Aiming at the challenge of complex load balancing coordination for a three-phase four-leg(3P4L)based multi-ended low voltage flexible DC distribution system(M-LVDC)considering unbalanced power compensation,this paper ...Aiming at the challenge of complex load balancing coordination for a three-phase four-leg(3P4L)based multi-ended low voltage flexible DC distribution system(M-LVDC)considering unbalanced power compensation,this paper proposes a phase-split power decoupling unbalanced compensation strategy based load balancing strategy for 3P4L based M-LVDC.Firstly,the topology and operation principle of the 3P4L-based M-LVDC system is introduced,and quasi-proportional resonant(QPR)based phase-split power current control for the 3P4L converter is proposed.Secondly,a load-balancing control strategy considering unbalanced compensation for 3P4L-based MLVDC is presented,in which the control diagrams for each 3P4L-based converter are detailed.The core idea of the proposed strategy is to comprehensively consider the imbalance compensation and load rate balancing between the two areas to calculate the split-phase power and current reference values of each 3P4L converter and achieve the static error-free tracking of the reference values through the QPR current inner-loop control.These reference values are then tracked with zero steady-state error using QPR current inner-loop control.Finally,the effectiveness of the proposed control strategy is verified through a 3P4L M-LVDC case study conducted on the PSCAD/EMTDC software.Theresults indicate that the proposed method not only can reduce the three-phase imbalance degrees from>20% to<0.5%,but also achieve excellent balanced load rates,with the load-rate difference smaller than 1.5%.展开更多
To elucidate the principles of notable torque and flux ripple during the steady state of the conventional direct torque control (DTC) of induction machines, the factors of influence torque variation are examined. A ...To elucidate the principles of notable torque and flux ripple during the steady state of the conventional direct torque control (DTC) of induction machines, the factors of influence torque variation are examined. A new torque ripple minimization algorithm is proposed. The novel method eradicated the torque ripple by imposing the required stator voltage vector in each control cycle. The M and T axial components of the stator voltage are accomplished by measuring the stator flux error and the expected incremental value of the torque at every sampling time. The maximum angle rotation allowed is obtained. Experimental results showed that the proposed method combined with the space vector pulse width modulation (SVPWM) could be implemented in most existing digital drive controllers, offering high performance in both steady and transient states of the induction drives at full speed range. The result of the present work implies that torque fluctuation could be eliminated by imposing proper stator voltage, and the proposed scheme could not only maintain constant switching frequency for the inverter, but also solve the heating problem and current harmonics in traditional induction motor drives.展开更多
The paper presents an adaptive controller formulated for a class of nonaffine discrete-time systems with non-strict forms and unknown dynamics.The controller operates based solely on the measured output,thus obviating...The paper presents an adaptive controller formulated for a class of nonaffine discrete-time systems with non-strict forms and unknown dynamics.The controller operates based solely on the measured output,thus obviating the need for knowledge of the physical order of the controlled plant.Utilizing an ideal solution and equivalent dynamics,the approach integrates an adaptive network with feedback and robust controllers to establish a closed-loop system.A learning law is derived under practical conditions of the designed parameters,ensuring effective closed-loop performance based on pure-output feedback.The controller’s effectiveness is validated through both numerical and experimental systems,with results meeting the conditions specified in the main theorem.Comparative analysis highlights the controller’s highly satisfactory performance and its advantages.This research offers a promising approach to adaptive control for discrete-time systems with non-strict dynamics,providing practical solutions for systems with unknown dynamics and indeterminate system order.展开更多
Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments...Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition.展开更多
