基于弹着点空间分布对目标毁伤效能的差异化影响,构建导弹命中目标不同重要区域的概率分布模型,实现对传统命中精度概念的扩展。针对导弹实打试验过程复杂、费用高、次数少的实际,采用贝叶斯方法融合多源信息,基于区域划分-分布确定-先...基于弹着点空间分布对目标毁伤效能的差异化影响,构建导弹命中目标不同重要区域的概率分布模型,实现对传统命中精度概念的扩展。针对导弹实打试验过程复杂、费用高、次数少的实际,采用贝叶斯方法融合多源信息,基于区域划分-分布确定-先验融合-后验求解的思路进行导弹命中精度估计。选取Dirichlet分布作为命中精度参数的先验分布,运用D-S(Dempster-Shafer)证据理论对先验信息进行融合处理,基于马尔可夫链蒙特卡罗(Markov chain Monte Carlo, MCMC)方法对精度参数的后验分布进行求解。示例表明,该方法能够细致描述导弹命中目标不同重要区域的概率,并科学融合多源命中精度先验信息,为导弹命中精度估计方法及测试方案优化提供理论借鉴。展开更多
In this paper, we establish asymptotic formulas for a cubic moment of Dirichlet L-functions restricted to a coset, as well as for a mixed moment of Dirichlet L-functions and twists of GL(2) L-functions along a coset. ...In this paper, we establish asymptotic formulas for a cubic moment of Dirichlet L-functions restricted to a coset, as well as for a mixed moment of Dirichlet L-functions and twists of GL(2) L-functions along a coset. Our main tool is a power-saving estimate of bilinear forms of hyper-Kloosterman sums due to Kowalski–Michel–Sawin.展开更多
In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditio...In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.展开更多
文摘基于弹着点空间分布对目标毁伤效能的差异化影响,构建导弹命中目标不同重要区域的概率分布模型,实现对传统命中精度概念的扩展。针对导弹实打试验过程复杂、费用高、次数少的实际,采用贝叶斯方法融合多源信息,基于区域划分-分布确定-先验融合-后验求解的思路进行导弹命中精度估计。选取Dirichlet分布作为命中精度参数的先验分布,运用D-S(Dempster-Shafer)证据理论对先验信息进行融合处理,基于马尔可夫链蒙特卡罗(Markov chain Monte Carlo, MCMC)方法对精度参数的后验分布进行求解。示例表明,该方法能够细致描述导弹命中目标不同重要区域的概率,并科学融合多源命中精度先验信息,为导弹命中精度估计方法及测试方案优化提供理论借鉴。
基金Supported by the National Key R&D Program of China(Grant No.2021YFA1000700)National Natural Science Foundation of China(Grant No.12031008)。
文摘In this paper, we establish asymptotic formulas for a cubic moment of Dirichlet L-functions restricted to a coset, as well as for a mixed moment of Dirichlet L-functions and twists of GL(2) L-functions along a coset. Our main tool is a power-saving estimate of bilinear forms of hyper-Kloosterman sums due to Kowalski–Michel–Sawin.
基金supported by the National Natural Science Foundation of China(12171373)Chen's work also supported by the Fundamental Research Funds for the Central Universities of China(GK202207018).
文摘In this paper,we study composition operators on weighted Bergman spaces of Dirichlet series.We first establish some Littlewood-type inequalities for generalized mean counting functions.Then we give sufficient conditions for a composition operator with zero characteristic to be bounded or compact on weighted Bergman spaces of Dirichlet series.The corresponding sufficient condition for compactness in the case of positive characteristics is also obtained.