期刊文献+
共找到576篇文章
< 1 2 29 >
每页显示 20 50 100
Towards a Micromechanical Understanding of Landslides—Aiming at a Combination of Finite and Discrete Elements with Minimal Number of Degrees of Freedom 被引量:1
1
作者 Jan Mueller Akira Kyotani Hans-Georg Matuttis 《Journal of Applied Mathematics and Physics》 2020年第9期1779-1798,共20页
In this paper, we propose a combination of discrete elements for the soil and finite elements for the fluid flow field inside the pore space to simulate the triggering of landslides. We give the details for the implem... In this paper, we propose a combination of discrete elements for the soil and finite elements for the fluid flow field inside the pore space to simulate the triggering of landslides. We give the details for the implementation of third order finite elements (“P<sub>2</sub> with bubble”) together with polygonal discrete elements, which allows the formulation with a minimal number of degrees of freedom to save computer time and memory. We verify the implementation with several standard problems from computational fluid dynamics, as well as the decay of a granular step in a fluid as test case for complex flow. 展开更多
关键词 Finite Element Method discrete Element Method Multi-Phase Flow
在线阅读 下载PDF
Study of the Transport Behavior of Multispherical Proppant in Intersecting Fracture Based on Discrete Element Method 被引量:1
2
作者 Chengyong Peng JianshuWu +2 位作者 Mao Jiang Biao Yin Yishan Lou 《Energy Engineering》 EI 2025年第1期185-201,共17页
To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fract... To analyze the differences in the transport and distribution of different types of proppants and to address issues such as the short effective support of proppant and poor placement in hydraulically intersecting fractures,this study considered the combined impact of geological-engineering factors on conductivity.Using reservoir production parameters and the discrete elementmethod,multispherical proppants were constructed.Additionally,a 3D fracture model,based on the specified conditions of the L block,employed coupled(Computational Fluid Dynamics)CFD-DEM(Discrete ElementMethod)for joint simulations to quantitatively analyze the transport and placement patterns of multispherical proppants in intersecting fractures.Results indicate that turbulent kinetic energy is an intrinsic factor affecting proppant transport.Moreover,the efficiency of placement and migration distance of low-sphericity quartz sand constructed by the DEM in the main fracture are significantly reduced compared to spherical ceramic proppants,with a 27.7%decrease in the volume fraction of the fracture surface,subsequently affecting the placement concentration and damaging fracture conductivity.Compared to small-angle fractures,controlling artificial and natural fractures to expand at angles of 45°to 60°increases the effective support length by approximately 20.6%.During hydraulic fracturing of gas wells,ensuring the fracture support area and post-closure conductivity can be achieved by controlling the sphericity of proppants and adjusting the perforation direction to control the direction of artificial fractures. 展开更多
关键词 Hydraulic fracturing discrete element method PROPPANT SPHERICITY CFD-DEM
在线阅读 下载PDF
Design and test of a dual-axis layered rotary tillage stubble exterminator in saline-alkali land based on discrete elements
3
作者 Zhuang Zhao Dongwei Wang +5 位作者 Shuqi Shang Peng Guo Zenghui Gao Chao Xia Haipeng Yan Jialin Hou 《International Journal of Agricultural and Biological Engineering》 SCIE 2024年第5期163-175,共13页
Considering the problems of poor straw mulching performance,low soil crushing rate and poor straw mulching performance of the traditional rotary tiller on saline-alkali soils,a two-axis layered rotary stubble cutter f... Considering the problems of poor straw mulching performance,low soil crushing rate and poor straw mulching performance of the traditional rotary tiller on saline-alkali soils,a two-axis layered rotary stubble cutter for saline-alkali soils with front-axis positive rotation of the front axle and rear-axis counter-rotation of the rear axle was developed,focusing on the kinetic properties of the straw and soil under positive and counter-rotation.In addition,the most important structural parameters and the arrangement of the front-axis stubble cutting knife and the rear-axis return knife were analyzed and determined.Hertz-Mindlin with bonding was used to create a discrete element model of the agglomerate of implement,straw and soil.The forward speed,horizontal distance and vertical distance were used as test factors,and the straw return rate and soil fragmentation rate were used as test indexes to analyze the straw-soil transport law under different operating parameters from a microscopic point of view,and then Design-Expert was used to conduct the test 1.07 km/h,horizontal distance of 569.55 mm,vertical distance of 176.59 mm.To validate the performance of the two-axis,layered rotary tiller,a field trial was conducted and the results show that the straw return ratio was(91.59±0.41)%,soil fragmentation ratio was(91.90±0.29)%and tillage depth stability was(91.52±0.46)%,which met the requirements for peanut seedbed preparation on saline-alkali land. 展开更多
