In this work, we introduce a method of fingerprint directional image partitioning based on GA. According to the fingerprint topology, A set of dynamic partition masks and a cost estimating function are designed to gui...In this work, we introduce a method of fingerprint directional image partitioning based on GA. According to the fingerprint topology, A set of dynamic partition masks and a cost estimating function are designed to guide the partitioning procedure. Finding best fitted mask application is converted to an functional optimizing problem, and we give out a GA solution to the problem. At last, we discuss the application of the proposed method in Fingerprint Classification.展开更多
According to the signal-to-noise ratio (SNR) loss of average algorithms in direct P-code acquisition method, this paper analyzes the SNR performance of the overlap average algorithm quantitatively, and derives the r...According to the signal-to-noise ratio (SNR) loss of average algorithms in direct P-code acquisition method, this paper analyzes the SNR performance of the overlap average algorithm quantitatively, and derives the relationship of SNR loss with overlap shift value and initial average phase difference in the overlap average algorithm. On this basis, the bidirectional overlap average algorithm based on optimal correlation SNR is proposed. The algorithm maintains SNR consistent in the entire initial average phase difference space, and has a better SNR performance than the overlap average algorithm. The effectiveness of the algorithm is verified by both theoretical analysis and simulation results. The SNR performance of the bidirectional overlap average algorithm is 5 dB better than that of the direct average algorithm, and 2 dB better than that of the overlap average algorithm, which provides the support for direct P-code acquisition in low SNR.展开更多
The car surface scratch detection adopts the traditional manual detection with poor efficiency and high missing rate.Because of the gray mark and the background of car surface scratches,the traditional edge detection ...The car surface scratch detection adopts the traditional manual detection with poor efficiency and high missing rate.Because of the gray mark and the background of car surface scratches,the traditional edge detection algorithm cannot meet the needs of car surface scratch detection.Therefore,the directional SUSAN algorithm based on CIELab color space is adopted in this paper.The direction template and the circle template to calculate the color difference of the color image are used in the algorithm which has been converted to the CIELab space.The edges and scratches are eliminated by matching and contrasting the detected image with the edge template.Experimental results show that the algorithm can effectively detect scratches on the surface of cars,improve the detection speed and reduce the undetected rate.展开更多
Directional modulation is one of the hot topics in data security researches.To fulfill the requirements of communication security in wireless environment with multiple paths,this study takes into account the factors o...Directional modulation is one of the hot topics in data security researches.To fulfill the requirements of communication security in wireless environment with multiple paths,this study takes into account the factors of reflections and antenna radiation pattern for directional modulation.Unlike other previous works,a novel multiple-reflection model,which is more realistic and complex than simplified two-ray reflection models,is proposed based on two reflectors.Another focus is a quantum genetic algorithm applied to optimize antenna excitation in a phased directional modulation antenna array.The quantum approach has strengths in convergence speed and the globe searching ability for the complicated model with the large-size antenna array and multiple paths.From this,a phased directional modulation transmission system can be optimized as regards communication safety and improve performance based on the constraint of the pattern of the antenna array.Our work can spur applications of the quantum evolutionary algorithm in directional modulation technology,which is also studied.展开更多
With the development of science, economy and society, the needs for research and exploration of deep space have entered a rapid and stable development stage. Deep Space Optical Network(DSON) is expected to become an i...With the development of science, economy and society, the needs for research and exploration of deep space have entered a rapid and stable development stage. Deep Space Optical Network(DSON) is expected to become an important foundation and inevitable development trend of future deepspace communication. In this paper, we design a deep space node model which is capable of combining the space division multiplexing with frequency division multiplexing. Furthermore, we propose the directional flooding routing algorithm(DFRA) for DSON based on our node model. This scheme selectively forwards the data packets in the routing, so that the energy consumption can be reduced effectively because only a portion of nodes will participate the flooding routing. Simulation results show that, compared with traditional flooding routing algorithm(TFRA), the DFRA can avoid the non-directional and blind transmission. Therefore, the energy consumption in message routing will be reduced and the lifespan of DSON can also be prolonged effectively. Although the complexity of routing implementation is slightly increased compared with TFRA, the energy of nodes can be saved and the transmission rate is obviously improved in DFRA. Thus the overall performance of DSON can be significantly improved.展开更多
