HWENO schemes comes from the original WENO schemes, however both the function and its first derivative values are evolved in time and are used in the reconstruction. One major advantage of HWENO schemes is its compactness in the reconstruction. We explore the possibility in avoiding the nonlinear weights for part of the procedure, hence reducing the cost but still maintaining non-oscillatory properties for problems with strong discontinuous derivative. As a result, comparing with HWENO with Runge-Kutta time discretizations schemes (HWENO-RK) of Qiu and Shu [19] for Hamilton-Jacobi equations, the major advantages of HWENO-LW schemes are their saving of computational cost and their compactness in the reconstruction. Extensive numerical experiments are performed to illustrate the capability of the method.
基金supported by National Natural Science Foundation of China(Grant Nos.11601241,11671199,11571290 and 11672082)Natural Science Foundation of Jiangsu Province(Grant No.BK20160877)+1 种基金ARO(Grant No.W911NF-15-1-0226)National Science Foundation of USA(Grant No.DMS-1719410)
文摘In this paper,we discuss the local discontinuous Galerkin methods coupled with two specific explicitimplicit-null time discretizations for solving one-dimensional nonlinear diffusion problems Ut=(a(U)Ux)x.The basic idea is to add and subtract two equal terms a0 Uxx the right-hand side of the partial differential equation,then to treat the term a0 Uxx implicitly and the other terms(a(U)Ux)x-a0 Uxx explicitly.We give stability analysis for the method on a simplified model by the aid of energy analysis,which gives a guidance for the choice of a0,i.e.,a0≥max{a(u)}/2 to ensure the unconditional stability of the first order and second order schemes.The optimal error estimate is also derived for the simplified model,and numerical experiments are given to demonstrate the stability,accuracy and performance of the schemes for nonlinear diffusion equations.
基金The authors were partially supported by the Special Project on High-performance Computing under the National Key R&D Program(No.2016YF B0200603)Sci-ence Challenge Project(No.JCK Y2016212A502)the National Natural Science Foundation of China(Nos.91630310&11421101).
文摘This paper studies the two-stage fourth-order accurate time discretization[J.Q.Li and Z.F.Du,SIAM J.Sci.Comput.,38(2016)]and its application to the special relativistic hydrodynamical equations.Our analysis reveals that the new two-stage fourth-order accurate time discretizations can be proposed.With the aid of the direct Eulerian GRP(generalized Riemann problem)methods and the analytical resolution of the local“quasi 1D”GRP,the two-stage fourth-order accurate time discretizations are successfully implemented for the 1D and 2D special relativistic hydrodynamical equations.Several numerical experiments demonstrate the performance and accuracy as well as robustness of our schemes.
基金Project supported by the Open Research Fund of the State Key Laboratory of Water Resources and Hydropower Engineering Science, and the National Natural Science Foundation of China (Grant No: 50459001).
文摘Upwind algorithms are becoming progressively popular for river flood routing due to their capability of resolving trans-critical flow regimes. For consistency, these algorithms suggest natural upwind discretization of the source term, which may be essential for natural channels with irregular geometry. Yet applications of these upwind algorithms to natural river flows are rare, and in such applications the traditional and simpler pointwise, rather than upwind discretization of the source term is used. Within the framework of a first-order upwind algorithm, this paper presents a comparison of upwind and pointwise discretizations of the source term. Numerical simulations were carried out for a selected irregular channel comprising a pool-riffle sequence Jn the River Lune, England with observed data. It is Shown that the impact of pointwise discretization, compared to the upwind, is appreciable mainly in flow zones with the Froude number closer to or larger than unity. The discrepancy due to pointwise and upwind discretizations of the source term is negligible in flow depth and hence in water surface elevation, but well manifested in mean velocity and derived flow quantities. Also the occurrence of flow reversal and equalisation over the pool-riffle sequence in response to increasing discharges is demonstrated.
文摘Integrable discretizations of are proposed. N-soliton solutions for analogues of the complex and real Dym the complex and real Dym equations both semi-discrete and fully discrete equations are also presented.
基金funded by the project of the Major Scientific and Technological Projects of CNOOC in the 14th Five-Year Plan(No.KJGG2022-0701)the CNOOC Research Institute(No.2020PFS-03).
文摘To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures.
基金Australian Research Council Linkage Program(LP200301404)for sponsoring this researchthe financial support provided by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology,SKLGP2021K002)National Natural Science Foundation of China(52374101,32111530138).
文摘Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hydraulic fracturing process in lab-scale coal samples with DFNs and the induced seismic activities by the discrete element method(DEM).The effects of DFNs on hydraulic fracturing,induced seismicity and elastic property changes have been concluded.Denser DFNs can comprehensively decrease the peak injection pressure and injection duration.The proportion of strong seismic events increases first and then decreases with increasing DFN density.In addition,the relative modulus of the rock mass is derived innovatively from breakdown pressure,breakdown fracture length and the related initiation time.Increasing DFN densities among large(35–60 degrees)and small(0–30 degrees)fracture dip angles show opposite evolution trends in relative modulus.The transitional point(dip angle)for the opposite trends is also proportionally affected by the friction angle of the rock mass.The modelling results have much practical meaning to infer the density and geometry of pre-existing fractures and the elastic property of rock mass in the field,simply based on the hydraulic fracturing and induced seismicity monitoring data.
