期刊文献+
共找到6,918篇文章
< 1 2 250 >
每页显示 20 50 100
(Light)Interval-Valued Pre-t-Norms and Their Application in Constructing Interval-Valued QL-Directional Monotonic Fuzzy Implications
1
作者 Peng YU Siyu DANG Xiaoliang LI 《Journal of Mathematical Research with Applications》 2025年第3期285-303,共19页
Interval-valued pre-aggregation functions are a hot topic in the research of aggregation functions and have received considerable attention in recent years.As a special class of interval-valued pre-aggregation functio... Interval-valued pre-aggregation functions are a hot topic in the research of aggregation functions and have received considerable attention in recent years.As a special class of interval-valued pre-aggregation functions,(light)interval-valued pre-t-norms were initially proposed by Wang and Hu,but their properties were not further discussed by the authors.The main purpose of this paper is to study in depth the properties and generation of(light)intervalvalued pre-t-norms.Firstly,several properties of(light)interval-valued pre-t-norms and their relationship with(light)pre-t-norms are presented.Then,two different generation methods for(light)interval-valued pre-t-norms are introduced.Finally,it demonstrates a specific application of(light)interval-valued pre-t-norms in constructing interval-valued directional monotonic fuzzy implications,namely,using the(light)interval-valued pre-t-norm IT,interval-valued fuzzy negations IN,and(light)interval-valued pre-t-conorm IS to construct interval-valued QL-directional monotonic operations. 展开更多
关键词 (light)interval-valued pre-t-norm aggregation functions interval directional monotonicity interval-valued directional monotonic fuzzy implications
原文传递
GÂTEAUX DIRECTIONAL DIFFERENTIABILITY OF THE GENERALIZED METRIC PROJECTION IN BANACH SPACES
2
作者 Jinlu LI 《Acta Mathematica Scientia》 2025年第4期1597-1618,共22页
Let X be a real uniformly convex and uniformly smooth Banach space and C a nonempty closed and convex subset of X.Let Π_(C):X→C denote the generalized metric projection operator introduced by Alber in[1].In this pap... Let X be a real uniformly convex and uniformly smooth Banach space and C a nonempty closed and convex subset of X.Let Π_(C):X→C denote the generalized metric projection operator introduced by Alber in[1].In this paper,we define the Gâteaux directional differentiability of Π_(C).We investigate some properties of the Gâteaux directional differentiability of Π_(C).In particular,if C is a closed ball,or a closed and convex cone(including proper closed subspaces),or a closed and convex cylinder,then,we give the exact representations of the directional derivatives of Π_(C).By comparing the results in[12]and this paper,we see the significant difference between the directional derivatives of the generalized metric projection operator Π_(C) and the Gâteaux directional derivatives of the standard metric projection operator PC. 展开更多
关键词 uniformly convex and uniformly smooth Banach space the generalized metric projection directional differentiability of the generalized metric projection directional derivative of the generalized metric projection
在线阅读 下载PDF
Non-explosive directional fracturing blasting using coal-based solid waste expanding agent 被引量:1
3
作者 Quan Zhang Manchao He +7 位作者 Jiong Wang Shan Guo Chao Wang Chenjie Hong Kai Chen Rongzhou Yang Xuepeng Zhang Jianwei Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第6期3691-3710,共20页
Aiming at mitigating the high risks associated with conventional explosive blasting,this study developed a safe directional fracturing technique,i.e.instantaneous expansion with a single fracture(IESF),using a coal-ba... Aiming at mitigating the high risks associated with conventional explosive blasting,this study developed a safe directional fracturing technique,i.e.instantaneous expansion with a single fracture(IESF),using a coal-based solid waste expanding agent.First,the mechanism of directional fracturing blasting by the IESF was analyzed,and the criterion of directional crack initiation was established.On this basis,laboratory experiments and numerical simulations were conducted to systematically evaluate the directional fracturing blasting performance of the IESF.The results indicate that the IESF presents an excellent directional fracturing effect,with average surface undulation differences ranging from 8.1 mm to 22.7 mm on the fracture surfaces.Moreover,during concrete fracturing tests,the stresses and strains in the fracturing direction are measured to be 2.16-3.71 times and 8 times larger than those in the nonfracturing direction,respectively.Finally,the IESF technique was implemented for no-pillar mining with gob-side entry retaining through roof cutting and pressure relief in an underground coal mine.The IESF technique effectively created directional cracks in the roof without causing severe roadway deformation,achieving an average cutting rate and maximum roadway deformation of 94%and 197 mm,respectively.These on-site test results verified its excellent directional rock fracturing performance.The IESF technique,which is safe,efficient,and green,has considerable application prospects in the field of rock mechanics and engineering. 展开更多