Coverage control for each sensor is based on a 2D directional sensing model in directional sensor networks conventionally. But the 2D model cannot accurately characterize the real environment. In order to solve this p...Coverage control for each sensor is based on a 2D directional sensing model in directional sensor networks conventionally. But the 2D model cannot accurately characterize the real environment. In order to solve this problem,a new 3D directional sensor model and coverage enhancement algorithm is proposed. We can adjust the pitch angle and deviation angle to enhance the coverage rate. And the coverage enhancement algorithm is based on an improved gravitational search algorithm. In this paper the two improved strategies of GSA are directional mutation strategy and individual evolution strategy. A set of simulations show that our coverage enhancement algorithm has a good performance to improve the coverage rate of the wireless directional sensor network on different number of nodes,different virtual angles and different sensing radius.展开更多
Online social networks greatly promote peoples'online interaction,where trust plays a crucial role.Trust prediction with trust path search is widely used to help users find the trusted friends and obtain valid inf...Online social networks greatly promote peoples'online interaction,where trust plays a crucial role.Trust prediction with trust path search is widely used to help users find the trusted friends and obtain valid information.However,the shortcomings of accuracy and time still exist in some famous algorithms.Therefore,the dynamic bidirectional heuristic search(DBHS)algorithm is proposed in this paper to find the reliable trust path by studying the heuristic search.First,the trust value and path length are comprehensively considered to find the most trusted user.Specially,it constrains the traversal depth based on the‘small world’theory and obtains the acceptable path set by using the relaxation coefficientλto relax the depth of the shortest path.By this way,some longer path with the higher trust can be considered to improve the precision of algorithm.Then,an adjustment factor is designed based on the meet in the middle(MM)algorithm to assign search weights to two directions based on the size of the search tree expanded,so as to improve the problem of no priori when fixed parameters are used.Besides,the complexity of unidirectional trust path search can also be reduced by searching from two directions,which can reduce the depth and improve the efficiency of search.Finally,the predictive trust degree is outputted by the trust propagation function.Two public datasets are used to generate experimental results,which show that DBHS can quickly search and form reliable trust relationship,and it partly improves other algorithms.展开更多
Accurate estimation of the Direction-of-Arrival(DoA)of incident plane waves is essential for modern wireless communication,radar,sonar,and localization systems.Precise DoA information enables adaptive beamforming,spat...Accurate estimation of the Direction-of-Arrival(DoA)of incident plane waves is essential for modern wireless communication,radar,sonar,and localization systems.Precise DoA information enables adaptive beamforming,spatial filtering,and interference mitigation by steering antenna array beams toward desired sources while suppressing unwanted signals.Traditional one-dimensional Uniform Linear Arrays(ULAs)are limited to elevation angle estimation due to geometric constraints,typically within the range[0,π].To capture full spatial characteristics in environments with multipath and angular spread,joint estimation of both elevation and azimuth angles becomes necessary.However,existing 2D and 3D array geometries often entail increased hardware complexity and computational cost.This work proposes a novel and efficient framework for joint elevation and azimuth angle estimation using three spatially separated,parallel ULAs.The array configuration exploits spatial diversity and orthogonal projections to capture complete directional information with minimal structural overhead.A customized objective function based on the mean square error between measured and reconstructed array outputs is formulated to guide the estimation process.To solve the resulting non-convex optimization problem,three strategies are investigated:a global Genetic Algorithm(GA),a local Pattern Search(PS),and a hybrid GA-PS method that combines global exploration with local refinement.The proposed framework supports automatic pairing of elevation and azimuth angles,eliminating the need for manual post-processing.Extensive simulations validate the robustness,convergence,and accuracy of all three methods under varying signal-to-noise ratio conditions.Results confirm that the hybrid GA-PS approach achieves superior estimation performance and reduced computational complexity,making it well-suited for real-time and resource-constrained applications in next-generation sensing and communication systems.展开更多
In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transform...In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.展开更多
Downhole microseismic data has the significant advantages of high signal-to-noise ratio and well-developed P and S waves and the core component of microseismic monitoring is microseismic event location associated with...Downhole microseismic data has the significant advantages of high signal-to-noise ratio and well-developed P and S waves and the core component of microseismic monitoring is microseismic event location associated with hydraulic fracturing in a relatively high confidence level and accuracy.In this study,we present a multidimensional DIRECT inversion method for microseismic locations and applicability tests over modeling data based on a downhole microseismic monitoring system.Synthetic tests inidcate that the objective function of locations can be defined as a multi-dimensional matrix space by employing the global optimization DIRECT algorithm,because it can be run without the initial value and objective function derivation,and the discretely scattered objective points lead to an expeditious contraction of objective functions in each dimension.This study shows that the DIRECT algorithm can be extensively applied in real downhole microseismic monitoring data from hydraulic fracturing completions.Therefore,the methodology,based on a multidimensional DIRECT algorithm,can provide significant high accuracy and convergent efficiency as well as robust computation for interpretable spatiotemporal microseismic evolution,which is more suitable for real-time processing of a large amount of downhole microseismic monitoring data.展开更多