基金supports for this research were provided by the National Natural Science Foundation of China(No.12272301,12002278,U1906233)the Guangdong Basic and Applied Basic Research Foundation,China(Nos.2023A1515011970,2024A1515010256)+1 种基金the Dalian City Supports Innovation and Entrepreneurship Projects for High-Level Talents,China(2021RD16)the Key R&D Project of CSCEC,China(No.CSCEC-2020-Z-4).
文摘Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper.
基金supported by the National Natural Science Foundation of China Youth Science Foundation of China(Grant No.52308388)the Key Project of High-speed Rail Joint Fund of National Natural Science Foundation of China(Grant No.U1934210).
文摘This paper focuses on the use of rotary-percussive drilling for hard rocks.In order to improve efficiency and reduce costs,it is essential to understand how operational parameters,bit wear,and drilling performance are related.A model is presented therein that combines multibody dynamics and discrete element method(DEM)to investigate the influences of operational parameters and bit wear on the rate of penetration and wear characteristics.The model accurately captures the motion of the bit and recreates rock using the cutting sieving result.Field experimental results validate the rod dynamic behavior,rock recreating model,and coupling model in the simulation.The findings indicate that hammer pressure significantly influences the rate of penetration and wear depth of the bit,and there is an optimal range for economical hammer pressure.The wear coefficient has a major effect on the rate of penetration,when wear coefficient is between 1/3 and 2/3.Increasing the wear coefficient can reduce drill bit button pressure and wear depth at the same drill distance.Gauge button loss increases the rate of penetration due to higher pressure on the remaining buttons,which also accelerates destruction of the bit.Furthermore,a more evenly distributed button on the bit enhances the rate of penetration(ROP)when the same number of buttons is lost.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFB3900400)the National Natural Science Foundation of China(Grant Nos.U2142212 and 42361074)。
文摘Accurate satellite data assimilation under all-sky conditions requires enhanced parameterization of scattering properties for frozen hydrometeors in clouds.This study aims to develop a nonspherical scattering look-up table that contains the optical properties of five hydrometeor types—rain,cloud water,cloud ice,graupel,and snow—for the Advanced Radiative Transfer Modeling System(ARMS)at frequencies below 220 GHz.The discrete dipole approximation(DDA)method is employed to compute the single-scattering properties of solid cloud particles,modeling these particles as aggregated roughened bullet rosettes.The bulk optical properties of the cloud layer are derived by integrating the singlescattering properties with a modified Gamma size distribution,specifically for distributions with 18 effective radii.The bulk phase function is then projected onto a series of generalized spherical functions,applying the delta-M method for truncation.The results indicate that simulations using the newly developed nonspherical scattering look-up table exhibit significant consistency with observations under deep convection conditions.In contrast,assuming spherical solid cloud particles leads to excessive scattering at mid-frequency channels and insufficient scattering at high-frequency channels.This improvement in radiative transfer simulation accuracy for cloudy conditions will better support the assimilation of allsky microwave observations into numerical weather prediction models.·Frozen cloud particles were modeled as aggregates of bullet rosettes and the optical properties at microwave range were computed by DDA.·A complete process and technical details for constructing a look-up table of ARMS are provided.·The ARMS simulations generally show agreement with observations of MWTS and MWHS under typhoon conditions using the new look-up table.
基金supported by National Natural Science Foundation of China(Grant Nos.52074312 and 52211530097)CNPC Science and Technology Innovation Foundation(Grant No.2021DQ02-0505).
文摘Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely.However,the majority of such wellbore breakout analyses were based on continuum mechanics.In addition to failure in intact rocks,wellbore breakouts can also be initiated along natural discontinuities,e.g.weak planes and fractures.Furthermore,the conventional models in wellbore breakouts with uniform distribution fractures could not reflect the real drilling situation.This paper presents a fully coupled hydro-mechanical model of the SB-X well in the Tarim Basin,China for evaluating wellbore breakouts in heavily fractured rocks under anisotropic stress states using the distinct element method(DEM)and the discrete fracture network(DFN).The developed model was validated against caliper log measurement,and its stability study was carried out by stress and displacement analyses.A parametric study was performed to investigate the effects of the characteristics of fracture distribution(orientation and length)on borehole stability by sensitivity studies.Simulation results demonstrate that the increase of the standard deviation of orientation when the fracture direction aligns parallel or perpendicular to the principal stress direction aggravates borehole instability.Moreover,an elevation in the average fracture length causes the borehole failure to change from the direction of the minimum in-situ horizontal principal stress(i.e.the direction of wellbore breakouts)towards alternative directions,ultimately leading to the whole wellbore failure.These findings provide theoretical insights for predicting wellbore breakouts in heavily fractured rocks.