关键词 Coal-based solid waste expanding agent directional fracturing blasting Non-explosive Crack initiation Stress-strain-damage evolution
在线阅读 下载PDF
Numerical simulation and experimental investigation of manufacturing route of directional casting super slab
4
作者 Ming Li Jun Fu +5 位作者 Neng Ren Biao Tao Alan Scholes Jun Li Jian-guo Li Hong-biao Dong 《Journal of Iron and Steel Research International》 2025年第3期659-670,共12页
We proposed a new technique route of directional solidification for the manufacture of super slab.A 7-t laboratory-scale thick slab was casted and characterised for trial.To further understand the process,the evolutio... We proposed a new technique route of directional solidification for the manufacture of super slab.A 7-t laboratory-scale thick slab was casted and characterised for trial.To further understand the process,the evolution of the multiple physical fields during the directional solidification was simulated and verified.Similar to the convectional ingot casting,a negative segregated cone of equiaxed grains was formed at the bottom,and a seriously positive segregated region was formed beneath the top surface of the slab.Specific measures on the lateral walls,base plate,and free surface were strongly recommended to ensure that the slab is relatively directionally casted.A water-cooling copper base plate accelerates the solidification rate and the columnar growth along the vertical direction.It inhibits the sedimentation of equiaxed grains and enlarges the columnar zone.Based on the simulation analysis,it can be concluded that the directional solidification technique route is promising to manufacture super slab with lower segregation level,and less porosities and inclusions. 展开更多
关键词 Super slab directional solidification MACROSEGREGATION Numerical simulation Grain structure Steel
原文传递
Numerical simulation of microstructure and microporosity morphology in directional solidification of aluminum-copper alloys:Effect of copper content and withdrawal rate
5
作者 Wei Yuan Hai-dong Zhao +3 位作者 Xu Shen Chun Zou Yuan Liu Qing-yan Xu 《China Foundry》 2025年第1期33-44,共12页
Microporosity formed in the solidification process of Al alloys is detrimental to the alloy properties.A two-dimensional cellular automaton(CA)model was developed to simulate the microstructure and microporosity forma... Microporosity formed in the solidification process of Al alloys is detrimental to the alloy properties.A two-dimensional cellular automaton(CA)model was developed to simulate the microstructure and microporosity formation in Al-Cu alloys,considering variations in Cu content and solidification rate.The results indicate that the Cu content primarily influences the growth of microporosity.To validate the model,directional solidification experiments were conducted on Al-Cu alloys with varing Cu contents and withdrawal rates.The experimental results of dendrites and microporosity characteristics agree well with the predictions from the developed model,thus confirming the validity of the model.The alloy’s liquidus temperature,dendrite morphology,and hydrogen saturation solubility arising from different Cu contents have significant effects on microporosity morphology.The withdrawal rate primarily affects the nucleation of hydrogen microporosity by altering cooling rates and dendritic growth rates,resulting in different microporosity characteristics. 展开更多
关键词 MICROPOROSITY DENDRITES cellular automaton Al-Cu alloys directional solidification
在线阅读 下载PDF
Evidence of carbide-assisted in situ-directional recrystallization of GH4099 superalloy fabricated by laser powder bed fusion
6
作者 Senli Li Jian Liu +4 位作者 Han Zhao Jun Lv Liang Ma Yi Tan Pengting Li 《Journal of Materials Science & Technology》 2025年第12期99-110,共12页
