Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.T...Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.This method spends most of computing time in objective function evaluation by reservoir numerical simulator which limits its optimization efficiency.To improve optimization efficiency,a well production optimization method using streamline features-based objective function and Bayesian adaptive direct search optimization(BADS)algorithm is established.This new objective function,which represents the water flooding potential,is extracted from streamline features.It only needs to call the streamline simulator to run one time step,instead of calling the simulator to calculate the target value at the end of development,which greatly reduces the running time of the simulator.Then the well production optimization model is established and solved by the BADS algorithm.The feasibility of the new objective function and the efficiency of this optimization method are verified by three examples.Results demonstrate that the new objective function is positively correlated with the cumulative oil production.And the BADS algorithm is superior to other common algorithms in convergence speed,solution stability and optimization accuracy.Besides,this method can significantly accelerate the speed of well production optimization process compared with the objective function calculated by other conventional methods.It can provide a more effective basis for determining the optimal well production for actual oilfield development.展开更多
为了克服正则化理论的全变分图像盲复原模型中出现的运行效率低、效果不好等问题,提出一种基于交替方向乘子法的盲复原迭代算法。该算法通过交替迭代的方式,将复原图像与点扩散函数交替估计,同时不必更新惩罚项从而提高了运行速度和复...为了克服正则化理论的全变分图像盲复原模型中出现的运行效率低、效果不好等问题,提出一种基于交替方向乘子法的盲复原迭代算法。该算法通过交替迭代的方式,将复原图像与点扩散函数交替估计,同时不必更新惩罚项从而提高了运行速度和复原的质量。计算同时加入了对点扩散函数的归一化和阈值约束条件以及对图像的正定性条件。数值试验中,对不同模糊类型的图像进行了盲复原处理,并与已有的其他盲复原方法进行了比较。从主观评价能够发现,提出的算法能够改进图像的质量,提高其分辨率;通过客观指标比较,峰值信噪比(peak signal to noise ratio,PSNR)最大能够提高1.2 d B,结构相似度(structural similarity index,SSIM)最大提高1%,计算时间最大节约一半左右。展开更多
基金supported partly by the National Science and Technology Major Project of China(Grant No.2016ZX05025-001006)Major Science and Technology Project of CNPC(Grant No.ZD2019-183-007)
文摘Well production optimization is a complex and time-consuming task in the oilfield development.The combination of reservoir numerical simulator with optimization algorithms is usually used to optimize well production.This method spends most of computing time in objective function evaluation by reservoir numerical simulator which limits its optimization efficiency.To improve optimization efficiency,a well production optimization method using streamline features-based objective function and Bayesian adaptive direct search optimization(BADS)algorithm is established.This new objective function,which represents the water flooding potential,is extracted from streamline features.It only needs to call the streamline simulator to run one time step,instead of calling the simulator to calculate the target value at the end of development,which greatly reduces the running time of the simulator.Then the well production optimization model is established and solved by the BADS algorithm.The feasibility of the new objective function and the efficiency of this optimization method are verified by three examples.Results demonstrate that the new objective function is positively correlated with the cumulative oil production.And the BADS algorithm is superior to other common algorithms in convergence speed,solution stability and optimization accuracy.Besides,this method can significantly accelerate the speed of well production optimization process compared with the objective function calculated by other conventional methods.It can provide a more effective basis for determining the optimal well production for actual oilfield development.
文摘为了克服正则化理论的全变分图像盲复原模型中出现的运行效率低、效果不好等问题,提出一种基于交替方向乘子法的盲复原迭代算法。该算法通过交替迭代的方式,将复原图像与点扩散函数交替估计,同时不必更新惩罚项从而提高了运行速度和复原的质量。计算同时加入了对点扩散函数的归一化和阈值约束条件以及对图像的正定性条件。数值试验中,对不同模糊类型的图像进行了盲复原处理,并与已有的其他盲复原方法进行了比较。从主观评价能够发现,提出的算法能够改进图像的质量,提高其分辨率;通过客观指标比较,峰值信噪比(peak signal to noise ratio,PSNR)最大能够提高1.2 d B,结构相似度(structural similarity index,SSIM)最大提高1%,计算时间最大节约一半左右。