Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hyd...Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hydraulic fracturing process in lab-scale coal samples with DFNs and the induced seismic activities by the discrete element method(DEM).The effects of DFNs on hydraulic fracturing,induced seismicity and elastic property changes have been concluded.Denser DFNs can comprehensively decrease the peak injection pressure and injection duration.The proportion of strong seismic events increases first and then decreases with increasing DFN density.In addition,the relative modulus of the rock mass is derived innovatively from breakdown pressure,breakdown fracture length and the related initiation time.Increasing DFN densities among large(35–60 degrees)and small(0–30 degrees)fracture dip angles show opposite evolution trends in relative modulus.The transitional point(dip angle)for the opposite trends is also proportionally affected by the friction angle of the rock mass.The modelling results have much practical meaning to infer the density and geometry of pre-existing fractures and the elastic property of rock mass in the field,simply based on the hydraulic fracturing and induced seismicity monitoring data.展开更多
Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely.However,the majority of such wellbore breakout a...Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely.However,the majority of such wellbore breakout analyses were based on continuum mechanics.In addition to failure in intact rocks,wellbore breakouts can also be initiated along natural discontinuities,e.g.weak planes and fractures.Furthermore,the conventional models in wellbore breakouts with uniform distribution fractures could not reflect the real drilling situation.This paper presents a fully coupled hydro-mechanical model of the SB-X well in the Tarim Basin,China for evaluating wellbore breakouts in heavily fractured rocks under anisotropic stress states using the distinct element method(DEM)and the discrete fracture network(DFN).The developed model was validated against caliper log measurement,and its stability study was carried out by stress and displacement analyses.A parametric study was performed to investigate the effects of the characteristics of fracture distribution(orientation and length)on borehole stability by sensitivity studies.Simulation results demonstrate that the increase of the standard deviation of orientation when the fracture direction aligns parallel or perpendicular to the principal stress direction aggravates borehole instability.Moreover,an elevation in the average fracture length causes the borehole failure to change from the direction of the minimum in-situ horizontal principal stress(i.e.the direction of wellbore breakouts)towards alternative directions,ultimately leading to the whole wellbore failure.These findings provide theoretical insights for predicting wellbore breakouts in heavily fractured rocks.展开更多
In recent years,discrete neuron and discrete neural network models have played an important role in the development of neural dynamics.This paper reviews the theoretical advantages of well-known discrete neuron models...In recent years,discrete neuron and discrete neural network models have played an important role in the development of neural dynamics.This paper reviews the theoretical advantages of well-known discrete neuron models,some existing discretized continuous neuron models,and discrete neural networks in simulating complex neural dynamics.It places particular emphasis on the importance of memristors in the composition of neural networks,especially their unique memory and nonlinear characteristics.The integration of memristors into discrete neural networks,including Hopfield networks and their fractional-order variants,cellular neural networks and discrete neuron models has enabled the study and construction of various neural models with memory.These models exhibit complex dynamic behaviors,including superchaotic attractors,hidden attractors,multistability,and synchronization transitions.Furthermore,the present paper undertakes an analysis of more complex dynamical properties,including synchronization,speckle patterns,and chimera states in discrete coupled neural networks.This research provides new theoretical foundations and potential applications in the fields of brain-inspired computing,artificial intelligence,image encryption,and biological modeling.展开更多
Accurate prediction of hydraulic fracture propagation is vital for Enhanced Geothermal System(EGS)design.We study the first hydraulic fracturing job at the GR1 well in the Gonghe Basin using field data,where the overa...Accurate prediction of hydraulic fracture propagation is vital for Enhanced Geothermal System(EGS)design.We study the first hydraulic fracturing job at the GR1 well in the Gonghe Basin using field data,where the overall direction of hydraulic fractures does not show a delineated shape parallel to the maximum principal stress orientation.A field-scale numerical model based on the distinct element method is set up to carry out a fully coupled hydromechanical simulation,with the explicit representation of natural fractures via the discrete fracture network(DFN)approach.The effects of injection parameters and in situ stress on hydraulic fracture patterns are then quantitatively assessed.The study reveals that shear-induced deformation primarily governs the fracturing morphology in the GR1 well,driven by smaller injection rates and viscosities that promote massive activation of natural fractures,ultimately dominating the direction of hydraulic fracturing.Furthermore,the increase of in situ differential stress may promote shear damage of natural fracture surfaces,with the exact influence pattern depending on the combination of specific discontinuity properties and in situ stress state.Finally,we provide recommendations for EGS fracturing based on the influence characteristics of multiple parameters.This study can serve as an effective basis and reference for the design and optimization of EGS in the Gonghe basin and other sites.展开更多