Columnar grains offer considerable advantages in terms of microstructure for resisting high-temperature low-cycle fatigue. In additive manufacturing, the formation of fine columnar grains is common. However, post-heat... Columnar grains offer considerable advantages in terms of microstructure for resisting high-temperature low-cycle fatigue. In additive manufacturing, the formation of fine columnar grains is common. However, post-heat treatment often transforms these grains into equiaxed grains. This study aimed to tailor the grain morphology by controlling the precipitation of carbides. By balancing the restraining effects of carbide pinning and grain growth, we achieved carbide-assisted in situ-directional recrystallization. This process preserved the columnar grains created via laser powder bed fusion, even after high-temperature heat treatment. The approach emphasizes promoting the longitudinal growth of columnar grains while preventing their broadening. Additionally, we characterized the evolution of carbides and γ′ precipitates and examined their role in nucleation and growth during recrystallization. This study supports the viability of carbide-assisted in situ-directional recrystallization in additive manufacturing alloys, introducing an innovative strategy for microstructure customization. The implementation of carbon stabilization (CS) treatment to control the carbide distribution led to a 40 % improvement in the creep life at 900 ℃ and 150 MPa. 展开更多
关键词 Additive manufacturing CARBIDE directional recrystallization SUPERALLOY
原文传递
Directional Explosion of Finite Volume Water Confined in a Single-End-Opened CNT
7
作者 Jiahao Liu Yuanyuan Kang +2 位作者 Kun Cai Haiyan Duan Jiao Shi 《Computers, Materials & Continua》 2025年第8期2573-2586,共14页
The directional explosion behavior of finite volume water confined within nanochannels holds considerable potential for applications in precision nanofabrication and bioengineering.However,precise control of nanoscale... The directional explosion behavior of finite volume water confined within nanochannels holds considerable potential for applications in precision nanofabrication and bioengineering.However,precise control of nanoscale mass transfer remains challenging in nanofluidics.This study examined the dynamic evolution of water clusters confined within a single-end-opened carbon nanotube(CNT)under pulsed electric field(EF)excitation,with a particular focus on the structural reorganization of hydrogen bond(H-bond)networks and dipole orientation realignment.Molecular dynamics simulations reveal that under the influence of pulsed EF,the confinedwatermolecules undergo cooperative restructuring to maximize hydrogen bond formation through four independent motions during deformation,such as waving,spinning,axial slipping,and radial migration.In this process,the dynamic fracture and recombination of the hydrogen bond network generate an instantaneous high pressure,and drive a unidirectional explosion along the CNT axis.A smaller CNT diameter or a reduced water volume under the same EF conditions leads to a stronger explosion.In contrast,in a wider CNT,the water cluster expands axially and forms a cylindrical shell whose thickness gradually decreases as the axial expansion slows.These insights offer precise control strategies for nanofluidic systems in nanofabrication or bioengineering applications,where finite volume water serves as a programmable nanoscale energy transfer medium. 展开更多
关键词 Finite volume water mass transfer directional explosion electric field molecular dynamics
在线阅读 下载PDF
Heterogeneous interface engineering and directional tuning electromagnetic parameters of MXene/Fe NPs absorbers for precise low-frequency microwave absorption
8
作者 Ping-an Yang Li Wang +6 位作者 Haibo Ruan Wenjiao Deng Rui Li Mengjie Shou Xin Huang Yuxin Zhang Yi Lu 《Nano Research》 2025年第11期544-556,共13页
Customizing the frequency range of electromagnetic wave(EMW)absorbing materials,especially for low-frequency,is a key research focus for 5G/6G and stealth applications.However,achieving precise low-frequency tuning re... Customizing the frequency range of electromagnetic wave(EMW)absorbing materials,especially for low-frequency,is a key research focus for 5G/6G and stealth applications.However,achieving precise low-frequency tuning remains challenging due to unpredictable parameter variations in practical design.Here,a constant-permeability-based electromagnetic parameter inversion method predicts the required complex permittivity range for multilayer MXene’s effective microwave absorption in the target low-frequency band.Since traditional modulation methods are plagued by electromagnetic parameter fluctuations,this study regulated the dielectric response by adjusting the embedding amount of small-sized iron nanoparticles(Fe NPs)with stable permeability.Under this guidance,multilayer MXene/Fe NPs(MTF)are prepared by embedding small-sized Fe NPs on the MXene surface via electrostatic self-assembly and in-situ reduction.The introduction of Fe NPs increased charge carriers’concentration