This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different he...This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.展开更多
Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.T...Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.This method spends most of computing time in objective function evaluation by reservoir numerical simulator which limits its optimization efficiency.To improve optimization efficiency,a well production optimization method using streamline features-based objective function and Bayesian adaptive direct search optimization(BADS)algorithm is established.This new objective function,which represents the water flooding potential,is extracted from streamline features.It only needs to call the streamline simulator to run one time step,instead of calling the simulator to calculate the target value at the end of development,which greatly reduces the running time of the simulator.Then the well production optimization model is established and solved by the BADS algorithm.The feasibility of the new objective function and the efficiency of this optimization method are verified by three examples.Results demonstrate that the new objective function is positively correlated with the cumulative oil production.And the BADS algorithm is superior to other common algorithms in convergence speed,solution stability and optimization accuracy.Besides,this method can significantly accelerate the speed of well production optimization process compared with the objective function calculated by other conventional methods.It can provide a more effective basis for determining the optimal well production for actual oilfield development.展开更多
Direct algorithm of wavelet transform (WT) is the numerical algorithmobtained from the integral formula of WT by directly digitization. Some problems on realizing thealgorithm are studied. Some conclusions on the dire...Direct algorithm of wavelet transform (WT) is the numerical algorithmobtained from the integral formula of WT by directly digitization. Some problems on realizing thealgorithm are studied. Some conclusions on the direct algorithm of discrete wavelet transform (DWT),such as discrete convolution operation formula of wavelet coefficients and wavelet components,sampling principle and technology to wavelets, deciding method for scale range of wavelets, measuresto solve edge effect problem, etc, are obtained. The realization of direct algorithm of continuouswavelet transform (CWT) is also studied. The computing cost of direct algorithm and Mallat algorithmof DWT are still studied, and the computing formulae are obtained. These works are beneficial todeeply understand WT and Mallat algorithm. Examples in the end show that direct algorithm can alsobe applied widely.展开更多
This paper develops a variational model for image noise removal using total curvature(TC), which is a high-order regularizer. The TC has the advantage of preserving image feature. Unfortunately, it also has the charac...This paper develops a variational model for image noise removal using total curvature(TC), which is a high-order regularizer. The TC has the advantage of preserving image feature. Unfortunately, it also has the characteristics of nonlinear, non-convex and non-smooth. Consequently, the numerical computation with the curvature regularization is difficult. In order to conquer the computation problem, the proposed model is transformed into an alternating optimization problem by importing auxiliary variables. Furthermore, based on alternating direction method of multipliers, we design a fast numerical approximation iterative scheme for proposed model. Finally, numerous experiments are implemented to indicate the advantages of the proposed model in image edge preserving, image contrast and corners preserving. Meanwhile, the high computational efficiency of the designed model is verified by comparing with traditional models, including the total variation(TV) and total Laplace(TL) model.展开更多
Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields,including stock market investment.However,few studies have focused on f...Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields,including stock market investment.However,few studies have focused on forecasting daily stock market returns,especially when using powerful machine learning techniques,such as deep neural networks(DNNs),to perform the analyses.DNNs employ various deep learning algorithms based on the combination of network structure,activation function,and model parameters,with their performance depending on the format of the data representation.This paper presents a comprehensive big data analytics process to predict the daily return direction of the SPDR S&P 500 ETF(ticker symbol:SPY)based on 60 financial and economic features.DNNs and traditional artificial neural networks(ANNs)are then deployed over the entire preprocessed but untransformed dataset,along with two datasets transformed via principal component analysis(PCA),to predict the daily direction of future stock market index returns.While controlling for overfitting,a pattern for the classification accuracy of the DNNs is detected and demonstrated as the number of the hidden layers increases gradually from 12 to 1000.Moreover,a set of hypothesis testing procedures are implemented on the classification,and the simulation results show that the DNNs using two PCA-represented datasets give significantly higher classification accuracy than those using the entire untransformed dataset,as well as several other hybrid machine learning algorithms.In addition,the trading strategies guided by the DNN classification process based on PCA-represented data perform slightly better than the others tested,including in a comparison against two standard benchmarks.展开更多
Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltage...Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ~ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ~(O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits.展开更多
Directionality of image plays a very important role in human visual system and it is important prior information of image. In this paper we propose a weighted directional total variation model to reconstruct image fro...Directionality of image plays a very important role in human visual system and it is important prior information of image. In this paper we propose a weighted directional total variation model to reconstruct image from its finite number of noisy compressive samples. A novel self-adaption, texture preservation method is designed to select the weight. Inspired by majorization-minimization scheme, we develop an efficient algorithm to seek the optimal solution of the proposed model by minimizing a sequence of quadratic surrogate penalties. The numerical examples are performed to compare its performance with four state-of-the-art algorithms. Experimental results clearly show that our method has better reconstruction accuracy on texture images than the existing scheme.展开更多
The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parame...The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.展开更多
A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency ...A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency and computational speed are improved via the hybrid GA com- posed of standard GA and Nelder-Mead simplex algorithms. First, the objective function, with a form of generalized Rayleigh quotient, is derived via the standard D3LS algorithm. It is then taken as a fitness function and the unknown phases of all adaptive weights are taken as decision variables. Then, the nonlinear optimization is performed via the hybrid GA to obtain the optimized solution of phase-only adaptive weights. As a phase-only adaptive algorithm, the proposed algorithm is sim- pler than conventional algorithms when it comes to hardware implementation. Moreover, it proc- esses only a single snapshot data as opposed to forming sample covariance matrix and operating matrix inversion. Simulation results show that the proposed algorithm has a good signal recovery and interferences nulling performance, which are superior to that of the phase-only D3LS algorithm based on standard GA.展开更多
A theoretical relationship between the wavelet transform and the fast fourier transformation(FFT) methods in broadband wireless signal is proposed for solving the direction of arrivals(DOAs) estimation problem. This l...A theoretical relationship between the wavelet transform and the fast fourier transformation(FFT) methods in broadband wireless signal is proposed for solving the direction of arrivals(DOAs) estimation problem. This leads naturally to the derivation of minimum variance distortionless response(MVDR) algorithm, which combines the benefits of subspace methods with those of wavelet, and spatially smoothed versions are utilized which exhibits good performance against correlated signals. We test the method's performance by simulating and comparing the performance of proposed algorithm, FFT MVDR and MVDR with correlated signals, and an improved performance is obtained.展开更多
文摘In this work, we introduce a method of fingerprint directional image partitioning based on GA. According to the fingerprint topology, A set of dynamic partition masks and a cost estimating function are designed to guide the partitioning procedure. Finding best fitted mask application is converted to an functional optimizing problem, and we give out a GA solution to the problem. At last, we discuss the application of the proposed method in Fingerprint Classification.
基金supported by the National Natural Science Foundation of China(61102130)the Innovative Program of the Academy of Opto-Electtronics,Chinese Academy of Sciences(Y12414A01Y)
文摘According to the signal-to-noise ratio (SNR) loss of average algorithms in direct P-code acquisition method, this paper analyzes the SNR performance of the overlap average algorithm quantitatively, and derives the relationship of SNR loss with overlap shift value and initial average phase difference in the overlap average algorithm. On this basis, the bidirectional overlap average algorithm based on optimal correlation SNR is proposed. The algorithm maintains SNR consistent in the entire initial average phase difference space, and has a better SNR performance than the overlap average algorithm. The effectiveness of the algorithm is verified by both theoretical analysis and simulation results. The SNR performance of the bidirectional overlap average algorithm is 5 dB better than that of the direct average algorithm, and 2 dB better than that of the overlap average algorithm, which provides the support for direct P-code acquisition in low SNR.
基金supported in part by the Research Institute Joint Innovation Fund(No.BY2013003-06)
文摘The car surface scratch detection adopts the traditional manual detection with poor efficiency and high missing rate.Because of the gray mark and the background of car surface scratches,the traditional edge detection algorithm cannot meet the needs of car surface scratch detection.Therefore,the directional SUSAN algorithm based on CIELab color space is adopted in this paper.The direction template and the circle template to calculate the color difference of the color image are used in the algorithm which has been converted to the CIELab space.The edges and scratches are eliminated by matching and contrasting the detected image with the edge template.Experimental results show that the algorithm can effectively detect scratches on the surface of cars,improve the detection speed and reduce the undetected rate.