The goal of this research is to develop mine-scale discrete fracture network(DFN)models in which the influence of the spatial heterogeneity of fracture distributions may be investigated on the rock wedge stability of ...The goal of this research is to develop mine-scale discrete fracture network(DFN)models in which the influence of the spatial heterogeneity of fracture distributions may be investigated on the rock wedge stability of an open pit slope.For this purpose,spatially conditioned DFN models were developed for the pit walls at Tasiast mine using comprehensive structural data from the mine.Using Sequential Gaussian Simulation(SGS),volumetric fracture intensities(P32)were modeled across the entire mine site in the form of 3D block models.The simulated P32 block models were used as the input constraints for conditional DFN fracture generation,where the DFN grid dimension is the same as the SGS 3D blocks.The spatially constrained DFN models were further calibrated using aerial fracture intensities(P21)data from the pit walls,obtained by a survey of the pit walls using an unmanned aerial vehicle(UAV)and measured traces of joints from 3D point cloud data.The final DFN model is expected to honor the fracture intensities gathered through different means with optimal model accuracy.Finally,bench-scale and interramp scale rock wedge slope stability analyses were conducted using the calibrated conditional DFN models.This work proves the significance of conditioned DFN models in rock wedge stability analysis.Such models provide detailed information regarding rock wedge stability so that site monitoring and prevention plans can be conducted with higher efficiency.展开更多
Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the con...Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the conventional AVO inversion method based on HTI theory to predict fracture development will result in some errors.Thus,an integrated research concept for fractured reservoir prediction is put forward in this paper.Seismic modeling plays a bridging role in this concept,and the establishment of an anisotropic fracture model by Discrete Fracture Network (DFN) is the key part.Because the fracture system in the Tarim Basin shows complex anisotropic characteristics,it is vital to build an effective anisotropic model.Based on geological,well logging and seismic data,an effective anisotropic model of complex fracture systems can be set up with the DFN method.The effective elastic coefficients,and the input data for seismic modeling can be calculated.Then seismic modeling based on this model is performed,and the seismic response characteristics are analyzed.The modeling results can be used in the following AVO inversion for fracture detection.展开更多
Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed ...Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stressinducedmicrocracking increases with depth and in-situ stress. Laboratory results indicate that thephysical properties of rocks such as strength, deformability, P-wave velocity and permeability areinfluenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM)is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks usingthe proposed micro discrete fracture network (mDFN) approach. The characteristics of the microcracksrequired to create mDFN models are obtained through image analyses of thin sections of Lac du Bonnetgranite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial,triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data.The FDEM-mDFN models indicate that micro-heterogeneity has a profound influence on both the mechanicalbehavior and resultant fracture pattern. An increase in the microcrack intensity leads to areduction in the strength of the sample and changes the character of the rock strength envelope. Spallingand axial splitting dominate the failure mode at low confinement while shear failure is the dominantfailure mode at high confinement. Numerical results from simulated compression tests show thatmicrocracking reduces the cohesive component of strength alone, and the frictional strength componentremains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced bythe presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. Theimportance of microcrack heterogeneity in reproducing a bi-linear or S-shape failure envelope and itseffects on the mechanisms leading to spalling damage near an underground opening are also discussed.展开更多
The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with se...The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with self-defense electronic jamming, a decision-making model with self-defense electronic jamming based on the discrete dynamic Bayesian network is established. Then jamming decision inferences by the aid of the algorithm of discrete dynamic Bayesian network are carried on. The simulating result shows that this method is able to synthesize different targets which are not predominant. In this way, various features at the same time, as well as the same feature appearing at different time complement mutually; in addition, the accuracy and reliability of electronic jamming decision making are enhanced significantly.展开更多
Structure plane is one of the important factors affecting the stability and failure mode of rock mass engineering.Rock mass structure characterization is the basic work of rock mechanics research and the important con...Structure plane is one of the important factors affecting the stability and failure mode of rock mass engineering.Rock mass structure characterization is the basic work of rock mechanics research and the important content of numerical simulation.A new 3-dimensional rough discrete fracture network(RDFN3D)model and its modeling method based on the Weierstrass-Mandelbrot(W-M)function were presented in this paper.The RDFN3D model,which improves and unifies the modelling methods for the complex structural planes,has been realized.The influence of fractal dimension,amplitude,and surface precision on the modeling parameters of RDFN3D was discussed.The reasonable W-M parameters suitable for the roughness coefficient of JRC were proposed,and the relationship between the mathematical model and the joint characterization was established.The RDFN3D together with the smooth 3-dimensional discrete fracture network(DFN3D)models were successfully exported to the drawing exchange format,which will provide a wide application in numerous numerical simulation codes including both the continuous and discontinuous methods.The numerical models were discussed using the COMSOL Multiphysics code and the 3-dimensional particle flow code,respectively.The reliability of the RDFN3D model was preliminarily discussed and analyzed.The roughness and spatial connectivity of the fracture networks have a dominant effect on the fluid flow patterns.The research results can provide a new geological model and analysis model for numerical simulation and engineering analysis of jointed rock mass.展开更多
The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target thr...The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target threat level.Unfortunately,the traditional discrete dynamic Bayesian network(DDBN)has the problems of poor parameter learning and poor reasoning accuracy in a small sample environment with partial prior information missing.Considering the finiteness and discreteness of DDBN parameters,a fuzzy k-nearest neighbor(KNN)algorithm based on correlation of feature quantities(CF-FKNN)is proposed for DDBN parameter learning.Firstly,the correlation between feature quantities is calculated,and then the KNN algorithm with fuzzy weight is introduced to fill the missing data.On this basis,a reasonable DDBN structure is constructed by using expert experience to complete DDBN parameter learning and reasoning.Simulation results show that the CF-FKNN algorithm can accurately fill in the data when the samples are seriously missing,and improve the effect of DDBN parameter learning in the case of serious sample missing.With the proposed method,the final target threat assessment results are reasonable,which meets the needs of engineering applications.展开更多