and strengthened the interface effect,resulting in a significant increase in the real part of the complex permittivity(ε')compared with that of multi-layer MXene(7.13-8.89),reaching the predicted range of the real part of the low-frequency complex permittivity(13.12-15.16,14.34-16.81,and 15.29-18.12).Experimental results show that the MTF has a small error in the frequency of the minimum reflection loss(RLmin)compared to the predicted value(error percentage of 4.69%),along with an in-situ enhancement of the effective absorption bandwidth(EAB)(325.00%growth).Thus,MTF exhibits enhanced low-frequency absorption,with MTF-2 achieving−46.3 dB RLmin at 4.64 GHz(4.35 mm)and 2.24 GHz EAB at 3.8 mm.This work offers a strategy for accurate prediction and regulation of absorption bands over a wide range. 展开更多
关键词 MXene inversion of electromagnetic parameters electromagnetic wave absorption LOW-FREQUENCY directional control
原文传递
Innovative pillar recovery method integrating gob-side entry driving and directional roof-cutting for thick-hard roof coal seams
9
作者 WU Yi-yi YE Qiu-cheng +2 位作者 GAO Yu-bing ZHANG Xing-xing HE Man-chao 《Journal of Central South University》 2025年第9期3493-3513,共21页
To enhance the recuperation rate of the mine and comply with the stipulations of green mining technology, it is vital to expeditiously recuperate the coal pillar resources in the final stage, thus preventing the consi... To enhance the recuperation rate of the mine and comply with the stipulations of green mining technology, it is vital to expeditiously recuperate the coal pillar resources in the final stage, thus preventing the considerable squandering of resources. The coal pillar resource of the main roadway and its branch roadway constitutes a significant recovery subject. Its coal pillar shape is regular and possesses a considerable strike distance, facilitating the arrangement of the coal pillar recovery working face (CPRWF) for mining operations. However, for the remaining coal pillars with a thick and hard roof (THF) and multiple tectonic zones, CPRWF encounters challenges in selecting an appropriate layout, managing excessive roof pressure, and predicting mining stress. Aiming at the roadway coal pillar group with THF and multi-structural areas in specific projects, a method of constructing multi-stage CPRWF by one side gob-side entry driving (GSED) and one side roadway reusing is proposed. Through theoretical calculation of roof fracture and numerical simulation verification, combined with field engineering experience and economic analysis, the width of the narrow coal pillar (NCP) in the GSED is determined to be 10 m and the length of the CPRWF is 65 m. Concurrently, the potential safety hazard that the roof will fall asymmetrically and THF is difficult to break during CPRWF mining after GSED is analyzed and verified. Then, a control method involving the pre-cutting of the roof in the reused roadway before mining is proposed. This method has been shown to facilitate the complete collapse of THF, reduce the degree of mine pressure, and facilitate the symmetrical breaking of the roof. Accordingly, a roof-cutting scheme based on a directional drilling rig, bidirectional shaped polyvinyl chloride (PVC) pipe, and emulsion explosive was devised, and the pre-splitting of 8.2 m THF was accomplished. Field observations indicate that directional cracks are evident in the roof, the coal wall is flat during CPRWF mining, and the overall level of mining pressure is within the control range. Therefore, the combined application of GSED and roof-cutting technology for coal pillar recovery has been successfully implemented, thereby providing new insights and engineering references for the construction and pressure relief mining of CPRWF. 展开更多
关键词 coal pillar recovery thick and hard roof gob-side entry driving directional roof-cutting numerical analysis energy-gathering blasting
在线阅读 下载PDF
IRS-user matching and beamforming design for multi-active-IRS-and-UAV-aided secure directional modulation networks
10
作者 Ke YANG Siling FENG +5 位作者 Rongen DONG Xuehui WANG Yan WANG Jiatong BAI Yuanjian LI Jiangzhou WANG 《Chinese Journal of Aeronautics》 2025年第10期158-169,共12页