关键词 saline-alkali land straw return soil fragmentation dual-axis layering discrete element simulation field trial
原文传递
Effects of discrete fracture networks on simulating hydraulic fracturing,induced seismicity and trending transition of relative modulus in coal seams 被引量:1
4
作者 Xin Zhang Guangyao Si +3 位作者 Qingsheng Bai Joung Oh Biao Jiao Wu Cai 《International Journal of Coal Science & Technology》 2025年第1期263-278,共16页
Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hyd... Discrete fracture network(DFN)commonly existing in natural rock masses plays an important role in geological complexity which can influence rock fracturing behaviour during fluid injection.This paper simulated the hydraulic fracturing process in lab-scale coal samples with DFNs and the induced seismic activities by the discrete element method(DEM).The effects of DFNs on hydraulic fracturing,induced seismicity and elastic property changes have been concluded.Denser DFNs can comprehensively decrease the peak injection pressure and injection duration.The proportion of strong seismic events increases first and then decreases with increasing DFN density.In addition,the relative modulus of the rock mass is derived innovatively from breakdown pressure,breakdown fracture length and the related initiation time.Increasing DFN densities among large(35–60 degrees)and small(0–30 degrees)fracture dip angles show opposite evolution trends in relative modulus.The transitional point(dip angle)for the opposite trends is also proportionally affected by the friction angle of the rock mass.The modelling results have much practical meaning to infer the density and geometry of pre-existing fractures and the elastic property of rock mass in the field,simply based on the hydraulic fracturing and induced seismicity monitoring data. 展开更多
关键词 discrete fracture network Hydraulic fracturing discrete element method Induced seismicity Relative modulus
在线阅读 下载PDF
Investigation on the fracture propagation for horizontal wells in hydrate reservoirs using a fluid-solid coupling discrete element method
5
作者 Jia-wei Zhang Chang-ling Liu +2 位作者 Yong-chao Zhang Le-le Liu Yun-kai Ji 《China Geology》 2025年第4期765-778,共14页
Hydraulic fracturing technology has played an important role in the exploitation of unconventional oil and gas resources,however,its application to gas hydrate reservoirs has been rarely studied.Currently,there is sti... Hydraulic fracturing technology has played an important role in the exploitation of unconventional oil and gas resources,however,its application to gas hydrate reservoirs has been rarely studied.Currently,there is still limited understanding of the propagation and extension of fractures around the wellbore during the fracturing process of horizontal wells in hydrate reservoirs,as well as the stress interference patterns between fractures.This study simulates hydraulic fracturing processes in hydrate reservoirs using a fluidsolid coupling discrete element method(DEM),and analyzes the impacts of hydrate saturation and geological and engineering factors on fracture extension and stress disturbance.The results show that hydraulic fracturing is more effective when hydrate saturation exceeds 30%and that fracture pressure increases with saturation.The increase in horizontal stress differential enhances the directionality of fracture propagation and reduces stress disturbance.The distribution uniformity index(DUI)reveals that injection pressure is directly proportional to the number of main fractures and inversely proportional to fracturing time,with fracturing efficiency depending on the spacing between injection points and the distance between wells.This work may provide reference for the commercial exploitation of natural gas hydrates. 展开更多
关键词 Hydraulic fracturing technology Gas hydrate reservoirs Hydrate-bearing sediment discrete element method Fluid-solid coupling Hydraulic fracturing Horizontal wells Fracture propagation Oil-gas exploration engineering
在线阅读 下载PDF
Investigation of hanging crosstie problem at bridge approaches:a train–track–bridge model coupled with discrete element method
6
作者 Zhongyi Liu Wenjing Li +2 位作者 Travis A.Shoemaker Erol Tutumluer Youssef M.A.Hashash 《Railway Engineering Science》 2025年第3期458-473,共16页
Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie conditio... Nonuniform track support and differential settlements are commonly observed in bridge approaches where the ballast layer can develop gaps at crosstie-ballast interfaces often referred to as a hanging crosstie condition.Hanging crossties usually yield unfavorable dynamic effects such as higher wheel loads,which negatively impact the serviceability and safety of railway operations.Hence,a better understanding of the mechanisms that cause hanging crossties and their effects on the ballast layer load-deformation characteristics is necessary.Since the ballast layer is a particulate medium,the discrete element method(DEM),which simulates ballast particle interactions individually,is ideal to explore the interparticle contact forces and ballast movements under dynamic wheel loading.Accurate representations of the dynamic loads from the train and track superstructure are needed for high-fidelity DEM modeling.This paper introduces an integrated modeling approach,which couples a single-crosstie DEM ballast model with a train–track–bridge(TTB)model using a proportional–integral–derivative control loop.The TTB–DEM model was validated with field measurements,and the coupled model calculates similar crosstie displacements as the TTB model.The TTB–DEM provided new insights into the ballast particle-scale behavior,which the TTB model alone cannot explore.The TTB–DEM coupling approach identified detrimental effects of hanging crossties on adjacent crossties,which were found to experience drastic vibrations and large ballast contact force concentrations. 展开更多