Discrete Hopfield neural network with delay is an extension of discrete Hopfield neural network. As it is well known, the stability of neural networks is not only the most basic and important problem but also foundati...Discrete Hopfield neural network with delay is an extension of discrete Hopfield neural network. As it is well known, the stability of neural networks is not only the most basic and important problem but also foundation of the network's applications. The stability of discrete HJopfield neural networks with delay is mainly investigated by using Lyapunov function. The sufficient conditions for the networks with delay converging towards a limit cycle of length 4 are obtained. Also, some sufficient criteria are given to ensure the networks having neither a stable state nor a limit cycle with length 2. The obtained results here generalize the previous results on stability of discrete Hopfield neural network with delay and without delay.展开更多
In this paper,by applying Lasalle's in variance principle and some results about the trace of a matrix,we propose a method for estimating the topological structure of a discrete dynamical network based on the dyna...In this paper,by applying Lasalle's in variance principle and some results about the trace of a matrix,we propose a method for estimating the topological structure of a discrete dynamical network based on the dynamicalevolution of the network.The network concerned can be directed or undirected,weighted or unweighted,and the localdynamics of each node can be nonidentical.The connections among the nodes can be all unknown or partially known.Finally,two examples,including a Henon map and a central network,are illustrated to verify the theoretical results.展开更多
This paper aims to study robust impulsive synchronization problem foruncertain linear discrete dynamical network. For the discrete dynamical networks with unknown butbounded linear coupling, by introducing the concept...This paper aims to study robust impulsive synchronization problem foruncertain linear discrete dynamical network. For the discrete dynamical networks with unknown butbounded linear coupling, by introducing the concept of uniformly positive definite matrix functions,some robust impulsive controllers are designed, which ensure that the state of a discrete dynamicalnetwork globally asymptotically synchronizes with an arbitrarily assigned state of an isolate nodeof the network. This paper also investigates the synchronization problem where the network couplingfunctions are uncertain but bounded nonlinear functions. Finally, two examples are simulated toillustrate our results.展开更多
Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual conne...Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications.展开更多
Natural fracture data from one of the Carboniferous shale masses in the eastern Qaidam Basin were used to establish a stochastic model of a discrete fracture network and to perform discrete element simulation research...Natural fracture data from one of the Carboniferous shale masses in the eastern Qaidam Basin were used to establish a stochastic model of a discrete fracture network and to perform discrete element simulation research on the size efect and mechanical parameters of shale.Analytical solutions of fctitious joints in transversely isotropic media were derived,which made it possible for the proposed numerical model to simulate the bedding and natural fractures in shale masses.The results indicate that there are two main factors infuencing the representative elementary volume(REV)size of a shale mass.The frst and most decisive factor is the presence of natural fractures in the block itself.The second is the anisotropy ratio:the greater the anisotropy is,the larger the REV.The bedding angle has little infuence on the REV size,whereas it has a certain infuence on the mechanical parameters of the rock mass.When the bedding angle approaches the average orientation of the natural fractures,the mechanical parameters of the shale blocks decrease greatly.The REV representing the mechanical properties of the Carboniferous shale masses in the eastern Qaidam Basin were comprehensively identifed by considering the infuence of bedding and natural fractures.When the numerical model size is larger than the REV,the fractured rock mass discontinuities can be transformed into equivalent continuities,which provides a method for simulating shale with natural fractures and bedding to analyze the stability of a borehole wall in shale.展开更多
Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-ex...Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-existing joints in the damage evolution around the underground opening is of critical importance as they govern the fracturing mechanisms and influence the brittle responses of these hard rock masses under highly anisotropic in situ stresses.In this study,the main focus is the impact of joint network geometry,joint strength and applied field stresses on the rock mass behaviours and the evolution of excavation induced damage due to the loss of confinement as a tunnel face advances.Analysis of such a phenomenon was conducted using the finite-discrete element method(FDEM).The numerical model is initially calibrated in order to match the behaviour of the fracture-free,massive Lac du Bonnet granite during the excavation of the Underground Research Laboratory(URL)Test Tunnel,Canada.The influence of the pre-existing joints on the rock mass response during excavation is investigated by integrating discrete fracture networks(DFNs)of various characteristics into the numerical models under varying in situ stresses.The numerical results obtained highlight the significance of the pre-existing joints on the reduction of in situ rock mass strength and its capacity for extension with both factors controlling the brittle response of the material.Furthermore,the impact of spatial distribution of natural joints on the stability of an underground excavation is discussed,as well as the potentially minor influence of joint strength on the stress induced damage within joint systems of a non-persistent nature under specific conditions.Additionally,the in situ stress-joint network interaction is examined,revealing the complex fracturing mechanisms that may lead to uncontrolled fracture propagation that compromises the overall stability of an underground excavation.展开更多