In this paper,a novel directional modulation(DM)network utilizing the distributed active intelligent reflecting surface(IRS)to enhance the secrecy sum-rate(SSR)performance is established,with each unmanned aerial vehi... In this paper,a novel directional modulation(DM)network utilizing the distributed active intelligent reflecting surface(IRS)to enhance the secrecy sum-rate(SSR)performance is established,with each unmanned aerial vehicle(UAV)hanging an IRS.The degree of freedom(DoF)is only two in the single-IRS-aided DM network,which will seriously limit its rate performance.Multiple active IRSs will create more DoFs for DM network and dramatically enhance its rate.Three IRS-user matching methods,path loss coefficient(PLC)matching,distance matching,and signal-to-interference-plus-noise ratio(SINR)matching,are proposed to enhance the SSR performance,where all IRSs are equipartitioned into two parts,one part is matched to Bob and the other part to Eve.The double layer leakage(DLL)and minimum-mean square error(MMSE)rules,called DLL-MMSE,are adopted to construct beamforming at transmitter,IRS and receiver,respectively.The double layer null-space projection(DLNSP),Rayleigh ratio(RR)and MMSE schemes,called DLNSP-RR-MMSE,are used to acquire the transmit beamforming vector,phase shift matrix(PSM)and receive beamforming vector,respectively.Simulation results show that the proposed SINR matching scheme outperforms the remaining two ones in terms of SSR.It is also verified that a significant SSR enhancement over single IRS is achieved by using multiple distributed IRSs. 展开更多
关键词 directional modulation Intelligent reflecting surface Secrecy sum-rate Degree of freedom Unmanned aerial vehicle
原文传递
Effect of surface recrystallization on high-temperature tensile properties of a directionally solidified DZ409 Ni-based superalloy
11
作者 Qiang Yang Ya-zhou Li +3 位作者 Fu Wang Jing Wang Di-chen Li Jian-tao Wu 《China Foundry》 2025年第4期463-470,共8页
Surface recrystallization(RX) is a typical grain defect observed in directionally solidified(DS) Ni-based superalloys. Most studies have focused on the RX behavior and its impact on the mechanical properties of single... Surface recrystallization(RX) is a typical grain defect observed in directionally solidified(DS) Ni-based superalloys. Most studies have focused on the RX behavior and its impact on the mechanical properties of single-crystal(SC) superalloys, with limited research on its influence on the high-temperature mechanical properties of DS superalloys. This study systematically investigated the effect of RX on the high-temperature tensile properties of a DS DZ409 superalloy. The results show that at 650℃, the yield strength decreases almost linearly with an increase in RX fraction. A significant reduction in elongation is observed as the RX fraction increases from 0% to 4.9%. However, beyond this point, further increase in RX fraction leads to minimal changes in elongation. At 950℃, both yield strength and elongation decrease as the RX fraction increases from 0% to 4.9%. At 650℃, fractures in the RX DS superalloys exhibit a mixed mode of transgranular and intergranular cleavage fracture, while at 950℃, it features a combination of ductile and intergranular dimple fractures. The failure mechanism of the RX DS superalloy is associated with the introduction of transverse grain boundaries(GBs) during RX. In the early stages of tensile testing at intermediate and high temperatures, cracks can easily initiate at these GBs. Subsequently, the cracks propagate along the GBs into the DS matrix, ultimately leading to failure of the DS superalloy. 展开更多
关键词 Ni-based superalloy directional solidification RECRYSTALLIZATION intermediate-and high-temperature tensile properties
在线阅读 下载PDF
A novel self-rotating down-the-hole hammer with impact and rotary functions for directional drilling:Design,modeling,and experiments
12
作者 Jin-E Cao Hong-Yu Cao +2 位作者 Hong-Yun Zhang Jin-He Bai Pin-Lu Cao 《Petroleum Science》 2025年第1期413-429,共17页
Pneumatic down-the-hole hammer, serving as rock-breaking tool, possesses appeal for directional drilling due to its high rate of penetration. However, corresponding experimental studies on existing hammers for directi... Pneumatic down-the-hole hammer, serving as rock-breaking tool, possesses appeal for directional drilling due to its high rate of penetration. However, corresponding experimental studies on existing hammers for directional drilling have rarely been reported, and a model for evaluating their output performance is absent. This study proposes a novel structure of self-rotating pneumatic hammer(NSH)with a built-in rotational mechanism, which converts partial impact energy of the piston to rotate the drill bit and, consequently, enables dual functions of impact and rotate drill bit. The energy is converted via a screw key-groove mechanism, and the wedge-shaped teeth mechanism ensures that the drill bit rotates clockwise during the piston moves downward. The computational fluid dynamics method is applied to simulate the dynamic response of airflow and piston during the operation of Φ127NSH.Meanwhile, a test bench is established to record