关键词 Hanging crosstie Crosstie gap Transition zone Model coupling discrete element method Train-track model
在线阅读 下载PDF
Impact of injection pressure and polyaxial stress on hydraulic fracture propagation and permeability evolution in graywacke:Insights from discrete element models of a laboratory test
7
作者 Haimeng Shen Jeoung Seok Yoon +3 位作者 Arno Zang Hannes Hofmann Xiaying Li Qi Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2344-2359,共16页
Understanding the hydromechanical behavior and permeability stress sensitivity of hydraulic fractures is fundamental for geotechnical applications associated with fluid injection.This paper presents a three-dimensiona... Understanding the hydromechanical behavior and permeability stress sensitivity of hydraulic fractures is fundamental for geotechnical applications associated with fluid injection.This paper presents a three-dimensional(3D)benchmark model of a laboratory experiment on graywacke to examine the dynamic hydraulic fracturing process under a polyaxial stress state.In the numerical model,injection pressures after breakdown(postbreakdown)are varied to study the impact on fracture growth.The fluid pressure front and crack front are identified in the numerical model to analyze the dynamic relationship between fluid diffusion and fracture propagation.Following the hydraulic fracturing test,the polyaxial stresses are rotated to investigate the influence of the stress field rotation on the fracture slip behavior and permeability.The results show that fracture propagation guides fluid diffusion under a high postbreakdown injection pressure.The crack front runs ahead of the fluid pressure front.Under a low postbreakdown injection pressure,the fluid pressure front gradually reaches the crack front,and fluid diffusion is the main driving factor of fracture propagation.Under polyaxial stress conditions,fluid injection not only opens tensile fractures but also induces hydroshearing.When the polyaxial stress is rotated,the fracture slip direction of a fully extended fracture is consistent with the shear stress direction.The fracture slip direction of a partly extended fracture is influenced by the increase in shear stress.Normal stress affects the permeability evolution by changing the average mechanical aperture.Shear stress can induce shearing and sliding on the fracture plane,thereby increasing permeability. 展开更多
关键词 Hydraulic fracture discrete element model(DEM) Polyaxial stress Permeability evolution Crack front Fluid pressure front
在线阅读 下载PDF
Accessing Elastic Properties of Porous Solid Oxide Fuel Cell Electrodes Using 2D Image-Based Discrete Element Modeling and Deep Learning
8
作者 Shihao Zhou Yan Zeng +6 位作者 Xuhao Liu Xianhang Li Christophe L.Martin Naoki Shikazono Shotaro Hara Zilin Yan Zheng Zhong 《Acta Mechanica Solida Sinica》 2025年第3期384-401,共18页
The mechanical properties of solid oxide fuel cells(SOFCs)can limit their mechanical stability and lifespan.Understanding the correlation between the microstructure and mechanical properties of porous electrode is ess... The mechanical properties of solid oxide fuel cells(SOFCs)can limit their mechanical stability and lifespan.Understanding the correlation between the microstructure and mechanical properties of porous electrode is essential for enhancing the performance and durability of SOFCs.Accurate prediction of mechanical properties of porous electrode can be achieved by microscale finite element modeling based on three-dimensional(3D)microstructures,which requires expensive 3D tomography techniques and massive computational resources.In this study,we proposed a cost-effective alternative approach to access the mechanical properties of porous electrodes,with the elastic properties of La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δc)athode serving as a case study.Firstly,a stochastic modeling was used to reconstruct 3D microstructures from two-dimensional(2D)cross-sections as an alternative to expensive tomography.Then,the discrete element method(DEM)was used to predict the elastic properties of porous ceramics based on the discretized 3D microstructures reconstructed by stochastic modeling.Based on 2D microstructure and the elastic properties calculated by the DEM modeling of the 3D reconstructed porous microstructures,a convolutional neural network(CNN)based deep learning model was built to predict the elastic properties rapidly from 2D microstructures.The proposed combined framework can be implemented with limited computational resources and provide a basis for rapid prediction of mechanical properties and parameter estimation for multiscale modeling of SOFCs. 展开更多
