Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations o...Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations of renewable energy resources(RESs).However,challenges such as the non-convex nature of BdC efficiency and renewable energy uncertainty complicate the planning process.To address these issues,this paper proposes a tri-level BdC-based planning framework that incorporates dynamic BdC efficiency and a data-correlated uncertainty set(DcUS)derived from historical data patterns.The proposed framework employs a least-squares approximation to linearize BdC efficiency and constructs the DcUS to balance computational efficiency and solution robustness.Additionally,a fully parallel column and constraint generation algorithm is developed to solve the model efficiently.Numerical simulations on a practical hybrid AC/DC microgrid system demonstrate that the proposed method reduces interconnection costs by up to 21.8%compared to conventional uncertainty sets while ensuring robust operation under all considered scenarios.These results highlight the computational efficiency,robustness,and practicality of the proposed approach,making it a promising solution for modern power systems.展开更多
基金supported by the National Natural Science Foundation of China(72271213)the Shenzhen Science and Technology Program(JCYJ20220530143800001 and RCYX20221008092927070)+1 种基金the Guangdong Basic and Applied Basic Research Foundation(2024A1515240024)the National Key Research and Development Program of China(2022YFB2403500).
文摘Interconnection planning involving bi-directional converters(BdCs)is crucial for enhancing the reliability and robustness of hybrid alternating current(AC)/direct current(DC)microgrid clusters with high penetrations of renewable energy resources(RESs).However,challenges such as the non-convex nature of BdC efficiency and renewable energy uncertainty complicate the planning process.To address these issues,this paper proposes a tri-level BdC-based planning framework that incorporates dynamic BdC efficiency and a data-correlated uncertainty set(DcUS)derived from historical data patterns.The proposed framework employs a least-squares approximation to linearize BdC efficiency and constructs the DcUS to balance computational efficiency and solution robustness.Additionally,a fully parallel column and constraint generation algorithm is developed to solve the model efficiently.Numerical simulations on a practical hybrid AC/DC microgrid system demonstrate that the proposed method reduces interconnection costs by up to 21.8%compared to conventional uncertainty sets while ensuring robust operation under all considered scenarios.These results highlight the computational efficiency,robustness,and practicality of the proposed approach,making it a promising solution for modern power systems.