基金This work was supported by the NSFC(Grant Nos.61671087,61962009 and 61003287)the Fok Ying Tong Education Foundation(Grant No.131067)+3 种基金the Major Scientific and Technological Special Project of Guizhou Province(Grant No.20183001)the Foundation of State Key Laboratory of Public Big Data(Grant No.2018BDKFJJ018)the High-quality and Cutting-edge Disciplines Construction Project for Universities in Beijing(Internet Information,Communication University of China)the Fundamental Research Funds for the Central Universities(Nos.2019XD-A02,328201915,328201917 and 328201916).
文摘Directional modulation is one of the hot topics in data security researches.To fulfill the requirements of communication security in wireless environment with multiple paths,this study takes into account the factors of reflections and antenna radiation pattern for directional modulation.Unlike other previous works,a novel multiple-reflection model,which is more realistic and complex than simplified two-ray reflection models,is proposed based on two reflectors.Another focus is a quantum genetic algorithm applied to optimize antenna excitation in a phased directional modulation antenna array.The quantum approach has strengths in convergence speed and the globe searching ability for the complicated model with the large-size antenna array and multiple paths.From this,a phased directional modulation transmission system can be optimized as regards communication safety and improve performance based on the constraint of the pattern of the antenna array.Our work can spur applications of the quantum evolutionary algorithm in directional modulation technology,which is also studied.
基金supported by National Natural Science Foundation of China (61471109, 61501104 and 91438110)Fundamental Research Funds for the Central Universities ( N140405005 , N150401002 and N150404002)Open Fund of IPOC (BUPT, IPOC2015B006)
文摘With the development of science, economy and society, the needs for research and exploration of deep space have entered a rapid and stable development stage. Deep Space Optical Network(DSON) is expected to become an important foundation and inevitable development trend of future deepspace communication. In this paper, we design a deep space node model which is capable of combining the space division multiplexing with frequency division multiplexing. Furthermore, we propose the directional flooding routing algorithm(DFRA) for DSON based on our node model. This scheme selectively forwards the data packets in the routing, so that the energy consumption can be reduced effectively because only a portion of nodes will participate the flooding routing. Simulation results show that, compared with traditional flooding routing algorithm(TFRA), the DFRA can avoid the non-directional and blind transmission. Therefore, the energy consumption in message routing will be reduced and the lifespan of DSON can also be prolonged effectively. Although the complexity of routing implementation is slightly increased compared with TFRA, the energy of nodes can be saved and the transmission rate is obviously improved in DFRA. Thus the overall performance of DSON can be significantly improved.
基金Sponsored by the National Natural Science Foundation of China(Grant No.61175126)National Research Foundation for the Doctoral Program of Higher Education of China(Grant No.20112304110009)the Fundamental Research Funds for the Central Universities of China(Grant No.HEUCFZ1209)
文摘Coverage control for each sensor is based on a 2D directional sensing model in directional sensor networks conventionally. But the 2D model cannot accurately characterize the real environment. In order to solve this problem,a new 3D directional sensor model and coverage enhancement algorithm is proposed. We can adjust the pitch angle and deviation angle to enhance the coverage rate. And the coverage enhancement algorithm is based on an improved gravitational search algorithm. In this paper the two improved strategies of GSA are directional mutation strategy and individual evolution strategy. A set of simulations show that our coverage enhancement algorithm has a good performance to improve the coverage rate of the wireless directional sensor network on different number of nodes,different virtual angles and different sensing radius.
基金supported by the National Natural Science Foundation of China(62072392)the National Natural Science Foundation of China(61972360)+1 种基金the Major Science and Technology Innovation Project of Shandong Province(2019522Y020131)the Key Laboratory of Yantai:Intelligent Technology for Advanced Ocean Engineering Equipment.
文摘Online social networks greatly promote peoples'online interaction,where trust plays a crucial role.Trust prediction with trust path search is widely used to help users find the trusted friends and obtain valid information.However,the shortcomings of accuracy and time still exist in some famous algorithms.Therefore,the dynamic bidirectional heuristic search(DBHS)algorithm is proposed in this paper to find the reliable trust path by studying the heuristic search.First,the trust value and path length are comprehensively considered to find the most trusted user.Specially,it constrains the traversal depth based on the‘small world’theory and obtains the acceptable path set by using the relaxation coefficientλto relax the depth of the shortest path.By this way,some longer path with the higher trust can be considered to improve the precision of algorithm.Then,an adjustment factor is designed based on the meet in the middle(MM)algorithm to assign search weights to two directions based on the size of the search tree expanded,so as to improve the problem of no priori when fixed parameters are used.Besides,the complexity of unidirectional trust path search can also be reduced by searching from two directions,which can reduce the depth and improve the efficiency of search.Finally,the predictive trust degree is outputted by the trust propagation function.Two public datasets are used to generate experimental results,which show that DBHS can quickly search and form reliable trust relationship,and it partly improves other algorithms.