关键词 Porous ceramics MICROSTRUCTURE Stochastic reconstruction discrete element method Deep learning
原文传递
Deformation monitoring at shield tunnel joints:Laboratory test and discrete element simulation
9
作者 Maoyi Mao Xiaowei Yang +2 位作者 Chun Liu Tao Zhao Hui Liu 《Deep Underground Science and Engineering》 2025年第1期149-157,共9页
Shield tunnel,composed of several segments,is widely used in urban underground engineering.When the tunnel is under load,relative displacement occurs between adjacent segments.In the past,distributed optical fiber sen... Shield tunnel,composed of several segments,is widely used in urban underground engineering.When the tunnel is under load,relative displacement occurs between adjacent segments.In the past,distributed optical fiber sensing technology was used to perform strain monitoring,but there is an urgent need to determine how to transform strain into displacement.In this study,optical frequency domain reflectometry was applied in laboratory tests.Aiming at the shear process and center settlement process of shield tunnel segments,two kinds of quantitative calculation methods were put forward to carry out a quantitative analysis.Meanwhile,the laboratory test process was simulated numerically utilizing the discrete element numerical analysis method.Optical fiber,an atypical geotechnical material,was innovatively applied for discrete element modeling and numerical simulation.The results show that the measured displacement of the dial gauge,the calculated results of the numerical model,and the displacement quantitatively calculated from the optical fiber data agree with each other in general.The latter two methods can potentially be utilized in engineering application of deformation monitoring at shield tunnel joints,but need to be further calibrated and adjusted in detail. 展开更多
关键词 discrete element method distributed optical fiber MatDEM OFDR shield tunnel
原文传递
Discrete element analyses of stiffness distribution of gap-graded soils with particle property disparity
10
作者 Deyun Liu Mengting Wang Ci Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第4期2603-2618,共16页
Utilizing the Discrete Element Method,this research studied the stiffness distribution of gap-graded soils by modifying the conventional static method.By acknowledging the inherent particle property disparity between ... Utilizing the Discrete Element Method,this research studied the stiffness distribution of gap-graded soils by modifying the conventional static method.By acknowledging the inherent particle property disparity between coarser and finer particles,this research differentiates the stiffness distribution of gap-graded soils from the perspective of contact and particle types.Results indicate that particle property disparity significantly influence the small-strain stiffness characteristics,consequently altering the overall stiffness distribution in gap-graded soil specimens.Specifically,with the equivalent coarser particle property,an increase in particle Young's modulus of finer particles results in an augmentation of small-strain stiffness values,alongside an increased stiffness distribution contribution from finer particles.Nevertheless,this study reveals that even with a higher particle Young's modulus of finer particles,the proportion of small-strain stiffness transferred by finer particles remains consistently lower than their volume fraction.Furthermore,the proportion of stiffness transferred by finer particles may fall below their contribution to stress transmission.This investigation accentuates the subtle yet significant effects of particle property variations on small strain stiffness and its subsequent distribution,providing a foundation for advancing the significance of particle property disparities in evaluating soil responses. 展开更多
关键词 discrete element method Particle property disparity Gap-graded soils Stiffness distribution Small-strain stiffness
在线阅读 下载PDF
Investigation of the effect of particle composition on its distribution homogeneity in aggregate blend using discrete element method
11
作者 Weixiao Yu Sudi Wang +1 位作者 Zhenlong Gong Yinghao Miao 《Journal of Road Engineering》 2025年第1期116-127,共12页
The homogeneity of aggregate blend has a significant influence on the performance of asphalt mixture.The composition of aggregate blend,including the size combination and the mass ratio between each size particles(MRE... The homogeneity of aggregate blend has a significant influence on the performance of asphalt mixture.The composition of aggregate blend,including the size combination and the mass ratio between each size particles(MRESP),is an important factor affecting the homogeneity.This study investigated the influence of the size combination and MRESP on the distribution homogeneity of particles in aggregate blend using discrete element method(DEM).An indicator quantifying the distribution homogeneity was established according to the coefficient of variation(CV)for particle number.Two-size,three-size,and four-size aggregate