Prediction of radon flux from the fractured zone of a propagating cave mine is basically associated with uncertainty and complexity. For instance, there is restricted access to these zones for field measure- ments, an...Prediction of radon flux from the fractured zone of a propagating cave mine is basically associated with uncertainty and complexity. For instance, there is restricted access to these zones for field measure- ments, and it is quite difficult to replicate the complex nature of both natural and induced fractures in these zones in laboratory studies. Hence, a technique for predicting radon flux from a fractured rock using a discrete fracture network (DFN) model is developed to address these difficulties. This model quantifies the contribution of fractures to the total radon flux, and estimates the fracture density from a measured radon flux considering the effects of advection, diffusion, as well as radon generation and decay. Radon generation and decay are classified as reaction processes. Therefore, the equation solved is termed as the advection-diffusion-reaction equation (ADRE). Peclet number (Pe), a conventional dimensionless parameter that indicates the ratio of mass transport by advection to diffusion, is used to classify the transport regimes. The results show that the proposed model effectively predicts radon flux from a fractured rock. An increase in fracture density for a rock sample with uniformly distributed radon generation rate can elevate radon flux significantly compared with another rock sample with an equivalent increase in radon generation rate. In addition to Pe, two other independent dimensionless parameters (derived for radon transport through fractures) significantly affect radon dimensionless flux. Findings provide insight into radon transport through fractured rocks and can be used to improve radon control measures for proactive mitigation.展开更多
The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characteriz...The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.展开更多
A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established vi...A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established via Newton-Euler formalism.For quadrotor helicopter flying at low altitude in actual situation, it was more susceptible to be influenced by the turbulent wind field.Therefore, the turbulent wind field was generated according to Dryden model and taken into consideration as the disturbance source of quadrotor helicopter. Then, a nested loop control approach was proposed for the stabilization and navigation problems of the quadrotor subjected to wind disturbance. A decentralized PIDNN controller was designed for the inner loop to stabilize the attitude angle. A conventional PID controller was used for the outer loop in order to generate the reference path to inner loop. Moreover, the connective weights of the PIDNN were trained on-line by error back-propagation method. Furthermore, the initial connective weights were identified according to the principle of PID control theory and the appropriate learning rate was selected by discrete Lyapunov theory in order to ensure the stability. Finally, the simulation results demonstrate that the controller can effectively resist external wind disturbances, and presents good stability, maneuverability and robustness.展开更多
The discrete-time network model of two neurons with function f(u) ={1,u∈[0,σ] 0,U∈[0,σ]is considered. We obtain some sufficient conditions that every solution of system is convergent or periodic.
基金Australian Research Council Linkage Program(LP200301404)for sponsoring this researchthe financial support provided by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection(Chengdu University of Technology,SKLGP2021K002)National Natural Science Foundation of China(52374101,32111530138).
文摘Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hydraulic fracturing process in lab-scale coal samples with DFNs and the induced seismic activities by the discrete element method(DEM).The effects of DFNs on hydraulic fracturing,induced seismicity and elastic property changes have been concluded.Denser DFNs can comprehensively decrease the peak injection pressure and injection duration.The proportion of strong seismic events increases first and then decreases with increasing DFN density.In addition,the relative modulus of the rock mass is derived innovatively from breakdown pressure,breakdown fracture length and the related initiation time.Increasing DFN densities among large(35–60 degrees)and small(0–30 degrees)fracture dip angles show opposite evolution trends in relative modulus.The transitional point(dip angle)for the opposite trends is also proportionally affected by the friction angle of the rock mass.The modelling results have much practical meaning to infer the density and geometry of pre-existing fractures and the elastic property of rock mass in the field,simply based on the hydraulic fracturing and induced seismicity monitoring data.
基金supported by National Natural Science Foundation of China(Grant Nos.52074312 and 52211530097)CNPC Science and Technology Innovation Foundation(Grant No.2021DQ02-0505).
文摘Wellbore breakout is one of the critical issues in drilling due to the fact that the related problems result in additional costs and impact the drilling scheme severely.However,the majority of such wellbore breakout analyses were based on continuum mechanics.In addition to failure in intact rocks,wellbore breakouts can also be initiated along natural discontinuities,e.g.weak planes and fractures.Furthermore,the conventional models in wellbore breakouts with uniform distribution fractures could not reflect the real drilling situation.This paper presents a fully coupled hydro-mechanical model of the SB-X well in the Tarim Basin,China for evaluating wellbore breakouts in heavily fractured rocks under anisotropic stress states using the distinct element method(DEM)and the discrete fracture network(DFN).The developed model was validated against caliper log measurement,and its stability study was carried out by stress and displacement analyses.A parametric study was performed to investigate the effects of the characteristics of fracture distribution(orientation and length)on borehole stability by sensitivity studies.Simulation results demonstrate that the increase of the standard deviation of orientation when the fracture direction aligns parallel or perpendicular to the principal stress direction aggravates borehole instability.Moreover,an elevation in the average fracture length causes the borehole failure to change from the direction of the minimum in-situ horizontal principal stress(i.e.the direction of wellbore breakouts)towards alternative directions,ultimately leading to the whole wellbore failure.These findings provide theoretical insights for predicting wellbore breakouts in heavily fractured rocks.