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU)(grant number IMSIU-DDRSP2504)。
文摘Accurate estimation of the Direction-of-Arrival(DoA)of incident plane waves is essential for modern wireless communication,radar,sonar,and localization systems.Precise DoA information enables adaptive beamforming,spatial filtering,and interference mitigation by steering antenna array beams toward desired sources while suppressing unwanted signals.Traditional one-dimensional Uniform Linear Arrays(ULAs)are limited to elevation angle estimation due to geometric constraints,typically within the range[0,π].To capture full spatial characteristics in environments with multipath and angular spread,joint estimation of both elevation and azimuth angles becomes necessary.However,existing 2D and 3D array geometries often entail increased hardware complexity and computational cost.This work proposes a novel and efficient framework for joint elevation and azimuth angle estimation using three spatially separated,parallel ULAs.The array configuration exploits spatial diversity and orthogonal projections to capture complete directional information with minimal structural overhead.A customized objective function based on the mean square error between measured and reconstructed array outputs is formulated to guide the estimation process.To solve the resulting non-convex optimization problem,three strategies are investigated:a global Genetic Algorithm(GA),a local Pattern Search(PS),and a hybrid GA-PS method that combines global exploration with local refinement.The proposed framework supports automatic pairing of elevation and azimuth angles,eliminating the need for manual post-processing.Extensive simulations validate the robustness,convergence,and accuracy of all three methods under varying signal-to-noise ratio conditions.Results confirm that the hybrid GA-PS approach achieves superior estimation performance and reduced computational complexity,making it well-suited for real-time and resource-constrained applications in next-generation sensing and communication systems.
基金Supported by the Optimisation Theory and Algorithm Research Team(Grant No.23kytdzd004)University Science Research Project of Anhui Province(Grant No.2024AH050631)the General Programs for Young Teacher Cultivation of Educational Commission of Anhui Province(Grant No.YQYB2023090).
文摘In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41807296 and No. 41802006)Natural science found for universities of Anhui province (Grant No. KJ2017A036)
文摘Downhole microseismic data has the significant advantages of high signal-to-noise ratio and well-developed P and S waves and the core component of microseismic monitoring is microseismic event location associated with hydraulic fracturing in a relatively high confidence level and accuracy.In this study,we present a multidimensional DIRECT inversion method for microseismic locations and applicability tests over modeling data based on a downhole microseismic monitoring system.Synthetic tests inidcate that the objective function of locations can be defined as a multi-dimensional matrix space by employing the global optimization DIRECT algorithm,because it can be run without the initial value and objective function derivation,and the discretely scattered objective points lead to an expeditious contraction of objective functions in each dimension.This study shows that the DIRECT algorithm can be extensively applied in real downhole microseismic monitoring data from hydraulic fracturing completions.Therefore,the methodology,based on a multidimensional DIRECT algorithm,can provide significant high accuracy and convergent efficiency as well as robust computation for interpretable spatiotemporal microseismic evolution,which is more suitable for real-time processing of a large amount of downhole microseismic monitoring data.
基金Project supported by Faculty of Technology,Department of Electrical Engineering,University of Batna,Algeria
文摘This study presents analysis, control and comparison of three hybrid approaches for the direct torque control (DTC) of the dual star induction motor (DSIM) drive. Its objective consists of combining three different heuristic optimization techniques including PID-PSO, Fuzzy-PSO and GA-PSO to improve the DSIM speed controlled loop behavior. The GA and PSO algorithms are developed and implemented into MATLAB. As a result, fuzzy-PSO is the most appropriate scheme. The main performance of fuzzy-PSO is reducing high torque ripples, improving rise time and avoiding disturbances that affect the drive performance.