blends with various compositions were designed.Laboratory tests show the DEM simulation is feasible.The particle distribution homogeneity in various blends was analyzed.The results showed the distribution homogeneity of each size particles in a blend is closely related to their mass fraction.The higher the mass fraction of the particles,the more homogeneous the distribution of them.The MRESP has no significant influence on the homogeneity of the blend composed of only coarse aggregates.However,the homogeneity of the blend composed of coarse and fine aggregates improves gradually with the increase of the mass fraction of fine aggregates.The smaller the maximum particle size in a blend,the better the homogeneity.It is suggested that the mass fraction of fine aggregates should be between 33%and 50%for achieving good homogeneity of aggregate blends.The research results can provide a reference for gradation design of asphalt mixture. 展开更多
关键词 Aggregate blend Distribution homogeneity Particle combination discrete element method
在线阅读 下载PDF
Damage evolution of surrounding sandstone rock under charging–discharging cyclic loading in the natural gas storage of abandoned mines based on the discrete element method
12
作者 Zhanguo Ma Junyu Sun +3 位作者 Peng Gong Erwin Oh Jun Hu Ruichong Zhang 《Deep Underground Science and Engineering》 2025年第2期329-338,共10页
Gas storage in abandoned mines is one way to reuse waste space resources.The surrounding rock of gas storage reservoirs in underground roadways undergoes damage and deformation under the cyclic loading of gas charging... Gas storage in abandoned mines is one way to reuse waste space resources.The surrounding rock of gas storage reservoirs in underground roadways undergoes damage and deformation under the cyclic loading of gas charging and discharging,which can pose a risk to the safety of the reservoirs.This study establishes a true triaxial numerical model of rock mass with the discrete element method(DEM)and explores the crack evolution of surrounding rock of underground gas storage during cyclic loading and unloading.Also,a damage evolution model in numerical analysis considering residual deformation is developed to explain the experimental results.As was revealed,cyclic loading and unloading resulted in fatigue damage in the specimen and caused strength deterioration of the specimen.During the loading process,the uniformly distributed force chains of the rock mass redistributed,evolving gradually to mostly transverse force chains.This contributed to the appearance of blank areas in the force chains when through cracks appear.The ratio of tensile cracks to shear cracks gradually decreases and finally stabilizes at 7:1.The damage evolution model considering residual strain can be mutually verified with the numerical simulation results.Based on the DEM model,it was found that there was a certain threshold of confining pressure.When the confining pressure exceeded 30 MPa,the deformation to ductility of sandstone samples began to accelerate,with a greater residual strength.This study provides a theoretical basis for analyzing the long-term mechanical behavior of surrounding rock of gas storage in abandoned mines. 展开更多
关键词 damage evolution model of surrounding rock discrete element method force chains gas charging-discharging cycle gas storage in abandoned mines
原文传递
Investigation of interaction behavior between hydraulic fractures and gravels in heterogeneous glutenite using a grain-based discrete element method
13
作者 Zhao-Peng Zhang Yu-Shi Zou +1 位作者 Hai-Yan Zhu Shi-Cheng Zhang 《Petroleum Science》 2025年第1期348-369,共22页
The glutenite reservoir is strongly heterogeneous due to the random distribution of gravels, making it challenging to perform hydraulic fracturing effectively. To solve this issue, it is essential to study interaction... The glutenite reservoir is strongly heterogeneous due to the random distribution of gravels, making it challenging to perform hydraulic fracturing effectively. To solve this issue, it is essential to study interaction behavior between hydraulic fractures(HFs) and gravels. A coupled hydro-mechanical model is proposed for HF propagation in glutenite using a grain-based discrete element method. This paper first investigates the dynamic evolution of HFs in glutenite, then analyzes the influences of various factors such as horizontal stress difference(Δσ), minimum horizontal stress(σh), gravel content(Vg), gravel size(dg), and stiffness ratio of gravel to matrix(Rs) on HF propagation geometries. Results show that penetrating the gravel is the primary HF-gravel interaction behavior, which follows sequential and staggered initiation modes. Bypassing the gravel is the secondary behavior, which obeys the sequential initiation mode and occurs when the orientation of the gravel boundary is inclined to the maximum horizontal stress(σH). An offset along the gravel boundary is usually formed while penetrating gravels, and the offsets may cause fracture widths to decrease by 37.8%-84.4%. Even if stress dominates the direction of HF propagation, HFs still tend to deflect within gravels. The deviation angle from σH decreases with rising Δσand increases with the increase of dgand Rs. Additionally, intra-gravel shear HFs(IGS-HFs) are prone to be generated in coarse-grained glutenite under high Δσ, while more gravel-bypassing shear HFs(GBSHFs) tend to be created in argillaceous glutenite with high Rsthan in sandy glutenite with low Rs. The findings above prompt the emergence of a novel HF propagation pattern in glutenite, which helps to understand the real HF geometries and to provide theoretical guidance for treatments in the field. 展开更多