文摘An H-polygon is a polygon with corners in the set of vertices of a tiling of R~2 by regular hexagons of unit edge.It is known that any H-triangle with exactly k interior H-points can have at most 3k+7 boundary H-points.In this note we prove that any convex H-quadrilateral with exactly k interior H-points can have at most 3k+7 boundary H-points.
基金College Students Innovation and Entrepreneurship Project of Guangzhou Railway Polytechnic(2025CXCY015)。
文摘As the dominant seepage channel in rock masses,it is of great significance to study the influence of fracture roughness distribution on seepage and heat transfer in rock masses.In this paper,the fracture roughness distribution functions of the Bakhtiary dam site and Oskarshamn/Forsmark mountain were fitted using statistical methods.The COMSOL Multiphysics finite element software was utilized to analyze the effects of fracture roughness distribution types and empirical formulas for fracture hydraulic aperture on the seepage field and temperature field of rock masses.The results show that:(1)The fracture roughness at the Bakhtiary dam site and Oskarshamn/Forsmark mountain follows lognormal and normal distributions,respectively;(2)For rock masses with the same expected value and standard deviation of fracture roughness,the outflow from rock masses with lognormal distribution of fracture roughness is significantly larger than that of rock masses with normal distribution of fracture roughness;(3)The fracture hydraulic aperture,outflow,and cold front distance of the Li and Jiang model are significantly larger than those of the Barton model;(4)The outflow,hydraulic pressure distribution,and temperature distribution of the Barton model are more sensitive to the fracture roughness distribution type than those of the Li and Jiang model.
基金supported by the Research Program of Wuhan Building Energy Efficiency Office(grant number 202331).
文摘Precast concrete pavements(PCPs)represent an innovative solution in the construction industry,addressing the need for rapid,intelligent,and low-carbon pavement technologies that significantly reduce construction time and environmental impact.However,the integration of prefabricated technology in pavement surface and base layers lacks systematic classification and understanding.This paper aims to fill this gap by introducing a detailed analysis of discretization and assembly connection technology for cement concrete pavement(CCP)structures.Through a comprehensive review of domestic and international literature,the study classifies prefabricated pavement technology based on discrete assembly structural layers and presents specific conclusions(i)surface layer discrete units are categorized into bottom plates,top plates,plate-rod separated assemblies,and prestressed connections,with optimal material compositions identified to enhance mechanical properties;(ii)base layer discrete units include block-type,plate-type,and beam-type elements,highlighting their contributions to sustainability by incorporating recycled materials(iii)planar assembly connection types are assessed,ranking them by load transfer efficiency,with specific dimensions provided for optimal performance;and(iv)vertical assembly connections are defined by their leveling and sealing layers,suitable for both new constructions and repairs of existing roads.The insights gained from this review not only clarify the distinctions between various structural layers but also provide practical guidelines for enhancing the design and implementation of PCP.This work contributes to advancing sustainable and resilient road construction practices,making it a significant reference for researchers and practitioners in the field.
文摘Ensuring digital media security through robust image watermarking is essential to prevent unauthorized distribution,tampering,and copyright infringement.This study introduces a novel hybrid watermarking framework that integrates Discrete Wavelet Transform(DWT),Redundant Discrete Wavelet Transform(RDWT),and Möbius Transformations(MT),with optimization of transformation parameters achieved via a Genetic Algorithm(GA).By combining frequency and spatial domain techniques,the proposed method significantly enhances both the imper-ceptibility and robustness of watermark embedding.The approach leverages DWT and RDWT for multi-resolution decomposition,enabling watermark insertion in frequency subbands that balance visibility and resistance to attacks.RDWT,in particular,offers shift-invariance,which improves performance under geometric transformations.Möbius transformations are employed for spatial manipulation,providing conformal mapping and spatial dispersion that fortify watermark resilience against rotation,scaling,and translation.The GA dynamically optimizes the Möbius parameters,selecting configurations that maximize robustness metrics such as Peak Signal-to-Noise Ratio(PSNR),Structural Similarity Index Measure(SSIM),Bit Error Rate(BER),and Normalized Cross-Correlation(NCC).Extensive experiments conducted on medical and standard benchmark images demonstrate the efficacy of the proposed RDWT-MT scheme.Results show that PSNR exceeds 68 dB,SSIM approaches 1.0,and BER remains at 0.0000,indicating excellent imperceptibility and perfect watermark recovery.Moreover,the method exhibits exceptional resilience to a wide range of image processing attacks,including Gaussian noise,JPEG compression,histogram equalization,and cropping,achieving NCC values close to or equal to 1.0.Comparative evaluations with state-of-the-art watermarking techniques highlight the superiority of the proposed method in terms of robustness,fidelity,and computational efficiency.The hybrid framework ensures secure,adaptive watermark embedding,making it highly suitable for applications in digital rights management,content authentication,and medical image protection.The integration of spatial and frequency domain features with evolutionary optimization presents a promising direction for future watermarking technologies.