期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Radiation heat transfer model for complex superalloy turbine blade in directional solidification process based on finite element method 被引量:5
1
作者 Dun-ming Liao Liu Cao +4 位作者 Tao Chen Fei Sun Yong-zhen Jia Zi-hao Teng Yu-long Tang 《China Foundry》 SCIE 2016年第2期123-132,共10页
For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is develo... For the sake of a more accurate shell boundary and calculation of radiation heat transfer in the Directional Solidification(DS) process, a radiation heat transfer model based on the Finite Element Method(FEM)is developed in this study. Key technologies, such as distinguishing boundaries automatically, local matrix and lumped heat capacity matrix, are also stated. In order to analyze the effect of withdrawing rate on DS process,the solidification processes of a complex superalloy turbine blade in the High Rate Solidification(HRS) process with different withdrawing rates are simulated; and by comparing the simulation results, it is found that the most suitable withdrawing rate is determined to be 5.0 mm·min^(-1). Finally, the accuracy and reliability of the radiation heat transfer model are verified, because of the accordance of simulation results with practical process. 展开更多
关键词 directional solidification radiation heat transfer finite element method numerical simulation local matrix superalloy turbine blade
在线阅读 下载PDF
An ADI Finite Volume Element Method for a Viscous Wave Equation with Variable Coefficients
2
作者 Mengya Su Zhihao Ren Zhiyue Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第5期739-776,共38页
Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direc... Based on rectangular partition and bilinear interpolation,we construct an alternating-direction implicit(ADI)finite volume element method,which combined the merits of finite volume element method and alternating direction implicit method to solve a viscous wave equation with variable coefficients.This paper presents a general procedure to construct the alternating-direction implicit finite volume element method and gives computational schemes.Optimal error estimate in L2 norm is obtained for the schemes.Compared with the finite volume element method of the same convergence order,our method is more effective in terms of running time with the increasing of the computing scale.Numerical experiments are presented to show the efficiency of our method and numerical results are provided to support our theoretical analysis. 展开更多
关键词 Viscous wave equation alternating direction implicit finite volume element method error estimates L2 norm
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部