基金supported by the Natural Science Foundation of Hunan Province(Grant No.2025JJ50368)the Scientific Research Fund of Hunan Provincial Education Department(Grant No.24A0248)the Guiding Science and Technology Plan Project of Changsha City(Grant No.kzd2501129)。
文摘In recent years,discrete neuron and discrete neural network models have played an important role in the development of neural dynamics.This paper reviews the theoretical advantages of well-known discrete neuron models,some existing discretized continuous neuron models,and discrete neural networks in simulating complex neural dynamics.It places particular emphasis on the importance of memristors in the composition of neural networks,especially their unique memory and nonlinear characteristics.The integration of memristors into discrete neural networks,including Hopfield networks and their fractional-order variants,cellular neural networks and discrete neuron models has enabled the study and construction of various neural models with memory.These models exhibit complex dynamic behaviors,including superchaotic attractors,hidden attractors,multistability,and synchronization transitions.Furthermore,the present paper undertakes an analysis of more complex dynamical properties,including synchronization,speckle patterns,and chimera states in discrete coupled neural networks.This research provides new theoretical foundations and potential applications in the fields of brain-inspired computing,artificial intelligence,image encryption,and biological modeling.
基金support from the National Natural Science Foundation of China(Grant Nos.42320104003,42177175,and 42077247)the Fundamental Research Funds for the Central Universities.
文摘Accurate prediction of hydraulic fracture propagation is vital for Enhanced Geothermal System(EGS)design.We study the first hydraulic fracturing job at the GR1 well in the Gonghe Basin using field data,where the overall direction of hydraulic fractures does not show a delineated shape parallel to the maximum principal stress orientation.A field-scale numerical model based on the distinct element method is set up to carry out a fully coupled hydromechanical simulation,with the explicit representation of natural fractures via the discrete fracture network(DFN)approach.The effects of injection parameters and in situ stress on hydraulic fracture patterns are then quantitatively assessed.The study reveals that shear-induced deformation primarily governs the fracturing morphology in the GR1 well,driven by smaller injection rates and viscosities that promote massive activation of natural fractures,ultimately dominating the direction of hydraulic fracturing.Furthermore,the increase of in situ differential stress may promote shear damage of natural fracture surfaces,with the exact influence pattern depending on the combination of specific discontinuity properties and in situ stress state.Finally,we provide recommendations for EGS fracturing based on the influence characteristics of multiple parameters.This study can serve as an effective basis and reference for the design and optimization of EGS in the Gonghe basin and other sites.
基金Kinross Gold and MITACS for their financial support(Grant No.FR42880).
文摘The goal of this research is to develop mine-scale discrete fracture network(DFN)models in which the influence of the spatial heterogeneity of fracture distributions may be investigated on the rock wedge stability of an open pit slope.For this purpose,spatially conditioned DFN models were developed for the pit walls at Tasiast mine using comprehensive structural data from the mine.Using Sequential Gaussian Simulation(SGS),volumetric fracture intensities(P32)were modeled across the entire mine site in the form of 3D block models.The simulated P32 block models were used as the input constraints for conditional DFN fracture generation,where the DFN grid dimension is the same as the SGS 3D blocks.The spatially constrained DFN models were further calibrated using aerial fracture intensities(P21)data from the pit walls,obtained by a survey of the pit walls using an unmanned aerial vehicle(UAV)and measured traces of joints from 3D point cloud data.The final DFN model is expected to honor the fracture intensities gathered through different means with optimal model accuracy.Finally,bench-scale and interramp scale rock wedge slope stability analyses were conducted using the calibrated conditional DFN models.This work proves the significance of conditioned DFN models in rock wedge stability analysis.Such models provide detailed information regarding rock wedge stability so that site monitoring and prevention plans can be conducted with higher efficiency.
基金co-supported by the National Basic Research Program of China(Grant No.2011CB201103)the National Science and Technology Major Project(GrantNo.2011ZX05004003)
文摘Fractured reservoirs are an important target for oil and gas exploration in the Tarim Basin and the prediction of this type of reservoir is challenging.Due to the complicated fracture system in the Tarim Basin,the conventional AVO inversion method based on HTI theory to predict fracture development will result in some errors.Thus,an integrated research concept for fractured reservoir prediction is put forward in this paper.Seismic modeling plays a bridging role in this concept,and the establishment of an anisotropic fracture model by Discrete Fracture Network (DFN) is the key part.Because the fracture system in the Tarim Basin shows complex anisotropic characteristics,it is vital to build an effective anisotropic model.Based on geological,well logging and seismic data,an effective anisotropic model of complex fracture systems can be set up with the DFN method.The effective elastic coefficients,and the input data for seismic modeling can be calculated.Then seismic modeling based on this model is performed,and the seismic response characteristics are analyzed.The modeling results can be used in the following AVO inversion for fracture detection.