基金supported partly by the National Science and Technology Major Project of China(Grant No.2016ZX05025-001006)Major Science and Technology Project of CNPC(Grant No.ZD2019-183-007)
文摘Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.This method spends most of computing time in objective function evaluation by reservoir numerical simulator which limits its optimization efficiency.To improve optimization efficiency,a well production optimization method using streamline features-based objective function and Bayesian adaptive direct search optimization(BADS)algorithm is established.This new objective function,which represents the water flooding potential,is extracted from streamline features.It only needs to call the streamline simulator to run one time step,instead of calling the simulator to calculate the target value at the end of development,which greatly reduces the running time of the simulator.Then the well production optimization model is established and solved by the BADS algorithm.The feasibility of the new objective function and the efficiency of this optimization method are verified by three examples.Results demonstrate that the new objective function is positively correlated with the cumulative oil production.And the BADS algorithm is superior to other common algorithms in convergence speed,solution stability and optimization accuracy.Besides,this method can significantly accelerate the speed of well production optimization process compared with the objective function calculated by other conventional methods.It can provide a more effective basis for determining the optimal well production for actual oilfield development.
基金This project is supported by National Natural Science Foundation of China (No.50135050)
文摘Direct algorithm of wavelet transform (WT) is the numerical algorithmobtained from the integral formula of WT by directly digitization. Some problems on realizing thealgorithm are studied. Some conclusions on the direct algorithm of discrete wavelet transform (DWT),such as discrete convolution operation formula of wavelet coefficients and wavelet components,sampling principle and technology to wavelets, deciding method for scale range of wavelets, measuresto solve edge effect problem, etc, are obtained. The realization of direct algorithm of continuouswavelet transform (CWT) is also studied. The computing cost of direct algorithm and Mallat algorithmof DWT are still studied, and the computing formulae are obtained. These works are beneficial todeeply understand WT and Mallat algorithm. Examples in the end show that direct algorithm can alsobe applied widely.
基金supported by the National Natural Science Foundation of China(No.61602269)the China Postdoctoral Science Foundation(No.2015M571993)+1 种基金the Shandong Provincial Natural Science Foundation of China(No.ZR2017MD004)the Qingdao Postdoctoral Application Research Funded Project
文摘This paper develops a variational model for image noise removal using total curvature(TC), which is a high-order regularizer. The TC has the advantage of preserving image feature. Unfortunately, it also has the characteristics of nonlinear, non-convex and non-smooth. Consequently, the numerical computation with the curvature regularization is difficult. In order to conquer the computation problem, the proposed model is transformed into an alternating optimization problem by importing auxiliary variables. Furthermore, based on alternating direction method of multipliers, we design a fast numerical approximation iterative scheme for proposed model. Finally, numerous experiments are implemented to indicate the advantages of the proposed model in image edge preserving, image contrast and corners preserving. Meanwhile, the high computational efficiency of the designed model is verified by comparing with traditional models, including the total variation(TV) and total Laplace(TL) model.
文摘Big data analytic techniques associated with machine learning algorithms are playing an increasingly important role in various application fields,including stock market investment.However,few studies have focused on forecasting daily stock market returns,especially when using powerful machine learning techniques,such as deep neural networks(DNNs),to perform the analyses.DNNs employ various deep learning algorithms based on the combination of network structure,activation function,and model parameters,with their performance depending on the format of the data representation.This paper presents a comprehensive big data analytics process to predict the daily return direction of the SPDR S&P 500 ETF(ticker symbol:SPY)based on 60 financial and economic features.DNNs and traditional artificial neural networks(ANNs)are then deployed over the entire preprocessed but untransformed dataset,along with two datasets transformed via principal component analysis(PCA),to predict the daily direction of future stock market index returns.While controlling for overfitting,a pattern for the classification accuracy of the DNNs is detected and demonstrated as the number of the hidden layers increases gradually from 12 to 1000.Moreover,a set of hypothesis testing procedures are implemented on the classification,and the simulation results show that the DNNs using two PCA-represented datasets give significantly higher classification accuracy than those using the entire untransformed dataset,as well as several other hybrid machine learning algorithms.In addition,the trading strategies guided by the DNN classification process based on PCA-represented data perform slightly better than the others tested,including in a comparison against two standard benchmarks.
