Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the random...Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the randomness of structural parameters,working condition and vibration environment are considered for fatigue life predication and reliability assessment.First,the lowcycle fatigue problem is modelled as stochastic static system with random parameters,while the high-cycle fatigue problem is considered as stochastic dynamic system under random excitations.Then,to deal with the two failure modes,the novel Direct Probability Integral Method(DPIM)is proposed,which is efficient and accurate for solving stochastic static and dynamic systems.The probability density functions of accumulated damage and fatigue life of turbine blade for low-cycle and high-cycle fatigue problems are achieved,respectively.Furthermore,the time–frequency hybrid method is advanced to enhance the computational efficiency for governing equation of system.Finally,the results of typical examples demonstrate high accuracy and efficiency of the proposed method by comparison with Monte Carlo simulation and other methods.It is indicated that the DPIM is a unified method for predication of random fatigue life for low-cycle and highcycle fatigue problems.The rotational speed,density,fatigue strength coefficient,and fatigue plasticity index have a high sensitivity to fatigue reliability of engine turbine blade.展开更多
近年来,复合材料层合板结构被广泛地应用于航空航天、军工、建筑工程等领域。但是,由于其几何尺寸的不准确性、材料参数的分散性、载荷环境的波动性等不确定性因素的影响,可能会对复合材料层合板结构的可靠性和安全性,以及系统的输出响...近年来,复合材料层合板结构被广泛地应用于航空航天、军工、建筑工程等领域。但是,由于其几何尺寸的不准确性、材料参数的分散性、载荷环境的波动性等不确定性因素的影响,可能会对复合材料层合板结构的可靠性和安全性,以及系统的输出响应产生重大影响。由于复合材料层合板的层间黏结不良、外部应力集中等因素,当复合材料层合板结构的能量释放速率达到层间断裂韧性时,就会发生分层。因此对复合材料层合板结构的分层可靠性进行分析具有重要的意义。目前,对于复合材料层合板结构的可靠性分析主要是采用一阶可靠性方法(first order reliability method,FORM)、二阶可靠性方法(second order reliability method,SORM)和重要性抽样方法(importance sampling,IS)等传统可靠性分析方法,并将其和蒙特卡罗模拟(Monte Carlo simulation,MCS)对比。但是,当复合材料结构不确定性维度高且复杂时,这些方法不仅计算效率太低,而且不能保证其计算精度。相比于传统的可靠性分析方法,可以利用基于自适应Kriging模型集成策略和主动学习函数结合蒙特卡罗模拟(adaptive Kriging-based Monte Carlo simulation,AK-MCS)的方法,对复合材料层合板结构进行可靠性分析。而直接概率积分方法(direct probability integral method,DPIM)具有更高的计算效率和精度,特别是对于高维度和复杂的可靠性分析问题。所以,本文采用AK-MCS方法和DPIM对模式Ⅰ、模式Ⅱ和混合Ⅰ/Ⅱ模式下的复合材料层合板结构分层的可靠度进行了研究。结果表明:DPIM和AK-MCS与传统可靠性分析方法相比具有更高的计算精度和计算效率,但是DPIM以其高效的计算效率脱颖而出,尽管其精度略低于AK-MCS,但在处理随机变量更多、非线性程度更高的混合Ⅰ/Ⅱ模式下的层合板结构分层的可靠性时展现出明显优势。综合考虑精度与时效性的平衡,DPIM能够准确地评估复合材料结构的可靠度,保障其在航天航空装备等领域的安全运行。展开更多
This paper proposes a hybrid algorithm based on the physics-informed kernel function neural networks(PIKFNNs)and the direct probability integral method(DPIM)for calculating the probability density function of stochast...This paper proposes a hybrid algorithm based on the physics-informed kernel function neural networks(PIKFNNs)and the direct probability integral method(DPIM)for calculating the probability density function of stochastic responses for structures in the deep marine environment.The underwater acoustic information is predicted utilizing the PIKFNNs,which integrate prior physical information.Subsequently,a novel uncertainty quantification analysis method,the DPIM,is introduced to establish a stochastic response analysis model of underwater acoustic propagation.The effects of random load,variable sound speed,fluctuating ocean density,and random material properties of shell on the underwater stochastic sound pressure are numerically analyzed,providing a probabilistic insight for assessing the mechanical behavior of structures in the deep marine environment.展开更多
基金supports of the National Natural Science Foundation of China(Nos.12032008,12102080)the Fundamental Research Funds for the Central Universities,China(No.DUT23RC(3)038)are much appreciated。
文摘Fatigue analysis of engine turbine blade is an essential issue.Due to various uncertainties during the manufacture and operation,the fatigue damage and life of turbine blade present randomness.In this study,the randomness of structural parameters,working condition and vibration environment are considered for fatigue life predication and reliability assessment.First,the lowcycle fatigue problem is modelled as stochastic static system with random parameters,while the high-cycle fatigue problem is considered as stochastic dynamic system under random excitations.Then,to deal with the two failure modes,the novel Direct Probability Integral Method(DPIM)is proposed,which is efficient and accurate for solving stochastic static and dynamic systems.The probability density functions of accumulated damage and fatigue life of turbine blade for low-cycle and high-cycle fatigue problems are achieved,respectively.Furthermore,the time–frequency hybrid method is advanced to enhance the computational efficiency for governing equation of system.Finally,the results of typical examples demonstrate high accuracy and efficiency of the proposed method by comparison with Monte Carlo simulation and other methods.It is indicated that the DPIM is a unified method for predication of random fatigue life for low-cycle and highcycle fatigue problems.The rotational speed,density,fatigue strength coefficient,and fatigue plasticity index have a high sensitivity to fatigue reliability of engine turbine blade.