关键词 Hydraulic fracture propagation Fractureegravel interaction behavior Grain-based discrete element method GLUTENITE
原文传递
Revealling pore microstructure impacts on the compressive strength of porous proppant based on finite and discrete element method
14
作者 Zijia Liao Hesamoddin Rabiee +5 位作者 Lei Ge Xiaogang Li Zhaozhong Yang Qi Xue Chao Shen Hao Wang 《Journal of Materials Science & Technology》 2025年第8期72-81,共10页
Ceramic spheres,typically with a particle diameter of less than 0.8 mm,are frequently utilized as a critical proppant material in hydraulic fracturing for petroleum and natural gas extraction.Porous ceramic spheres wi... Ceramic spheres,typically with a particle diameter of less than 0.8 mm,are frequently utilized as a critical proppant material in hydraulic fracturing for petroleum and natural gas extraction.Porous ceramic spheres with artificial inherent pores are an important type of lightweight proppant,enabling their transport to distant fracture extremities and enhancing fracture conductivity.However,the focus frequently gravitates towards the low-density advantage,often overlooking the pore geometry impacts on compressive strength by traditional strength evaluation.This paper numerically bypasses such limitations by using a combined finite and discrete element method(FDEM)considering experimental results.The mesh size of the model undergoes validation,followed by the calibration of cohesive element parameters via the single particle compression test.The stimulation elucidates that proppants with a smaller pore size(40μm)manifest crack propagation evolution at a more rapid pace in comparison to their larger-pore counterparts,though the influence of pore diameter on overall strength is subtle.The inception of pores not only alters the trajectory of crack progression but also,with an increase in porosity,leads to a discernible decline in proppant compressive strength.Intriguingly,upon crossing a porosity threshold of 10%,the decrement in strength becomes more gradual.A denser congregation of pores accelerates crack propagation,undermining proppant robustness,suggesting that under analogous conditions,hollow proppants might not match the strength of their porous counterparts.This exploration elucidates the underlying mechanisms of proppant failure from a microstructural perspective,furnishing pivotal insights that may guide future refinements in the architectural design of porous proppant. 展开更多
关键词 Porous proppant Finite and discrete element method(FDEM) CRACK Compressive strength
原文传递
Investigation of the block toppling evolution of a layered model slope by centrifuge test and discrete element modeling 被引量:3
15
作者 Leilei Jin Hongkai Dong +3 位作者 Fei Ye Yufeng Wei Jianfeng Liu Changkui Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期112-122,共11页
Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model sl... Primary toppling usually occurs in layered rock slopes with large anti-dip angles.In this paper,the block toppling evolution was explored using a large-scale centrifuge system.Each block column in the layered model slope was made of cement mortar.Some artificial cracks perpendicular to the block column were prefabricated.Strain gages,displacement gages,and high-speed camera measurements were employed to monitor the deformation and failure processes of the model slope.The centrifuge test results show that the block toppling evolution can be divided into seven stages,i.e.layer compression,formation of major tensile crack,reverse bending of the block column,closure of major tensile crack,strong bending of the block column,formation of failure zone,and complete failure.Block toppling is characterized by sudden large deformation and occurs in stages.The wedge-shaped cracks in the model incline towards the slope.Experimental observations show that block toppling is mainly caused by bending failure rather than by shear failure.The tensile strength also plays a key factor in the evolution of block toppling.The simulation results from discrete element method(DEM)is in line with the testing results.Tensile stress exists at the backside of rock column during toppling deformation.Stress concentration results in the fragmented rock column and its degree is the most significant at the slope toe. 展开更多
关键词 Block toppling CENTRIFUGE Anti-dip slope Failure mechanism discrete element method
在线阅读 下载PDF
Prediction of constrained modulus for granular soil using 3D discrete element method and convolutional neural networks 被引量:1
16
作者 Tongwei Zhang Shuang Li +1 位作者 Huanzhi Yang Fanyu Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4769-4781,共13页