Because brushless direct current(BLDC) motors have the advantages of a compact size, high power density, high efficiency, and long operating life time, they are widely used in many industrial products and electric tra...Because brushless direct current(BLDC) motors have the advantages of a compact size, high power density, high efficiency, and long operating life time, they are widely used in many industrial products and electric traction systems. It is known that the BLDC motors have no brushes for commutation. They are commutated with electronically commutation. So, the rotor position information of the BLDC motors must be known to understand which winding will be energized according to the energizing sequence. In most of the existing BLDC motor drivers, rotor position information is detected by Hall effect sensors. This kind of mechanical position sensors will bring additional connections and costs, reliability decrease and noise increase. In order to improve the control performance and extend the range of speed regulation for BLDC motors, a position sensorless control method is proposed in this paper. In the proposed control method, rotor position information of the BLDC motors is detected from the back electromagnetic forces(back-EMFs) which are estimated by an unknown-input observer with line to line currents and line to line voltages. For the purpose of verifying the effectiveness of the proposed control method, a model is built and simulated on the Matlab/Simulink platform. The simulation results show that the speed regulation performance of BLDC motors is improved compared with using Hall effect sensors. At the same time, the reliability of the BLDC motors is improved and the costs of them are reduced because the position sensor is eliminated.展开更多
This paper is dealing with the problem of tracking control for uncertain flexible joint manipulator robots driven by brushless direct current motor(BDCM). Flexibility of joint in the manipulator constitutes one of the...This paper is dealing with the problem of tracking control for uncertain flexible joint manipulator robots driven by brushless direct current motor(BDCM). Flexibility of joint in the manipulator constitutes one of the most important sources of uncertainties. In order to achieve high performance, all parts of the manipulator including actuator have been modeled. To cancel the tracking error, a hysteresis current controller and speed controllers have been developed. To evaluate the effectiveness of speed controllers, a comparative study between proportional integral(PI) and sliding mode controllers has been performed. Finally, simulation results carried out in the Matlab simulink environment demonstrate the high precision of sliding mode controller compared with PI controller in the presence of uncertainties of joint flexibility.展开更多
In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the outpu...In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the output becomes unstable because of intermittent characteristics, such as variations of wind speed or solar radiation intensity. Frequency fluctuations due to the installation of large scale wind farm (WF) and photovoltaics (PV) into the power system is a major concern. In order to solve the problem, this paper proposes two control methods using High Voltage Direct Current (HVDC) interconnection line to suppress the frequency fluctuations due to large scale of WF and PV. Comparative analysis between these two control methods is presented in this paper. One proposed method is a frequency control using a notch filter, and the other is using a deadband. Validity of the proposed methods is verified through simulation analyses, which is performed on a multi-machine power system model.展开更多
Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplie...Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplies have unstable output due to the influence of weather conditions such as wind speed variations, which may cause fluctuations of voltage and frequency in the power system. This paper proposes fuzzy PD based virtual inertia control system to decrease frequency fluctuations in power system caused by fluctuating output of renewable energy sources. The proposed new method is based on the coordinated control of HVDC interconnection line and battery, and energy balancing control is also incorporated in it. Finally, it is concluded that the proposed system is very effective for suppressing the frequency fluctuations of the power system due to the large-scale wind power generation and solar power generation and also for keeping the energy balancing in the HVDC transmission line.展开更多
目的基于背侧注意网络(dorsal attention network,DAN)和默认网络(default network,DN)两个与注意力相关脑网络,探讨多焦点经颅直流电刺激(transcranial direct current stimulation,tDCS)能否改善健康老年人在双任务姿势控制中的表现...目的基于背侧注意网络(dorsal attention network,DAN)和默认网络(default network,DN)两个与注意力相关脑网络,探讨多焦点经颅直流电刺激(transcranial direct current stimulation,tDCS)能否改善健康老年人在双任务姿势控制中的表现。方法22名健康老年人被随机分配接受tDCS和假刺激,两次刺激间隔至少1周。tDCS方案旨在促进DAN的兴奋性并抑制DN的兴奋性,刺激时长为20 min(DAN+/DN-tDCS);假刺激方案仅持续1 min(刺激开始和结束各30 s)。在每次干预前后,使用测力台采集受试者在睁眼和闭眼条件下进行单、双任务姿势控制测试的压力中心数据。采用双因素重复测量(刺激方案×刺激前后)方差分析评估刺激方案对受试者各姿势控制指标的影响。结果所有受试者均完成实验,未出现明显不良反应。在睁眼双任务中,摆动合速度(F=5.72,P=0.021)和前后方向摆动速度(F=5.085,P=0.029)均存在显著交互作用。在DAN+/DN-tDCS干预后,前后方向摆动速度(P=0.019)和摆动合速度(P=0.01)均显著下降。睁眼条件下,摆动面积双任务消耗(F=8.727,P=0.005)也存在显著交互作用。在DAN+/DN-tDCS干预后摆动面积双任务消耗降低(P=0.038),而假刺激干预后摆动面积双任务消耗反而增加(P=0.049)。结论DAN+/DN-tDCS干预能显著改善健康老年人在双任务姿势控制中的表现(降低摆动速度、面积及双任务消耗),提示该刺激方案具有提升老年人在双任务条件下姿势控制稳定性的潜力。展开更多
基金supported by the key technology project of China Southern Power Grid Corporation(GZKJXM20220041)partly by theNational Key Research and Development Plan(2022YFE0205300).
