Manipulating magnetic couplings in molecular magnets is of great importance in improving the mag-netic properties of such materials.It has been proved that by adjusting the strength of magnetic cou-plings and the arra...Manipulating magnetic couplings in molecular magnets is of great importance in improving the mag-netic properties of such materials.It has been proved that by adjusting the strength of magnetic cou-plings and the arrangement of the intermolecular magnetic dipoles,magnetic blocking can be significantly enhanced.Herein manipulating the intramolecular dipole interactions by ligand modifica-tion was attempted with the use of three closely related dinuclear Er(Ⅲ)complexes of a common chemical formula of[(COT^(R))Er(μ-CI)(THF)]_(2)(COT^(R)is monosubstituted cyclooctatetraenide dianions with R=diphenylmethylsilyl(Ph_(2)MeS)for 1,triethylsilyl(TES)for 2,and triisopropylsilyl(TIPS)for 3).Each of these complexes features a centrosymmetric dinuclear core unit with their component Er(Ⅲ)ions doubly bridged by two chloro ligands and further coordinated with a capping substituted corR ligand and a coordinated THF molecule.Magnetic studies reveal that the complexes display similar ferromagnetic couplings with comparable single-molecule magnetic behaviors.The ferromagnetic couplings dominated by the intramolecular dipole interactions are found to be 0.7614,0.7380,and 0.5635 cm^(-1)for 1,2,and 3,respectively.The angles(θ)between the magnetic easy axes and the intramolecular Er-Er lines are 24.88(2)°,25.23(1),and 31.85(5),leading to transversal dipole fields of 0.0114,0.0113,and 0.0125 T for 1,2,and 3,respectively.Although the different ligand substitution generates a sizable difference of about 7 in theθangle,the resulting difference in the dipole interactions is not sufficiently strong to cause any significant differences in their magnetic properties.Further change in theθangles to the"side-by-side"(θ=90°)or"head-to-tail"(θ=0°)arrangement of the magnetic easy axes,achievable by rational mo-lecular design,is expected to lead to molecular magnetic materials with much enhanced properties.展开更多
Using the Bose-Fermi mapping method,we obtain the exact ground state wavefunction of one-dimensional(1D)Bose gas with the zero-range dipolar interaction in the strongly repulsive contact interaction limit.Its ground s...Using the Bose-Fermi mapping method,we obtain the exact ground state wavefunction of one-dimensional(1D)Bose gas with the zero-range dipolar interaction in the strongly repulsive contact interaction limit.Its ground state density distributions for both repulsive and attractive dipole interactions are exhibited.It is shown that in the case of the finite dipole interaction the density profiles do not change obviously with the increase of dipole interaction and display the typical shell structure of Tonks-Girardeau gases.As the repulsive dipole interaction is greatly strong,the density decreases at the center of the trap and displays a sunken valley.As the attractive dipole interaction increases,the density displays more oscillations and sharp peaks appear in the strong attraction limit,which mainly originate from the atoms occupying the low single particle levels.展开更多
We present a work of manipulating collective unconventional photon blockade(UCPB)and nonreciprocal UCPB(NUCPB)in a cavity-driven system composed of an asymmetrical single-mode cavity and two interacting identical twol...We present a work of manipulating collective unconventional photon blockade(UCPB)and nonreciprocal UCPB(NUCPB)in a cavity-driven system composed of an asymmetrical single-mode cavity and two interacting identical twolevel atoms(TLAs).When the atoms do not interact directly,the frequency and intensity restrictions of collective UCPB can be specified,and a giant NUCPB exists due to the splitting of optimal atom–cavity coupling strength in proper parameter regime.However,if a weak atom–atom interaction which provides a new and feeble quantum interference pathway to UCPB is taken into account,two restrictions of UCPB are combined complexly,which are rigorous to be matched simultaneously.Due to the push-and-pull effect induced by weak dipole–dipole interaction,the UCPB regime is compressed more or less.NUCPB is improved as a higher contrast is present when the two complex UCPB restrictions are matched,while it is suppressed when the restrictions are mismatched.In general,whether NUCPB is suppressed or promoted depends on its working parameters.Our findings show a prospective access to produce giant quantum nonreciprocity by a couple of weakly interacting atoms.展开更多
Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The d...Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The dipole interaction of molecules with charged particles, primarily with ions, leads to the adhesion and disintegration of a number of molecules including ozone. Molecules acquire additional energy on the surface of the charged particles, enabling reactions that are not possible in space. Galactic cosmic rays are the main source of ions in the polar stratosphere, their equilibrium concentration at altitudes of 15 to 25 km can reach up ~ (1-5) ~ 103 ions/cm3. Estimations show that if the ozone destruction in the regime of"collision" with ions then the lifetime of ozone will vary from 10 days to 2 months. We suppose that alongside with the chlorine mechanism of ozone destruction there is a mechanism of ozone decay on a charged particle which can act also at those latitudes and altitudes where chlorine oxide CIO is absent, as well as in the night conditions. Here, we demonstrated the close connection of photochemical processes with the dynamic, electrical and condensational phenomena in the stratosphere, in particular, with the accumulation of unipolar charged particles on the upper and lower boundaries of the polar stratospheric clouds and aerosol layers as a result of the activity of the global electric circuit.展开更多