data concerning chamber pressure and piston displacement, as well as recording its operational status and rock fragmentation during drilling into granite. The results showed that the maximum error between simulated and experimental data is 8.2%.The Φ127NSH successfully achieves dual impact and rotary drilling functions, and granite smoothly feeds and forms a continuous shear rock zone. In addition, the effects of torque load, engagement distance in rotation sleeves, and well deviation angle towards the performance of NSH were studied in detail. The designed Φ127NSH operates at an impact velocity of 3.98 m/s, impact frequency of 12.55 Hz, and rotational speed of 29.51 r/min under a mass-flow rate of 0.18 kg/s, torque load of 400 N·m, engagement distance of 40 mm, and well deviation angle of 0°. The torque load adversely affects the NSH output performance. Increasing the engagement distance improves impact performance while reducing rotational performance. The performance variation of the NSH is minimal when drilling directional wells with varying deviation angles. 展开更多
关键词 Self-rotating pneumatic hammer directional drilling Fluent CFD simulation Experimental verification
原文传递
Microstructural evolution and mechanical properties of Ti43Al alloy by directional annealing
13
作者 Li Zhou Jie-ren Yang +2 位作者 Yun-lu Ma Ze-dong Liu Rui-run Chen 《China Foundry》 2025年第3期273-282,共10页
The directional annealing technique is widely used to prepare columnar grains or single crystals.To investigate the effect of hot zone temperature and temperature gradient on the growth of columnar crystals,Ti43Al all... The directional annealing technique is widely used to prepare columnar grains or single crystals.To investigate the effect of hot zone temperature and temperature gradient on the growth of columnar crystals,Ti43Al alloys were heat treated by the directional annealing technique and their mechanical properties were tested.The results show that columnar grains with a maximum size of 22.29 mm can be obtained at a hot zone temperature of 1,350℃ and a temperature gradient of 8 K·mm^(-1).During the directional annealing process,Ti43Al alloys are heated toαsingle-phase domain to start the phase transformation.Columnar grains with a microstructure of fully lamellar colonies are obtained at different hot zone temperatures and temperature gradients.The distribution of the orientation difference for theα2 phase was found to be more random,suggesting that the growth of the columnar crystals may be stochastic in nature.Tensile testing results show that the strength and elongation of directional annealed Ti43Al alloy at 1,400℃-8 K·mm^(-1) are 411.23 MPa and 2.29%,and the remaining directional annealed alloys show almost plasticity. 展开更多
关键词 TiAl alloys directional annealing microstructural evolution EBSD mechanical properties
在线阅读 下载PDF
A Directional Locomotion Control of Cyborg Locusts for Complex Outdoor Environments
14
作者 Xin Huang Tiancheng Li +2 位作者 Kaixuan Sun Meisong Yuan Bo Yang 《Journal of Bionic Engineering》 2025年第2期596-607,共12页
The ability of cyborg locusts to achieve directional movement in complex outdoor environments is critical for search and rescue missions.Currently,there is a lack of research on motion control for cyborg locusts in ou... The ability of cyborg locusts to achieve directional movement in complex outdoor environments is critical for search and rescue missions.Currently,there is a lack of research on motion control for cyborg locusts in outdoor settings.In this study,we developed cyborg locusts capable of performing directional locomotion in intricate outdoor environments,including jumping over obstacles,climbing slopes,traversing narrow pipelines,and accurately reaching predetermined targets along specified routes.We designed a miniature electrical backpack(10 mm×10 mm,0.75 g)capable of receiving stimulus parameters(frequency,duty ratio,and stimulation time)via Bluetooth commands from mobile phones.Electrical stimulation of locust sensory organs,such as the antennae and cercus,induced turning and jumping behaviors.Experi-mental testing of locust movement control was conducted under outdoor conditions with a short electrical stimulation interval.Results showed a positive correlation between locust turning angles and electrical stimulation parameters within a specified range,with an average jumping height exceeding 10 cm.Additionally,the success rate of locust turning and jumping behaviors correlated positively with the interval time between electrical stimulations.Adjusting these intervals during forward crawling phases increased the likelihood of the locusts jumping again.In conclusion,this study success-fully achieved directional locomotion control of cyborg locusts outdoors,providing insights and references for advancing search and rescue capabilities. 展开更多
