The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fractur...The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fracturing processes in rocks and rock masses. The fundamental principles of each computer code are illustrated with particular emphasis on the approach specifically adopted to simulate fracture nucleation and propagation and to account for the presence of rock mass discontinuities. This description is accompanied by a brief review of application studies focusing on laboratory-scale models of rock failure processes and on the simulation of damage development around underground excavations.展开更多
The high-temperature creep behavior of asphalt mixture was investigated based on micromechanical modeling and virtual test by using three-dimensional discrete element method(DEM). A user-defined micromechanical mode...The high-temperature creep behavior of asphalt mixture was investigated based on micromechanical modeling and virtual test by using three-dimensional discrete element method(DEM). A user-defined micromechanical model of asphalt mixture was established after analyzing the irregular shape and gradation of coarse aggregates, the viscoelastic property of asphalt mastic, and the random distribution of air voids within the asphalt mixture. Virtual uniaxial static creep test at 60 ℃ was conducted by using Particle Flow Code in three dimensions(PFC3D) and was validated by laboratory test. Based on virtual creep test, the micromechanical characteristics between aggregates, within asphalt mastic, and between aggregate and asphalt mastic were analyzed for the asphalt mixture. It is proved that the virtual test based on the micromechanical model can efficiently predict the creep deformation of asphalt mixture. And the high-temperature behavior of asphalt mixture was characterized from micromechanical perspective.展开更多
A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (randompoly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grainboundaries in pol...A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (randompoly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grainboundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rockand allow for numerical replication of crack damage progression through initiation and propagation ofmicro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the pastfor brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi modelshas limited its application to two-dimensional (2D) codes. The proposed approach is implemented inNeper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files thatcan be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS) tests are simulated in3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate therelationship between each micro-parameter and the model's macro-response. The possibility of numericalreplication of the classical U-shape strength curve for anisotropic rocks is also investigated innumerical UCS tests by using complex-shaped (elongated) grains that are cemented to one another alongtheir adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models foraccurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric) rocks. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.展开更多
This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian...This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian-Lagrangian description of particulate flows, where the particles behave as the catalysts or the reactant materials. For the strong interaction between the transport phenomena (i.e., momentum, heat and mass transfer) and the chemical reactions at the particle scale, a cross-scale modeling approach, i.e., CFD-DEM or CFD-DPM, is established for describing a wide variety of complex reacting flows in multiphase reactors, Representative processes, including fluid catalytic cracking (FCC), catalytic conversion of syngas to methane, and coal pyrolysis to acetylene in thermal plasma, are chosen as case studies to demonstrate the unique advantages of the theoretical scheme based on the integrated particle-scale information with clear physical meanings, This type of modeling approach provides a solid basis for understanding the multiphase reacting flow problems in general.展开更多
文摘The goal of this review paper is to provide a summary of selected discrete element and hybrid finitediscrete element modeling techniques that have emerged in the field of rock mechanics as simulation tools for fracturing processes in rocks and rock masses. The fundamental principles of each computer code are illustrated with particular emphasis on the approach specifically adopted to simulate fracture nucleation and propagation and to account for the presence of rock mass discontinuities. This description is accompanied by a brief review of application studies focusing on laboratory-scale models of rock failure processes and on the simulation of damage development around underground excavations.
基金Funded by the National Natural Science Foundation of China(No.51378006)the Huoyingdong Foundation of China(No.141076)+1 种基金the Fundamental Research Funds for the Central Universities(No.2242015R30027)the Natural Science Foundation of Jiangsu Province(BK20161421 and BK20140109)
文摘The high-temperature creep behavior of asphalt mixture was investigated based on micromechanical modeling and virtual test by using three-dimensional discrete element method(DEM). A user-defined micromechanical model of asphalt mixture was established after analyzing the irregular shape and gradation of coarse aggregates, the viscoelastic property of asphalt mastic, and the random distribution of air voids within the asphalt mixture. Virtual uniaxial static creep test at 60 ℃ was conducted by using Particle Flow Code in three dimensions(PFC3D) and was validated by laboratory test. Based on virtual creep test, the micromechanical characteristics between aggregates, within asphalt mastic, and between aggregate and asphalt mastic were analyzed for the asphalt mixture. It is proved that the virtual test based on the micromechanical model can efficiently predict the creep deformation of asphalt mixture. And the high-temperature behavior of asphalt mixture was characterized from micromechanical perspective.
文摘A grain-based distinct element model featuring three-dimensional (3D) Voronoi tessellations (randompoly-crystals) is proposed for simulation of crack damage development in brittle rocks. The grainboundaries in poly-crystal structure produced by Voronoi tessellations can represent flaws in intact rockand allow for numerical replication of crack damage progression through initiation and propagation ofmicro-fractures along grain boundaries. The Voronoi modelling scheme has been used widely in the pastfor brittle fracture simulation of rock materials. However the difficulty of generating 3D Voronoi modelshas limited its application to two-dimensional (2D) codes. The proposed approach is implemented inNeper, an open-source engine for generation of 3D Voronoi grains, to generate block geometry files thatcan be read directly into 3DEC. A series of Unconfined Compressive Strength (UCS) tests are simulated in3DEC to verify the proposed methodology for 3D simulation of brittle fractures and to investigate therelationship between each micro-parameter and the model's macro-response. The possibility of numericalreplication of the classical U-shape strength curve for anisotropic rocks is also investigated innumerical UCS tests by using complex-shaped (elongated) grains that are cemented to one another alongtheir adjoining sides. A micro-parameter calibration procedure is established for 3D Voronoi models foraccurate replication of the mechanical behaviour of isotropic and anisotropic (containing a fabric) rocks. 2014 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting byElsevier B.V. All rights reserved.
基金support of the National Natural Science Foundation of China(NSFC) under grants Nos.20976091 and 20806045the Key Project of National High-tech R&D Program under grant No.2009AA044701the Program for New Century Excellent Talents in universities(NCET)
文摘This paper gives an overview of the recent development of modeling and simulation of chemically react- ing flows in gas-solid catalytic and non-catalytic processes. General methodology has been focused on the Eulerian-Lagrangian description of particulate flows, where the particles behave as the catalysts or the reactant materials. For the strong interaction between the transport phenomena (i.e., momentum, heat and mass transfer) and the chemical reactions at the particle scale, a cross-scale modeling approach, i.e., CFD-DEM or CFD-DPM, is established for describing a wide variety of complex reacting flows in multiphase reactors, Representative processes, including fluid catalytic cracking (FCC), catalytic conversion of syngas to methane, and coal pyrolysis to acetylene in thermal plasma, are chosen as case studies to demonstrate the unique advantages of the theoretical scheme based on the integrated particle-scale information with clear physical meanings, This type of modeling approach provides a solid basis for understanding the multiphase reacting flow problems in general.