期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Characteristics of temporal evolution of particle density and electron temperature in helicon discharge
1
作者 Xiong YANG Mousen CHENG +2 位作者 Dawei GUO Moge WANG Xiaokang LI 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第10期26-34,共9页
On the basis of considering electrochemical reactions and collision relations in detail, a direct numerical simulation model of a helicon plasma discharge with three-dimensional two-fluid equations was employed to stu... On the basis of considering electrochemical reactions and collision relations in detail, a direct numerical simulation model of a helicon plasma discharge with three-dimensional two-fluid equations was employed to study the characteristics of the temporal evolution of particle density and electron temperature. With the assumption of weak ionization, the Maxwell equations coupled with the plasma parameters were directly solved in the whole computational domain. All of the partial differential equations were solved by the finite element solver in COMSOL Multiphysics^(TM) with a fully coupled method. In this work, the numerical cases were calculated with an Ar working medium and a Shoji-type antenna. The numerical results indicate that there exist two distinct modes of temporal evolution of the electron and ground atom density, which can be explained by the ion pumping effect. The evolution of the electron temperature is controlled by two schemes: electromagnetic wave heating and particle collision cooling. The high RF power results in a high peak electron temperature while the high gas pressure leads to a low steady temperature. In addition, an OES experiment using nine Ar I lines was conducted using a modified CR model to verify the validity of the results by simulation, showing that the trends of temporal evolution of electron density and temperature are well consistent with the numerically simulated ones. 展开更多
关键词 helicon discharge numerical simulation temporal evolution pumping effect
在线阅读 下载PDF
The influence of grounded electrode positions on the evolution and characteristics of an atmospheric pressure argon plasma jet 被引量:6
2
作者 Bo ZHANG Ying ZHU +1 位作者 Feng LIU Zhi FANG 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第6期3-9,共7页
An atmospheric pressure plasma jet(APPJ) in Ar with various grounded electrode arrangements is employed to investigate the effects of electrode arrangement on the characteristics of the APPJ.Electrical and optical m... An atmospheric pressure plasma jet(APPJ) in Ar with various grounded electrode arrangements is employed to investigate the effects of electrode arrangement on the characteristics of the APPJ.Electrical and optical methods are used to characterize the plasma properties.The discharge modes of the APPJ with respect to applied voltage are studied for grounded electrode positions of 10 mm,40 mm and 80 mm,respectively,and the main discharge and plasma parameters are investigated.It is shown that an increase in the distance between the grounded electrode and high-voltage electrode results in a change in the discharge modes and discharge parameters.The discharges transit from having two discharge modes,dielectric barrier discharge(DBD) and jet,to having three,corona,DBD and jet,with increase in the distance from the grounded to the high-voltage electrodes.The maximum length of the APPJ reaches 3.8 cm at an applied voltage of 8 kV.The discharge power and transferred charges and spectral line intensities for species in the APPJ are influenced by the positions of the grounded electrode,while there is no obvious difference in the values of the electron excited temperature(EET) for the three grounded electrode positions. 展开更多
关键词 grounded electrode discharge evolution discharge parameters electric field plasma jet
在线阅读 下载PDF
Time-resolved measurements of NO2 concentration in pulsed discharges by high-sensitivity cavity ring-down spectroscopy 被引量:1
3
作者 吴兴伟 李聪 +2 位作者 冯春雷 王奇 丁洪斌 《Plasma Science and Technology》 SCIE EI CAS CSCD 2017年第5期80-84,共5页
To describe the complex kinetics of formation and destruction mechanism of nitrogen dioxide(NO2), there is an increasing demand for real-time and in situ analysis of NO2 in the discharge region. Pulsed cavity ring-d... To describe the complex kinetics of formation and destruction mechanism of nitrogen dioxide(NO2), there is an increasing demand for real-time and in situ analysis of NO2 in the discharge region. Pulsed cavity ring-down spectroscopy(CRDS) provides an excellent diagnostic approach. In the present paper, CRDS has been applied in situ for time evolution measurement of NO2 concentration which is rarely investigated in gas discharges. In pulsed direct current discharge of NO2/Ar mixture at a pressure of 500 Pa, a peak voltage of -1300 V and a frequency of 30 Hz, for higher initial NO2 concentration(3.05×10^(14)cm^(-3), 8.88×10^(13)cm^(-3)),the NO2 concentration sharply decreases at the beginning of the discharge afterglow and then becomes almost constant, and the pace of decline increases with pulse duration; however, for lower initial NO2 concentration of 1.69×10^(13)cm^(-3), the NO2 concentration also decreases at the beginning of the discharge afterglow for 200 ns and 1 μs pulse durations, while it slightly increases and then declines for 2 μs pulse duration. Thus, the removal of low-level NO2 could not be promoted by a higher mean energy input. 展开更多
关键词 CRDS ns-pulsed discharge time evolution of NO2 concentration
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部