基金supported by the National Key Scientific and Research Equipment Development Project of China(Grant No.ZDYZ2013-2)the National Natural Science Foundation of China(Grant No.11173008)the Sichuan Provincial Outstanding Youth Academic Technology Leaders Program,China(Grant No.2012JQ0012)
文摘Among all kinds of wavefront control algorithms in adaptive optics systems, the direct gradient wavefront control algorithm is the most widespread and common method. This control algorithm obtains the actuator voltages directly from wavefront slopes through pre-measuring the relational matrix between deformable mirror actuators and Hartmann wavefront sensor with perfect real-time characteristic and stability. However, with increasing the number of sub-apertures in wavefront sensor and deformable mirror actuators of adaptive optics systems, the matrix operation in direct gradient algorithm takes too much time, which becomes a major factor influencing control effect of adaptive optics systems. In this paper we apply an iterative wavefront control algorithm to high-resolution adaptive optics systems, in which the voltages of each actuator are obtained through iteration arithmetic, which gains great advantage in calculation and storage. For AO system with thousands of actuators, the computational complexity estimate is about O(n2) ~ O(n3) in direct gradient wavefront control algorithm, while the computational complexity estimate in iterative wavefront control algorithm is about O(n) ~(O(n)3/2), in which n is the number of actuators of AO system. And the more the numbers of sub-apertures and deformable mirror actuators, the more significant advantage the iterative wavefront control algorithm exhibits.
基金the National Natural Science Foundation of China(Nos.11401318 and 11671004)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(No.15KJB110018)the Scientific Research Foundation of NUPT(No.NY214023)
文摘Directionality of image plays a very important role in human visual system and it is important prior information of image. In this paper we propose a weighted directional total variation model to reconstruct image from its finite number of noisy compressive samples. A novel self-adaption, texture preservation method is designed to select the weight. Inspired by majorization-minimization scheme, we develop an efficient algorithm to seek the optimal solution of the proposed model by minimizing a sequence of quadratic surrogate penalties. The numerical examples are performed to compare its performance with four state-of-the-art algorithms. Experimental results clearly show that our method has better reconstruction accuracy on texture images than the existing scheme.
基金Project supported by the LEB Research LaboratoryDepartment of Electrical Engineering,University of Batna 2, Algeria。
文摘The direct torque control of the dual star induction motor(DTC-DSIM) using conventional PI controllers is characterized by unsatisfactory performance, such as high ripples of torque and flux, and sensitivity to parametric variations. Among the most evoked control strategies adopted in this field to overcome these drawbacks presented in classical drive, it is worth mentioning the use of the second order sliding mode control(SOSMC) based on the super twisting algorithm(STA) combined with the fuzzy logic control(FSOSMC). In order to realize the optimal control performance, the FSOSMC parameters are adjusted using an optimization algorithm based on the genetic algorithm(GA). The performances of the envisaged control scheme, called G-FSOSMC, are investigated against G-SOSMC, G-PI and BBO-FSOSMC algorithms. The proposed controller scheme is efficient in reducing the torque and flux ripples, and successfully suppresses chattering. The effects of parametric uncertainties do not affect system performance.
基金Supported by the Natural Science Foundation of Jiangsu Province (No.BK2004016).
文摘A robust phase-only Direct Data Domain Least Squares (D3LS) algorithm based on gen- eralized Rayleigh quotient optimization using hybrid Genetic Algorithm (GA) is presented in this letter. The optimization efficiency and computational speed are improved via the hybrid GA com- posed of standard GA and Nelder-Mead simplex algorithms. First, the objective function, with a form of generalized Rayleigh quotient, is derived via the standard D3LS algorithm. It is then taken as a fitness function and the unknown phases of all adaptive weights are taken as decision variables. Then, the nonlinear optimization is performed via the hybrid GA to obtain the optimized solution of phase-only adaptive weights. As a phase-only adaptive algorithm, the proposed algorithm is sim- pler than conventional algorithms when it comes to hardware implementation. Moreover, it proc- esses only a single snapshot data as opposed to forming sample covariance matrix and operating matrix inversion. Simulation results show that the proposed algorithm has a good signal recovery and interferences nulling performance, which are superior to that of the phase-only D3LS algorithm based on standard GA.
基金supported by the Chinese Natural Science Foundation 61401075Central University Business Fee ZYGX2015J106
文摘A theoretical relationship between the wavelet transform and the fast fourier transformation(FFT) methods in broadband wireless signal is proposed for solving the direction of arrivals(DOAs) estimation problem. This leads naturally to the derivation of minimum variance distortionless response(MVDR) algorithm, which combines the benefits of subspace methods with those of wavelet, and spatially smoothed versions are utilized which exhibits good performance against correlated signals. We test the method's performance by simulating and comparing the performance of proposed algorithm, FFT MVDR and MVDR with correlated signals, and an improved performance is obtained.