文摘Aiming at the challenge of complex load balancing coordination for a three-phase four-leg(3P4L)based multi-ended low voltage flexible DC distribution system(M-LVDC)considering unbalanced power compensation,this paper proposes a phase-split power decoupling unbalanced compensation strategy based load balancing strategy for 3P4L based M-LVDC.Firstly,the topology and operation principle of the 3P4L-based M-LVDC system is introduced,and quasi-proportional resonant(QPR)based phase-split power current control for the 3P4L converter is proposed.Secondly,a load-balancing control strategy considering unbalanced compensation for 3P4L-based MLVDC is presented,in which the control diagrams for each 3P4L-based converter are detailed.The core idea of the proposed strategy is to comprehensively consider the imbalance compensation and load rate balancing between the two areas to calculate the split-phase power and current reference values of each 3P4L converter and achieve the static error-free tracking of the reference values through the QPR current inner-loop control.These reference values are then tracked with zero steady-state error using QPR current inner-loop control.Finally,the effectiveness of the proposed control strategy is verified through a 3P4L M-LVDC case study conducted on the PSCAD/EMTDC software.Theresults indicate that the proposed method not only can reduce the three-phase imbalance degrees from>20% to<0.5%,but also achieve excellent balanced load rates,with the load-rate difference smaller than 1.5%.
基金supported by the National Natural Science Foundation of China (Grant No.2004EA105003)
文摘To elucidate the principles of notable torque and flux ripple during the steady state of the conventional direct torque control (DTC) of induction machines, the factors of influence torque variation are examined. A new torque ripple minimization algorithm is proposed. The novel method eradicated the torque ripple by imposing the required stator voltage vector in each control cycle. The M and T axial components of the stator voltage are accomplished by measuring the stator flux error and the expected incremental value of the torque at every sampling time. The maximum angle rotation allowed is obtained. Experimental results showed that the proposed method combined with the space vector pulse width modulation (SVPWM) could be implemented in most existing digital drive controllers, offering high performance in both steady and transient states of the induction drives at full speed range. The result of the present work implies that torque fluctuation could be eliminated by imposing proper stator voltage, and the proposed scheme could not only maintain constant switching frequency for the inverter, but also solve the heating problem and current harmonics in traditional induction motor drives.
文摘The paper presents an adaptive controller formulated for a class of nonaffine discrete-time systems with non-strict forms and unknown dynamics.The controller operates based solely on the measured output,thus obviating the need for knowledge of the physical order of the controlled plant.Utilizing an ideal solution and equivalent dynamics,the approach integrates an adaptive network with feedback and robust controllers to establish a closed-loop system.A learning law is derived under practical conditions of the designed parameters,ensuring effective closed-loop performance based on pure-output feedback.The controller’s effectiveness is validated through both numerical and experimental systems,with results meeting the conditions specified in the main theorem.Comparative analysis highlights the controller’s highly satisfactory performance and its advantages.This research offers a promising approach to adaptive control for discrete-time systems with non-strict dynamics,providing practical solutions for systems with unknown dynamics and indeterminate system order.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology of Korea of Republic, No. 2012R1A1B4003477
文摘Inhibitory control of movement in motor learning requires the ability to suppress an inappropriate action, a skill needed to stop a planned or ongoing motor response in response to changes in a variety of environments. This study used a stop-signal task to determine whether transcranial direct-current stimulation over the pre-supplementary motor area alters the reaction time in motor inhibition. Forty healthy subjects were recruited for this study and were randomly assigned to either the transcranial direct-current stimulation condition or a sham-transcranial direct-current stimulation condition. All subjects consecutively performed the stop-signal task before, during, and after the delivery of anodal transcranial direct-current stimulation over the pre-supplementary motor area (pre-transcranial direct-current stimulation phase, transcranial direct-current stimulation phase, and post-transcranial direct-current stimulation phase). Compared to the sham condition, there were significant reductions in the stop-signal processing times during and after transcranial direct-current stimulation, and change times were significantly greater in the transcranial direct-current stimulation condition. There was no significant change in go processing-times during or after transcranial direct-current stimulation in either condition. Anodal transcranial direct-current stimulation was feasibly coupled to an interactive improvement in inhibitory control. This coupling led to a decrease in the stop-signal process time required for the appropriate responses between motor execution and inhibition. However, there was no transcranial direct-current stimulation effect on the no-signal reaction time during the stop-signal task. Transcranial direct-current stimulation can adjust certain behaviors, and it could be a useful clinical intervention for patients who have difficulties with response inhibition.
文摘Because brushless direct current(BLDC) motors have the advantages of a compact size, high power density, high efficiency, and long operating life time, they are widely used in many industrial products and electric traction systems. It is known that the BLDC motors have no brushes for commutation. They are commutated with electronically commutation. So, the rotor position information of the BLDC motors must be known to understand which winding will be energized according to the energizing sequence. In most of the existing BLDC motor drivers, rotor position information is detected by Hall effect sensors. This kind of mechanical position sensors will bring additional connections and costs, reliability decrease and noise increase. In order to improve the control performance and extend the range of speed regulation for BLDC motors, a position sensorless control method is proposed in this paper. In the proposed control method, rotor position information of the BLDC motors is detected from the back electromagnetic forces(back-EMFs) which are estimated by an unknown-input observer with line to line currents and line to line voltages. For the purpose of verifying the effectiveness of the proposed control method, a model is built and simulated on the Matlab/Simulink platform. The simulation results show that the speed regulation performance of BLDC motors is improved compared with using Hall effect sensors. At the same time, the reliability of the BLDC motors is improved and the costs of them are reduced because the position sensor is eliminated.