The geometry and binding interaction of M+CO2 (M represents the firstrow transition metals) were studied using ab initio methods. In some cases the frequency calculations and basis set superposition error corrections ...The geometry and binding interaction of M+CO2 (M represents the firstrow transition metals) were studied using ab initio methods. In some cases the frequency calculations and basis set superposition error corrections were included. For all the complexes under the study, the linear structures were found to be the equilibrium structure. The distances of M+—O in R(M+—O) in which M has 4s electrons are obvious longer than those in which M has no 4s electrons, and from Sc to Zn the change trend is decreased, accompanied with some oscillation. The binding energy has an opposite change trend to that of the R(M+—O). Linear M+CO2 has the same spin as M+, while Tshape structures may have different spins. The static electronic interaction was found to be about 80% of the total binding energy.展开更多
The dipole–dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking ...The dipole–dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking the symmetry of the system enables us to study the lateral force which is important in the stability of the magnet above a superconducting sphere in the Meissner state. Under the assumption that the lateral displacement of the magnet is small compared to the physical dimensions of our proposed system, analytical expressions are obtained for the levitation and lateral forces as a function of the geometrical parameters of the superconductor as well as the height, the lateral displacement, and the orientation of the magnetic moment of the magnet. The dependence of the levitation force on the height of the levitating magnet is similar to that in the symmetric magnet/superconducting sphere system within the range of proposed lateral displacements. It is found that the levitation force is linearly dependent on the lateral displacement whereas the lateral force is independent of this displacement. A sinusoidal variation of both forces as a function of the polar and azimuthal angles specifying the orientation of the magnetic moment is observed. The relationship between the stability and the orientation of the magnetic moment is discussed for different orientations.展开更多
We investigate the effect of the dipole–dipole interaction(DDI) on the photon statistics with two atoms trapped in an optical cavity driven by a laser field and subjected to cooperative emission. By means of the quan...We investigate the effect of the dipole–dipole interaction(DDI) on the photon statistics with two atoms trapped in an optical cavity driven by a laser field and subjected to cooperative emission. By means of the quantum trajectory analysis and the second-order correlation functions, we show that the photon statistics of the cavity transmission can be flexibly modulated by the DDI while the incoming coherent laser selectively excites the atom–cavity system’s nonlinear Jaynes–Cummings ladder of excited states. Finally, we find that the effect of the cooperatively atomic emission can also be revealed by the numerical simulations and can be explained with a simplified picture. The DDI induced nonlinearity gives rise to highly nonclassical photon emission from the cavity that is significant for quantum information processing and quantum communication.展开更多
After compositing three representative ENSO indices,El Nio events have been divided into an eastern pattern(EP) and a central pattern(CP).By using EOF,correlation and composite analysis,the relationship and possible m...After compositing three representative ENSO indices,El Nio events have been divided into an eastern pattern(EP) and a central pattern(CP).By using EOF,correlation and composite analysis,the relationship and possible mechanisms between Indian Ocean Dipole(IOD) and two types of El Nio were investigated.IOD events,originating from Indo-Pacific scale air-sea interaction,are composed of two modes,which are associated with EP and CP El Ni o respectively.The IOD mode related to EP El Nio events(named as IOD1) is strongest at the depth of 50 to 150 m along the equatorial Indian Ocean.Besides,it shows a quasi-symmetric distribution,stronger in the south of the Equator.The IOD mode associated with CP El Nio(named as IOD2) has strongest signal in tropical southern Indian Ocean surface.In terms of mechanisms,before EP El Nio peaks,anomalous Walker circulation produces strong anomalous easterlies in equatorial Indian Ocean,resulting in upwelling in the east,decreasing sea temperature there;a couple of anomalous anticyclones(stronger in the south) form off the Equator where warm water accumulates,and thus the IOD1 occurs.When CP El Nio develops,anomalous Walker circulation is weaker and shifts its center to the west,therefore anomalous easterlies in equatorial Indian Ocean is less strong.Besides,the anticyclone south of Sumatra strengthens,and the southerlies east of it bring cold water from higher latitudes and northerlies west of it bring warm water from lower latitudes to the 15° to 25°S zone.Meanwhile,there exists strong divergence in the east and convergence in the west part of tropical southern Indian Ocean,making sea temperature fall and rise separately.Therefore,IOD2 lies farther south.展开更多
