Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest ...Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest Pacific Acoustic Experiment was conducted in 2015. A low-frequency horizontal line array towed at the depth of around 150 m on a receiving ship was used to receive the noise radiated by the source ship. During this experiment, a beating-splitting phenomenon in the direct zone was observed through conventional beamforming of the horizontal line array within the frequency band 160 Hz- 360 Hz. In this paper, this phenomenon is explained based on ray theory. In principle, the received signal in the direct zone of deep water arrives from two general paths including a direct one and bottom bounced one, which vary considerably in arrival angles. The split bearings correspond to the contributions of these two paths. The beating-splitting phenomenon is demonstrated by numerical simulations of the bearing-time records and experimental results, and they are well consistent with each other. Then a near-surface source ranging approach based on the arrival angles of direct path and bottom bounced path in the direct zone is presented as an application of bearing splitting and is verified by experimental results. Finally, the applicability of the proposed ranging approach for an underwater source within several hundred meters in depth in the direct zone is also analyzed and demonstrated by simulations.展开更多
In the towed line array sonar system,the tow ship noise is the main factor that affects the sonar performance.Conventional noise cancelling methods assume that the noise is towards the endfire direction of the array.A...In the towed line array sonar system,the tow ship noise is the main factor that affects the sonar performance.Conventional noise cancelling methods assume that the noise is towards the endfire direction of the array.An acoustic experiment employing a towed line array is conducted in the western Pacific Ocean,and a strange bearing-splitting phenomenon of the tow ship noise is observed in the array.The tow ship noise is split into multiple noise signals whose bearings are distributed between 10°and 90°deviating from the endfire direction.The multiple interferences increase the difficulty in recognizing the target for the sonar operator and noise cancellation.Therefore,making the mechanism clear and putting forward the tow ship noise splitting bearing estimation method are imperative.In this paper,the acoustic multi-path structure of the tow ship in deep water is analyzed.Then it is pointed out that the bearing-splitting phenomenon is caused by the main lobe of direct rays and bottom-reflected rays,as well as several side lobes of direct rays.Meanwhile,the indistinguishability between the elevation angle and the bearing angle due to the axial symmetry of a strict horizontal line array causes the bearing to deviate from the endfire direction.Based on the theory above,a method of estimating bearing of the tow ship noise in deep water is proposed.The theoretical analysis results accord with the experimental results,which helps to identify the target and provide correct initial bearing guidance for noise cancelation methods.展开更多
The horizontal-longitudinal correlation of acoustic field for the receiver near the bottom is analyzed by using nu-merical modeling.An approximate analytical solution of horizontal-longitudinal correlation coefficient...The horizontal-longitudinal correlation of acoustic field for the receiver near the bottom is analyzed by using nu-merical modeling.An approximate analytical solution of horizontal-longitudinal correlation coefficient is derived based on the ray method.Combining the characteristic of Lloyd's mirror interference pattern,the variability of acoustic field and its effect on horizontal-longitudinal spatial correlation are discussed.The theoretical pre-diction agrees well with the numerical results.Experimental results confirm the validity of analytical solution.Finally,the applicability of the analytical solution is summarized.The conclusion is beneficial for the design of bottom-moored array and the estimation of integral time for moving source localization.展开更多
基金Project supported by the Program of One Hundred Talented People of the Chinese Academy of SciencesNational Natural Science Foundation of China(Grant Nos.11434012 and 41561144006)
文摘Sound multipath propagation is very important for target localization and identification in different acoustical zones of deep water. In order to distinguish the multipath characteristics in deep water, the Northwest Pacific Acoustic Experiment was conducted in 2015. A low-frequency horizontal line array towed at the depth of around 150 m on a receiving ship was used to receive the noise radiated by the source ship. During this experiment, a beating-splitting phenomenon in the direct zone was observed through conventional beamforming of the horizontal line array within the frequency band 160 Hz- 360 Hz. In this paper, this phenomenon is explained based on ray theory. In principle, the received signal in the direct zone of deep water arrives from two general paths including a direct one and bottom bounced one, which vary considerably in arrival angles. The split bearings correspond to the contributions of these two paths. The beating-splitting phenomenon is demonstrated by numerical simulations of the bearing-time records and experimental results, and they are well consistent with each other. Then a near-surface source ranging approach based on the arrival angles of direct path and bottom bounced path in the direct zone is presented as an application of bearing splitting and is verified by experimental results. Finally, the applicability of the proposed ranging approach for an underwater source within several hundred meters in depth in the direct zone is also analyzed and demonstrated by simulations.
基金Project supported by the National Defense Basic Science Research Program,China(Grant No.JCKY2016607C009)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2018025)。
文摘In the towed line array sonar system,the tow ship noise is the main factor that affects the sonar performance.Conventional noise cancelling methods assume that the noise is towards the endfire direction of the array.An acoustic experiment employing a towed line array is conducted in the western Pacific Ocean,and a strange bearing-splitting phenomenon of the tow ship noise is observed in the array.The tow ship noise is split into multiple noise signals whose bearings are distributed between 10°and 90°deviating from the endfire direction.The multiple interferences increase the difficulty in recognizing the target for the sonar operator and noise cancellation.Therefore,making the mechanism clear and putting forward the tow ship noise splitting bearing estimation method are imperative.In this paper,the acoustic multi-path structure of the tow ship in deep water is analyzed.Then it is pointed out that the bearing-splitting phenomenon is caused by the main lobe of direct rays and bottom-reflected rays,as well as several side lobes of direct rays.Meanwhile,the indistinguishability between the elevation angle and the bearing angle due to the axial symmetry of a strict horizontal line array causes the bearing to deviate from the endfire direction.Based on the theory above,a method of estimating bearing of the tow ship noise in deep water is proposed.The theoretical analysis results accord with the experimental results,which helps to identify the target and provide correct initial bearing guidance for noise cancelation methods.
基金Supported by the National Natural Science Foundation of China under Grant No 11174235
文摘The horizontal-longitudinal correlation of acoustic field for the receiver near the bottom is analyzed by using nu-merical modeling.An approximate analytical solution of horizontal-longitudinal correlation coefficient is derived based on the ray method.Combining the characteristic of Lloyd's mirror interference pattern,the variability of acoustic field and its effect on horizontal-longitudinal spatial correlation are discussed.The theoretical pre-diction agrees well with the numerical results.Experimental results confirm the validity of analytical solution.Finally,the applicability of the analytical solution is summarized.The conclusion is beneficial for the design of bottom-moored array and the estimation of integral time for moving source localization.