关键词 Cyborg locusts Turning and jumping control directional locomotion Search and rescue
在线阅读 下载PDF
Higher-order optimality conditions for multiobjective optimization through a new type of directional derivatives
15
作者 HUANG Zheng-gang 《Applied Mathematics(A Journal of Chinese Universities)》 2025年第3期543-557,共15页
This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this n... This paper deals with extensions of higher-order optimality conditions for scalar optimization to multiobjective optimization.A type of directional derivatives for a multiobjective function is proposed,and with this notion characterizations of strict local minima of order k for a multiobjective optimization problem with a nonempty set constraint are established,generalizing the corresponding scalar case obtained by Studniarski[3].Also necessary not sufficient and sufficient not necessary optimality conditions for this minima are derived based on our directional derivatives,which are generalizations of some existing scalar results and equivalent to some existing multiobjective ones.Many examples are given to illustrate them there. 展开更多
关键词 strict local minima of order k multiobjective optimization higher-order optimality conditions higher-order directional derivatives
在线阅读 下载PDF
Fortifying Renewable-Dominant Hybrid Microgrids:A Bi-Directional Converter Based Interconnection Planning Approach
16
作者 Zipeng Liang C.Y.Chung +3 位作者 Qin Wang Haoyong Chen Haosen Yang Chenye Wu 《Engineering》 2025年第8期130-143,共14页
Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations o... Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations of renewable energy resources(RESs).However,challenges such as the non-convex nature of BdC efficiency and renewable energy uncertainty complicate the planning process.To address these issues,this paper proposes a tri-level BdC-based planning framework that incorporates dynamic BdC efficiency and a data-correlated uncertainty set(DcUS)derived from historical data patterns.The proposed framework employs a least-squares approximation to linearize BdC efficiency and constructs the DcUS to balance computational efficiency and solution robustness.Additionally,a fully parallel column and constraint generation algorithm is developed to solve the model efficiently.Numerical simulations on a practical hybrid AC/DC microgrid system demonstrate that the proposed method reduces interconnection costs by up to 21.8%compared to conventional uncertainty sets while ensuring robust operation under all considered scenarios.These results highlight the computational efficiency,robustness,and practicality of the proposed approach,making it a promising solution for modern power systems. 展开更多
关键词 Hybrid alternating current/direct current microgrid Interconnection planning Bi-directional converter Solar power uncertainty
在线阅读 下载PDF
Anomalous yield and intermediate temperature brittleness behaviors of directionally solidified nickel-based superalloy 被引量:10
17
作者 盛立远 杨芳 +1 位作者 郭建亭 奚廷斐 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期673-681,共9页
A nickel-based superalloy with good corrosion resistance was fabricated by directional solidification, and its microstructure and tensile properties at elevated temperatures were investigated. Microstructure observati... A nickel-based superalloy with good corrosion resistance was fabricated by directional solidification, and its microstructure and tensile properties at elevated temperatures were investigated. Microstructure observations reveal that the γ' precipitates are arrayed in the y matrix regularly with some MC, Ni5Hf and M3B2 particles distributed along the grain boundary. The tensile tests exhibit that the tensile properties depend on temperature significantly and demonstrate obvious anomalous yield and intermediate-temperature brittleness (ITB) behavior. Below 650℃, the yield strength decreases slightly but the ultimate tensile strength almost has no change. When the temperature is between 650 ℃ and 750 ℃, the yield and ultimate tensile strengths rise rapidly, and after then they both decrease gradually with temperature increasing further. The elongation has its minimum value at about 700 ℃. The TEM examination exhibits that sharing of the γ' by dislocation is almost the main deformation mechanism at low temperatures, but the γ' by-pass dominates the deformation at high temperatures. The transition temperature from shearing to by-pass should be around 800 ℃. The anomalous yield and intermediate-temperature brittleness behaviors should be attributed to the high content of γ'. In addition, the carbides and eutectic structure also contribute some to the ITB behaviors of the alloy. 展开更多