文摘Heterogeneity is an inherent component of rock and may be present in different forms including mineralheterogeneity, geometrical heterogeneity, weak grain boundaries and micro-defects. Microcracks areusually observed in crystalline rocks in two forms: natural and stress-induced; the amount of stressinducedmicrocracking increases with depth and in-situ stress. Laboratory results indicate that thephysical properties of rocks such as strength, deformability, P-wave velocity and permeability areinfluenced by increase in microcrack intensity. In this study, the finite-discrete element method (FDEM)is used to model microcrack heterogeneity by introducing into a model sample sets of microcracks usingthe proposed micro discrete fracture network (mDFN) approach. The characteristics of the microcracksrequired to create mDFN models are obtained through image analyses of thin sections of Lac du Bonnetgranite adopted from published literature. A suite of two-dimensional laboratory tests including uniaxial,triaxial compression and Brazilian tests is simulated and the results are compared with laboratory data.The FDEM-mDFN models indicate that micro-heterogeneity has a profound influence on both the mechanicalbehavior and resultant fracture pattern. An increase in the microcrack intensity leads to areduction in the strength of the sample and changes the character of the rock strength envelope. Spallingand axial splitting dominate the failure mode at low confinement while shear failure is the dominantfailure mode at high confinement. Numerical results from simulated compression tests show thatmicrocracking reduces the cohesive component of strength alone, and the frictional strength componentremains unaffected. Results from simulated Brazilian tests show that the tensile strength is influenced bythe presence of microcracks, with a reduction in tensile strength as microcrack intensity increases. Theimportance of microcrack heterogeneity in reproducing a bi-linear or S-shape failure envelope and itseffects on the mechanisms leading to spalling damage near an underground opening are also discussed.
基金the National Natural Science Fundation of China (10377014).
文摘The manner and conditions of running the decision-making system with self-defense electronic jamming are given. After proposing the scenario of applying discrete dynamic Bayesian network to the decision making with self-defense electronic jamming, a decision-making model with self-defense electronic jamming based on the discrete dynamic Bayesian network is established. Then jamming decision inferences by the aid of the algorithm of discrete dynamic Bayesian network are carried on. The simulating result shows that this method is able to synthesize different targets which are not predominant. In this way, various features at the same time, as well as the same feature appearing at different time complement mutually; in addition, the accuracy and reliability of electronic jamming decision making are enhanced significantly.
基金This work was financially supported by the National Key R&D Program of China(No.2021YFC2900500)the National Natural Science Foundation of China(Nos.52074020 and 42202306)+2 种基金the Open Fund of State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(No.WPUKFJJ2019-06)the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)(No.FRF-IDRY-21001)the Natural Science Foundation of Jiangsu Province,China(No.BK20200993).
文摘Structure plane is one of the important factors affecting the stability and failure mode of rock mass engineering.Rock mass structure characterization is the basic work of rock mechanics research and the important content of numerical simulation.A new 3-dimensional rough discrete fracture network(RDFN3D)model and its modeling method based on the Weierstrass-Mandelbrot(W-M)function were presented in this paper.The RDFN3D model,which improves and unifies the modelling methods for the complex structural planes,has been realized.The influence of fractal dimension,amplitude,and surface precision on the modeling parameters of RDFN3D was discussed.The reasonable W-M parameters suitable for the roughness coefficient of JRC were proposed,and the relationship between the mathematical model and the joint characterization was established.The RDFN3D together with the smooth 3-dimensional discrete fracture network(DFN3D)models were successfully exported to the drawing exchange format,which will provide a wide application in numerous numerical simulation codes including both the continuous and discontinuous methods.The numerical models were discussed using the COMSOL Multiphysics code and the 3-dimensional particle flow code,respectively.The reliability of the RDFN3D model was preliminarily discussed and analyzed.The roughness and spatial connectivity of the fracture networks have a dominant effect on the fluid flow patterns.The research results can provide a new geological model and analysis model for numerical simulation and engineering analysis of jointed rock mass.
基金supported by the Fundamental Scientific Research Business Expenses for Central Universities(3072021CFJ0803)the Advanced Marine Communication and Information Technology Ministry of Industry and Information Technology Key Laboratory Project(AMCIT21V3).
文摘The accuracy of target threat estimation has a great impact on command decision-making.The Bayesian network,as an effective way to deal with the problem of uncertainty,can be used to track the change of the target threat level.Unfortunately,the traditional discrete dynamic Bayesian network(DDBN)has the problems of poor parameter learning and poor reasoning accuracy in a small sample environment with partial prior information missing.Considering the finiteness and discreteness of DDBN parameters,a fuzzy k-nearest neighbor(KNN)algorithm based on correlation of feature quantities(CF-FKNN)is proposed for DDBN parameter learning.Firstly,the correlation between feature quantities is calculated,and then the KNN algorithm with fuzzy weight is introduced to fill the missing data.On this basis,a reasonable DDBN structure is constructed by using expert experience to complete DDBN parameter learning and reasoning.Simulation results show that the CF-FKNN algorithm can accurately fill in the data when the samples are seriously missing,and improve the effect of DDBN parameter learning in the case of serious sample missing.With the proposed method,the final target threat assessment results are reasonable,which meets the needs of engineering applications.