To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 ... To efficiently predict the mechanical parameters of granular soil based on its random micro-structure,this study proposed a novel approach combining numerical simulation and machine learning algorithms.Initially,3500 simulations of one-dimensional compression tests on coarse-grained sand using the three-dimensional(3D)discrete element method(DEM)were conducted to construct a database.In this process,the positions of the particles were randomly altered,and the particle assemblages changed.Interestingly,besides confirming the influence of particle size distribution parameters,the stress-strain curves differed despite an identical gradation size statistic when the particle position varied.Subsequently,the obtained data were partitioned into training,validation,and testing datasets at a 7:2:1 ratio.To convert the DEM model into a multi-dimensional matrix that computers can recognize,the 3D DEM models were first sliced to extract multi-layer two-dimensional(2D)cross-sectional data.Redundant information was then eliminated via gray processing,and the data were stacked to form a new 3D matrix representing the granular soil’s fabric.Subsequently,utilizing the Python language and Pytorch framework,a 3D convolutional neural networks(CNNs)model was developed to establish the relationship between the constrained modulus obtained from DEM simulations and the soil’s fabric.The mean squared error(MSE)function was utilized to assess the loss value during the training process.When the learning rate(LR)fell within the range of 10-5e10-1,and the batch sizes(BSs)were 4,8,16,32,and 64,the loss value stabilized after 100 training epochs in the training and validation dataset.For BS?32 and LR?10-3,the loss reached a minimum.In the testing set,a comparative evaluation of the predicted constrained modulus from the 3D CNNs versus the simulated modulus obtained via DEM reveals a minimum mean absolute percentage error(MAPE)of 4.43%under the optimized condition,demonstrating the accuracy of this approach.Thus,by combining DEM and CNNs,the variation of soil’s mechanical characteristics related to its random fabric would be efficiently evaluated by directly tracking the particle assemblages. 展开更多
关键词 Soil structure Constrained modulus discrete element model(DEM) Convolutional neural networks(CNNs) Evaluation of error
在线阅读 下载PDF
Damage Mechanism of Ultra-thin Asphalt Overlay(UTAO) based on Discrete Element Method
17
作者 杜晓博 GAO Liang +4 位作者 RAO Faqiang 林宏伟 ZHANG Hongchao SUN Mutian XU Xiuchen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期473-486,共14页
Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and fou... Aiming to analyze the damage mechanism of UTAO from the perspective of meso-mechanical mechanism using discrete element method(DEM),we conducted study of diseases problems of UTAO in several provinces in China,and found that aggregate spalling was one of the main disease types of UTAO.A discrete element model of UTAO pavement structure was constructed to explore the meso-mechanical mechanism of UTAO damage under the influence of layer thickness,gradation,and bonding modulus.The experimental results show that,as the thickness of UTAO decreasing,the maximum value and the mean value of the contact force between all aggregate particles gradually increase,which leads to aggregates more prone to spalling.Compared with OGFC-5 UTAO,AC-5 UTAO presents smaller maximum and average values of all contact forces,and the loading pressure in AC-5 UTAO is fully diffused in the lateral direction.In addition,the increment of pavement modulus strengthens the overall force of aggregate particles inside UTAO,resulting in aggregate particles peeling off more easily.The increase of bonding modulus changes the position where the maximum value of the tangential force appears,whereas has no effect on the normal force. 展开更多
关键词 ultra-thin asphalt overlay pavement distress discrete element method meso-mechanics damage mechanism
原文传递
Micromechanical modeling of hollow cylinder torsional shear test on sand using discrete element method
18
作者 Shunxiang Song Pei Wang +1 位作者 Zhenyu Yin Yi Pik Cheng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第12期5193-5208,共16页
Previous studies on the hollow cylinder torsional shear test(HCTST)have mainly focused on the macroscopic behavior,while the micromechanical responses in soil specimens with shaped particles have rarely been investiga... Previous studies on the hollow cylinder torsional shear test(HCTST)have mainly focused on the macroscopic behavior,while the micromechanical responses in soil specimens with shaped particles have rarely been investigated.This paper develops a numerical model of the HCTST using the discrete element method(DEM).The method of bonded spheres in a hexagonal arrangement is proposed to generate flexible boundaries that can achieve real-time adjustment of the internal and external cell pressures and capture the inhomogeneous deformation in the radial direction during shearing.Representative angular particles are selected from Toyoura sand and reproduced in this model to approximate real sand particles.The model is then validated by comparing numerical and experimental results of HCTSTs on Toyoura sand with different major