关键词 nickel-based superalloy directional solidification anomalous yield intermediate-temperature brittleness microstructure
在线阅读 下载PDF
Effect of carbon and boron additions on segregation behavior of directionally solidified nickel-base superalloys with rhenium 被引量:9
18
作者 胡勤 刘林 +3 位作者 赵新宝 高斯峰 张军 傅恒志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第11期3257-3264,共8页
The phase transformation temperature, segregation behavior of elements and as-cast microstructure were investigated in experimental nickel-base superalloys with different levels of carbon and boron. The results show t... The phase transformation temperature, segregation behavior of elements and as-cast microstructure were investigated in experimental nickel-base superalloys with different levels of carbon and boron. The results show that the liquidus temperature decreases gradually but the carbide solvus temperature increases obviously with increasing carbon addition. Minor boron addition to the alloy decreases the liquidus temperature, carbide solvus temperature and solidus temperature slightly. Apart from rhenium, the segregation coefficients of the elements alter insignificantly with the addition of carbon. The segregation behavior of rhenium, tungsten and tantalum become more severe with boron addition. The volume fraction and size of primary carbides increase with increasing carbon addition. The main morphology of the carbides is script-like in the alloys with carbon addition while the carbide sheets tend to be concentrated and coarse in the boron-containing alloys 展开更多
关键词 CARBON BORON segregation behavior directional solidification nickel-base superalloys
在线阅读 下载PDF
Effect of configuration on magnetic field in cold crucible using for continuous melting and directional solidification 被引量:5
19
作者 陈瑞润 杨劼人 +4 位作者 丁宏升 黄锋 苏彦庆 郭景杰 傅恒志 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期404-410,共7页
To improve the power efficiency and optimize the configuration of cold crucible using for continuous melting and directional solidification (DS), based on experimental verification, 3D finite element (FE) models w... To improve the power efficiency and optimize the configuration of cold crucible using for continuous melting and directional solidification (DS), based on experimental verification, 3D finite element (FE) models with various configuration-elements were developed to investigate the magnetic field in cold crucible. Magnetic flux density (B) was measured and calculated under different configuration parameters. These parameters include the inner diameter (D2), the slit width (d), the thickness of crucible wall, the section shape of the slit and the shield ring. The results show that the magnetic flux density in z direction (Bz) both at the slit and at the midpoint of segment will increase with the decrease of D2 or with the increase of the width of the slit and the section area of wedge slit or removing the shield ring. In addition, there is a worst wall thickness that can induce the minimum Bz for a cold crucible with a certain outer diameter. 展开更多
关键词 cold crucible magnetic flux density configuration design directional solidification
在线阅读 下载PDF
Microscopic phase-field study on directional coarsening mechanism caused by interaction between precipitates in Ni-Al-V alloy 被引量:5
20
作者 杨坤 陈铮 +1 位作者 王永欣 范晓丽 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期193-200,共8页
A microscopic phase-field model was used to investigate a directional coarsening mechanism caused by the anisotropic growth of long period stacking and different effects of phases on precipitation in Ni-Al-V alloy.The... A microscopic phase-field model was used to investigate a directional coarsening mechanism caused by the anisotropic growth of long period stacking and different effects of phases on precipitation in Ni-Al-V alloy.The results show that DO22 mainly coarsens along its short axis,which may press the neighboring L12,leading to the interaction among atoms.Diffusion channels of Al are formed in the direction where the mismatch between γ' and γ reduces;the occupation probabilities are anisotropic in space;and direction coarsening of L12 occurs finally.With a rise of ageing temperature,phases appear later and DO22 is much later at a higher temperature,the average occupation probabilities of Al and V reduce,and Al changes more than V. 展开更多
关键词 nickel-based alloys microscopic phase-field simulation directional coarsening anisotropic growth MISMATCH diffusion
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部