文摘Discrete Hopfield neural network with delay is an extension of discrete Hopfield neural network. As it is well known, the stability of neural networks is not only the most basic and important problem but also foundation of the network's applications. The stability of discrete HJopfield neural networks with delay is mainly investigated by using Lyapunov function. The sufficient conditions for the networks with delay converging towards a limit cycle of length 4 are obtained. Also, some sufficient criteria are given to ensure the networks having neither a stable state nor a limit cycle with length 2. The obtained results here generalize the previous results on stability of discrete Hopfield neural network with delay and without delay.
基金Supported by the Foundation of Jiangsu Polytechnic University under Grant No.JS200805National Natural Science Foundation of China under Grant No.10672146Shanghai Leading Academic Discipline Project under Grant No.S30104
文摘In this paper,by applying Lasalle's in variance principle and some results about the trace of a matrix,we propose a method for estimating the topological structure of a discrete dynamical network based on the dynamicalevolution of the network.The network concerned can be directed or undirected,weighted or unweighted,and the localdynamics of each node can be nonidentical.The connections among the nodes can be all unknown or partially known.Finally,two examples,including a Henon map and a central network,are illustrated to verify the theoretical results.
文摘This paper aims to study robust impulsive synchronization problem foruncertain linear discrete dynamical network. For the discrete dynamical networks with unknown butbounded linear coupling, by introducing the concept of uniformly positive definite matrix functions,some robust impulsive controllers are designed, which ensure that the state of a discrete dynamicalnetwork globally asymptotically synchronizes with an arbitrarily assigned state of an isolate nodeof the network. This paper also investigates the synchronization problem where the network couplingfunctions are uncertain but bounded nonlinear functions. Finally, two examples are simulated toillustrate our results.
基金sponsored by the General Program of the National Natural Science Foundation of China(Grant Nos.52079129 and 52209148)the Hubei Provincial General Fund,China(Grant No.2023AFB567)。
文摘Analyzing rock mass seepage using the discrete fracture network(DFN)flow model poses challenges when dealing with complex fracture networks.This paper presents a novel DFN flow model that incorporates the actual connections of large-scale fractures.Notably,this model efficiently manages over 20,000 fractures without necessitating adjustments to the DFN geometry.All geometric analyses,such as identifying connected fractures,dividing the two-dimensional domain into closed loops,triangulating arbitrary loops,and refining triangular elements,are fully automated.The analysis processes are comprehensively introduced,and core algorithms,along with their pseudo-codes,are outlined and explained to assist readers in their programming endeavors.The accuracy of geometric analyses is validated through topological graphs representing the connection relationships between fractures.In practical application,the proposed model is employed to assess the water-sealing effectiveness of an underground storage cavern project.The analysis results indicate that the existing design scheme can effectively prevent the stored oil from leaking in the presence of both dense and sparse fractures.Furthermore,following extensive modification and optimization,the scale and precision of model computation suggest that the proposed model and developed codes can meet the requirements of engineering applications.
基金support of the National Natural Science Foundation of China(51604275)the Key Laboratory of Urban Under Ground Engineering of Ministry of Education(TUE2018-01)+1 种基金Yue Qi Young Scholar Project of China University of Mining&Technology,Beijingthe Fundamental Research Funds for the Central Universities(2016QL02).
文摘Natural fracture data from one of the Carboniferous shale masses in the eastern Qaidam Basin were used to establish a stochastic model of a discrete fracture network and to perform discrete element simulation research on the size efect and mechanical parameters of shale.Analytical solutions of fctitious joints in transversely isotropic media were derived,which made it possible for the proposed numerical model to simulate the bedding and natural fractures in shale masses.The results indicate that there are two main factors infuencing the representative elementary volume(REV)size of a shale mass.The frst and most decisive factor is the presence of natural fractures in the block itself.The second is the anisotropy ratio:the greater the anisotropy is,the larger the REV.The bedding angle has little infuence on the REV size,whereas it has a certain infuence on the mechanical parameters of the rock mass.When the bedding angle approaches the average orientation of the natural fractures,the mechanical parameters of the shale blocks decrease greatly.The REV representing the mechanical properties of the Carboniferous shale masses in the eastern Qaidam Basin were comprehensively identifed by considering the infuence of bedding and natural fractures.When the numerical model size is larger than the REV,the fractured rock mass discontinuities can be transformed into equivalent continuities,which provides a method for simulating shale with natural fractures and bedding to analyze the stability of a borehole wall in shale.