principal stress directions.Next,a series of HCTSTs with different combinations of major principal stress direction(a)and intermediate principal stress ratio(b)is simulated to quantitatively characterize the sand behavior under different shear conditions.The results show that the shaped particles are horizontally distributed before shearing,and the initial anisotropic packing structure further results in different stressestrain curves in cases with different a and b values.The distribution of force chains is affected by both a and b during the shear process,together with the formation of the shear bands in different patterns.The contact normal anisotropy and contact force anisotropy show different evolution patterns when either a or b varies,resulting in the differences in the non-coaxiality and other macroscopic responses.This study improves the understanding of the macroscopic response of sand from a microscopic perspective and provides valuable insights for the constitutive modeling of sand. 展开更多
关键词 SAND Hollow cylinder torsional shear test(HCTST) discrete element method(DEM) Principal stress rotation MICROMECHANICS ANISOTROPY
在线阅读 下载PDF
Dynamic failure process of expanded polystyrene particle lightweight soil under cyclic loading using discrete element method
19
作者 Zhou Wei Hou Tianshun +3 位作者 Chen Ye Wang Qi Luo Yasheng Zhang Yafei 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第4期815-828,共14页
Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research atten... Expanded polystyrene(EPS)particle-based lightweight soil,which is a type of lightweight filler,is mainly used in road engineering.The stability of subgrades under dynamic loading is attracting increased research attention.The traditional method for studying the dynamic strength characteristics of soils is dynamic triaxial testing,and the discrete element simulation of lightweight soils under cyclic load has rarely been considered.To study the meso-mechanisms of the dynamic failure processes of EPS particle lightweight soils,a discrete element numerical model is established using the particle flow code(PFC)software.The contact force,displacement field,and velocity field of lightweight soil under different cumulative compressive strains are studied.The results show that the hysteresis curves of lightweight soil present characteristics of strain accumulation,which reflect the cyclic effects of the dynamic load.When the confining pressure increases,the contact force of the particles also increases.The confining pressure can restrain the motion of the particle system and increase the dynamic strength of the sample.When the confining pressure is held constant,an increase in compressive strain causes minimal change in the contact force between soil particles.However,the contact force between the EPS particles decreases,and their displacement direction points vertically toward the center of the sample.Under an increase in compressive strain,the velocity direction of the particle system changes from a random distribution and points vertically toward the center of the sample.When the compressive strain is 5%,the number of particles deflected in the particle velocity direction increases significantly,and the cumulative rate of deformation in the lightweight soil accelerates.Therefore,it is feasible to use 5%compressive strain as the dynamic strength standard for lightweight soil.Discrete element methods provide a new approach toward the dynamic performance evaluation of lightweight soil subgrades. 展开更多
关键词 lightweight soil cyclic loading dynamic triaxial test discrete element method hysteresis curve
在线阅读 下载PDF
An Innovative Coupled Common-Node Discrete Element Method-Smoothed Particle Hydrodynamics Model Developed with LS-DYNA and Its Applications
20
作者 SHEN Zhong-xiang WANG Wen-qing +2 位作者 XU Cheng-yue LUO Jia-xin LIU Ren-wei 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期467-482,共16页
In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SP... In this study,a common-node DEM-SPH coupling model based on the shared node method is proposed,and a fluid–structure coupling method using the common-node discrete element method-smoothed particle hydrodynamics(DS-SPH)method is developed using LS-DYNA software.The DEM and SPH are established on the same node to create common-node DEM-SPH particles,allowing for fluid–structure interactions.Numerical simulations of various scenarios,including water entry of a rigid sphere,dam-break propagation over wet beds,impact on an ice plate floating on water and ice accumulation on offshore structures,are conducted.The interaction between DS particles and SPH fluid and the crack generation mechanism and expansion characteristics of the ice plate under the interaction of structure and fluid are also studied.The results are compared with available data to verify the proposed coupling method.Notably,the simulation results demonstrated that controlling the cutoff pressure of internal SPH particles could effectively control particle splashing during ice crushing failure. 展开更多
关键词 common-node DEM-SPH fluid-structure interaction discrete element method smoothed particle hydrodynamics
在线阅读 下载PDF
上一页 1 2 29 下一页 到第
使用帮助 返回顶部