文摘近年来,复合材料层合板结构被广泛地应用于航空航天、军工、建筑工程等领域。但是,由于其几何尺寸的不准确性、材料参数的分散性、载荷环境的波动性等不确定性因素的影响,可能会对复合材料层合板结构的可靠性和安全性,以及系统的输出响应产生重大影响。由于复合材料层合板的层间黏结不良、外部应力集中等因素,当复合材料层合板结构的能量释放速率达到层间断裂韧性时,就会发生分层。因此对复合材料层合板结构的分层可靠性进行分析具有重要的意义。目前,对于复合材料层合板结构的可靠性分析主要是采用一阶可靠性方法(first order reliability method,FORM)、二阶可靠性方法(second order reliability method,SORM)和重要性抽样方法(importance sampling,IS)等传统可靠性分析方法,并将其和蒙特卡罗模拟(Monte Carlo simulation,MCS)对比。但是,当复合材料结构不确定性维度高且复杂时,这些方法不仅计算效率太低,而且不能保证其计算精度。相比于传统的可靠性分析方法,可以利用基于自适应Kriging模型集成策略和主动学习函数结合蒙特卡罗模拟(adaptive Kriging-based Monte Carlo simulation,AK-MCS)的方法,对复合材料层合板结构进行可靠性分析。而直接概率积分方法(direct probability integral method,DPIM)具有更高的计算效率和精度,特别是对于高维度和复杂的可靠性分析问题。所以,本文采用AK-MCS方法和DPIM对模式Ⅰ、模式Ⅱ和混合Ⅰ/Ⅱ模式下的复合材料层合板结构分层的可靠度进行了研究。结果表明:DPIM和AK-MCS与传统可靠性分析方法相比具有更高的计算精度和计算效率,但是DPIM以其高效的计算效率脱颖而出,尽管其精度略低于AK-MCS,但在处理随机变量更多、非线性程度更高的混合Ⅰ/Ⅱ模式下的层合板结构分层的可靠性时展现出明显优势。综合考虑精度与时效性的平衡,DPIM能够准确地评估复合材料结构的可靠度,保障其在航天航空装备等领域的安全运行。
基金the National Natural Science Foundation of China,Grant Number:12372196,12302258,52325803,U22A20229,12402238State Key Laboratory of Ocean Engineering(Shanghai Jiao Tong University),Grant Number:GKZD010089+2 种基金the Six Talent Peaks Project in Jiangsu Province of China,Grant Number:2019-KTHY-009Jiangsu Funding Program for Excellent Postdoctoral Talent,Grant Number:2023ZB506Postdoctoral Fellowship Program of CPSF,Grant Number:GZC20230667。
文摘This paper proposes a hybrid algorithm based on the physics-informed kernel function neural networks(PIKFNNs)and the direct probability integral method(DPIM)for calculating the probability density function of stochastic responses for structures in the deep marine environment.The underwater acoustic information is predicted utilizing the PIKFNNs,which integrate prior physical information.Subsequently,a novel uncertainty quantification analysis method,the DPIM,is introduced to establish a stochastic response analysis model of underwater acoustic propagation.The effects of random load,variable sound speed,fluctuating ocean density,and random material properties of shell on the underwater stochastic sound pressure are numerically analyzed,providing a probabilistic insight for assessing the mechanical behavior of structures in the deep marine environment.