基金the Natural Sciences and Engineering Research Council of Canadathe Ministry of National Defensethe RMC Green Team for providing the funding and the resources
文摘Deep underground excavations within hard rocks can result in damage to the surrounding rock mass mostly due to redistribution of stresses.Especially within rock masses with non-persistent joints,the role of the pre-existing joints in the damage evolution around the underground opening is of critical importance as they govern the fracturing mechanisms and influence the brittle responses of these hard rock masses under highly anisotropic in situ stresses.In this study,the main focus is the impact of joint network geometry,joint strength and applied field stresses on the rock mass behaviours and the evolution of excavation induced damage due to the loss of confinement as a tunnel face advances.Analysis of such a phenomenon was conducted using the finite-discrete element method(FDEM).The numerical model is initially calibrated in order to match the behaviour of the fracture-free,massive Lac du Bonnet granite during the excavation of the Underground Research Laboratory(URL)Test Tunnel,Canada.The influence of the pre-existing joints on the rock mass response during excavation is investigated by integrating discrete fracture networks(DFNs)of various characteristics into the numerical models under varying in situ stresses.The numerical results obtained highlight the significance of the pre-existing joints on the reduction of in situ rock mass strength and its capacity for extension with both factors controlling the brittle response of the material.Furthermore,the impact of spatial distribution of natural joints on the stability of an underground excavation is discussed,as well as the potentially minor influence of joint strength on the stress induced damage within joint systems of a non-persistent nature under specific conditions.Additionally,the in situ stress-joint network interaction is examined,revealing the complex fracturing mechanisms that may lead to uncontrolled fracture propagation that compromises the overall stability of an underground excavation.
基金the financial support from the National Institute for Occupational Safety and Health(NIOSH)(200-2014-59613)for conducting this research
文摘Prediction of radon flux from the fractured zone of a propagating cave mine is basically associated with uncertainty and complexity. For instance, there is restricted access to these zones for field measure- ments, and it is quite difficult to replicate the complex nature of both natural and induced fractures in these zones in laboratory studies. Hence, a technique for predicting radon flux from a fractured rock using a discrete fracture network (DFN) model is developed to address these difficulties. This model quantifies the contribution of fractures to the total radon flux, and estimates the fracture density from a measured radon flux considering the effects of advection, diffusion, as well as radon generation and decay. Radon generation and decay are classified as reaction processes. Therefore, the equation solved is termed as the advection-diffusion-reaction equation (ADRE). Peclet number (Pe), a conventional dimensionless parameter that indicates the ratio of mass transport by advection to diffusion, is used to classify the transport regimes. The results show that the proposed model effectively predicts radon flux from a fractured rock. An increase in fracture density for a rock sample with uniformly distributed radon generation rate can elevate radon flux significantly compared with another rock sample with an equivalent increase in radon generation rate. In addition to Pe, two other independent dimensionless parameters (derived for radon transport through fractures) significantly affect radon dimensionless flux. Findings provide insight into radon transport through fractured rocks and can be used to improve radon control measures for proactive mitigation.
基金Supported by the National Science and Technology Major Project(2017ZX05063-005)Science and Technology Development Project of PetroChina Research Institute of Petroleum Exploration and Development(YGJ2019-12-04)。
文摘The generation method of three-dimensional fractal discrete fracture network(FDFN)based on multiplicative cascade process was developed.The complex multi-scale fracture system in shale after fracturing was characterized by coupling the artificial fracture model and the natural fracture model.Based on an assisted history matching(AHM)using multiple-proxy-based Markov chain Monte Carlo algorithm(MCMC),an embedded discrete fracture modeling(EDFM)incorporated with reservoir simulator was used to predict productivity of shale gas well.When using the natural fracture generation method,the distribution of natural fracture network can be controlled by fractal parameters,and the natural fracture network generated coupling with artificial fractures can characterize the complex system of different-scale fractures in shale after fracturing.The EDFM,with fewer grids and less computation time consumption,can characterize the attributes of natural fractures and artificial fractures flexibly,and simulate the details of mass transfer between matrix cells and fractures while reducing computation significantly.The combination of AMH and EDFM can lower the uncertainty of reservoir and fracture parameters,and realize effective inversion of key reservoir and fracture parameters and the productivity forecast of shale gas wells.Application demonstrates the results from the proposed productivity prediction model integrating FDFN,EDFM and AHM have high credibility.
基金Project(2011ZA51001)supported by National Aerospace Science Foundation of China
文摘A decentralized PID neural network(PIDNN) control scheme was proposed to a quadrotor helicopter subjected to wind disturbance. First, the dynamic model that considered the effect of wind disturbance was established via Newton-Euler formalism.For quadrotor helicopter flying at low altitude in actual situation, it was more susceptible to be influenced by the turbulent wind field.Therefore, the turbulent wind field was generated according to Dryden model and taken into consideration as the disturbance source of quadrotor helicopter. Then, a nested loop control approach was proposed for the stabilization and navigation problems of the quadrotor subjected to wind disturbance. A decentralized PIDNN controller was designed for the inner loop to stabilize the attitude angle. A conventional PID controller was used for the outer loop in order to generate the reference path to inner loop. Moreover, the connective weights of the PIDNN were trained on-line by error back-propagation method. Furthermore, the initial connective weights were identified according to the principle of PID control theory and the appropriate learning rate was selected by discrete Lyapunov theory in order to ensure the stability. Finally, the simulation results demonstrate that the controller can effectively resist external wind disturbances, and presents good stability, maneuverability and robustness.
基金Supported by the NNSF(10071016)Supported by the Science Foundation of Jimei University(ZQ2006033)
文摘The discrete-time network model of two neurons with function f(u) ={1,u∈[0,σ] 0,U∈[0,σ]is considered. We obtain some sufficient conditions that every solution of system is convergent or periodic.