文摘This paper is dealing with the problem of tracking control for uncertain flexible joint manipulator robots driven by brushless direct current motor(BDCM). Flexibility of joint in the manipulator constitutes one of the most important sources of uncertainties. In order to achieve high performance, all parts of the manipulator including actuator have been modeled. To cancel the tracking error, a hysteresis current controller and speed controllers have been developed. To evaluate the effectiveness of speed controllers, a comparative study between proportional integral(PI) and sliding mode controllers has been performed. Finally, simulation results carried out in the Matlab simulink environment demonstrate the high precision of sliding mode controller compared with PI controller in the presence of uncertainties of joint flexibility.
文摘In recent years, environmental problems are becoming serious and renewable energy has attracted attention as their solutions. However, the electricity generation using the renewable energy has a demerit that the output becomes unstable because of intermittent characteristics, such as variations of wind speed or solar radiation intensity. Frequency fluctuations due to the installation of large scale wind farm (WF) and photovoltaics (PV) into the power system is a major concern. In order to solve the problem, this paper proposes two control methods using High Voltage Direct Current (HVDC) interconnection line to suppress the frequency fluctuations due to large scale of WF and PV. Comparative analysis between these two control methods is presented in this paper. One proposed method is a frequency control using a notch filter, and the other is using a deadband. Validity of the proposed methods is verified through simulation analyses, which is performed on a multi-machine power system model.
文摘Recently, introduction of renewable energy sources like wind power generation and photovoltaic power generation has been increasing from the viewpoint of environmental problems. However, renewable energy power supplies have unstable output due to the influence of weather conditions such as wind speed variations, which may cause fluctuations of voltage and frequency in the power system. This paper proposes fuzzy PD based virtual inertia control system to decrease frequency fluctuations in power system caused by fluctuating output of renewable energy sources. The proposed new method is based on the coordinated control of HVDC interconnection line and battery, and energy balancing control is also incorporated in it. Finally, it is concluded that the proposed system is very effective for suppressing the frequency fluctuations of the power system due to the large-scale wind power generation and solar power generation and also for keeping the energy balancing in the HVDC transmission line.
文摘目的基于背侧注意网络(dorsal attention network,DAN)和默认网络(default network,DN)两个与注意力相关脑网络,探讨多焦点经颅直流电刺激(transcranial direct current stimulation,tDCS)能否改善健康老年人在双任务姿势控制中的表现。方法22名健康老年人被随机分配接受tDCS和假刺激,两次刺激间隔至少1周。tDCS方案旨在促进DAN的兴奋性并抑制DN的兴奋性,刺激时长为20 min(DAN+/DN-tDCS);假刺激方案仅持续1 min(刺激开始和结束各30 s)。在每次干预前后,使用测力台采集受试者在睁眼和闭眼条件下进行单、双任务姿势控制测试的压力中心数据。采用双因素重复测量(刺激方案×刺激前后)方差分析评估刺激方案对受试者各姿势控制指标的影响。结果所有受试者均完成实验,未出现明显不良反应。在睁眼双任务中,摆动合速度(F=5.72,P=0.021)和前后方向摆动速度(F=5.085,P=0.029)均存在显著交互作用。在DAN+/DN-tDCS干预后,前后方向摆动速度(P=0.019)和摆动合速度(P=0.01)均显著下降。睁眼条件下,摆动面积双任务消耗(F=8.727,P=0.005)也存在显著交互作用。在DAN+/DN-tDCS干预后摆动面积双任务消耗降低(P=0.038),而假刺激干预后摆动面积双任务消耗反而增加(P=0.049)。结论DAN+/DN-tDCS干预能显著改善健康老年人在双任务姿势控制中的表现(降低摆动速度、面积及双任务消耗),提示该刺激方案具有提升老年人在双任务条件下姿势控制稳定性的潜力。
文摘三相四桥臂换流器具备不平衡负载工作能力与三相解耦控制功能,已成为主动配电网领域的研究热点。结合三相四桥臂电压源转换器(voltage source converter,VSC)模型,提出一种分相准比例谐振控制(proportion resonant,PR)直接电流控制策略。针对台区首端电流不平衡问题,提出分相功率补偿思路。先设计补偿功率计算策略,再以功率为控制目标计算输入电流参考值,结合分相准比例谐振直接电流控制,对各相进行功率调节,以达到治理三相电流不平衡的目的。在某仿真软件搭建了基于嵌入式低压直流环节(embedded low voltage DC system,E-LVDC)的低压柔性台区模型。仿真结果表明,台区首端三相电流不平衡度降低,从而验证了所提控制策略的有效性。