This paper presents a treatment of the entanglement transfer between atoms in two distant cavities coupled by an optical fibre. If the atoms resonantly and collectively interact with the local single-mode cavity field...This paper presents a treatment of the entanglement transfer between atoms in two distant cavities coupled by an optical fibre. If the atoms resonantly and collectively interact with the local single-mode cavity fields and the dipole-dipole interaction between the atoms is neglected, then it shows that a complete transfer of entanglement from one pair of atoms to another can be deterministically realized. Furthermore, it also investigates the effects of dipole-dipole interaction on entanglement transfer on the condition that the interaction between the atoms and the cavity is much weaker than the coupling between the cavity and the fibre.展开更多
This paper investigates the influences of atom field coupling and dipole-dipole coupling for atoms on the entanglement between two atoms by means of concurrence, The results show that the sudden death occurs when the ...This paper investigates the influences of atom field coupling and dipole-dipole coupling for atoms on the entanglement between two atoms by means of concurrence, The results show that the sudden death occurs when the atom field coupling is strong enough, and the collapse and the revival appear when the dipole-dipole interaction is strong enough.展开更多
In this study, we attempt to prepare a new blending system of poly(vinylidene fluoride) (PVDF) and aliphatic polyketone (POK) by melt compounding, The latter is a promising engineering plastic with comprehensive...In this study, we attempt to prepare a new blending system of poly(vinylidene fluoride) (PVDF) and aliphatic polyketone (POK) by melt compounding, The latter is a promising engineering plastic with comprehensive mechanical performances. When POK acted as minor phase to homogeneously disperse in and intimately contact with PVDF matrix, the brittle tensile behavior of neat PVDF transferred into a remarkably flexible manner (the elongation at break increased for 20 times), and more interestingly, the room- temperature durability of β-form PVDF in the uniaxially drawn blend film was obviously better than that in the neat PVDF film. Fourier transform infrared spectroscopy revealed that specific dipole interaction existed between CF2 group of PVDF and C=O group of POK. The intermolecular dipolar interaction induced good compatibility in the PVDF/POK blends, as evidently proved by fine two-phase morphology and decreased melting points of POK crystals. Therefore, the good compatibility and interracial enhancement are responsible for the improvement of the stretch ductility and β-form room-temperature durability of the PVDF/POK blends.展开更多
A series of Sr_(2)MgSi_(2)O_(7):Tb^(3+)nanophosphors is prepared using a high-temperature solid-state reaction.The x-ray diffraction patterns show that the crystal structure of the sample is not significantly affected...A series of Sr_(2)MgSi_(2)O_(7):Tb^(3+)nanophosphors is prepared using a high-temperature solid-state reaction.The x-ray diffraction patterns show that the crystal structure of the sample is not significantly affected by Tb^(3+)ions.However,the images of the scanning electron microscope illustrate that the average size of nanoparticles becomes larger with the increase of Tb^(3+)concentration.Unlike earlier investigations on down-conversion emission of Tb^(3+)ion excited by deep ultraviolet light,in this work,the photoluminescence characteristics of Sr_(2)MgSi_(2)O_(7)nanophosphors doped with different Tb^(3+)concentrations are analyzed under 374-nm excitations.The intense green emission at 545 nm is observed at an optimal doping concentration of 1.6 mol%.The main reason for the concentration quenching is due to the electric dipole-electric dipole interaction among Tb^(3+)ions.展开更多
We propose a scheme to achieve nuclear–nuclear indirect interactions mediated by a mechanically driven nitrogen-vacancy(NV)center in a diamond.Here we demonstrate twoqubit entangling gates and quantum-state transfer ...We propose a scheme to achieve nuclear–nuclear indirect interactions mediated by a mechanically driven nitrogen-vacancy(NV)center in a diamond.Here we demonstrate twoqubit entangling gates and quantum-state transfer between two carbon nuclei.When the dipole–dipole interaction strength is much larger than the driving field strength,the scheme is robust against decoherence caused by coupling between the NV center(nuclear spins)and the environment.Conveniently,precise control of dipole coupling is not required so this scheme is insensitive to fluctuating positions of the nuclear spins and the NV center.Our scheme provides a general blueprint for multi-nuclear-spin gates and for multi-party communication.展开更多
We study the stabilization properties of dipolar Bose–Einstein condensate in a deep one-dimensional optical lattice with an additional external parametrically modulated harmonic trap potential. Through both analytica...We study the stabilization properties of dipolar Bose–Einstein condensate in a deep one-dimensional optical lattice with an additional external parametrically modulated harmonic trap potential. Through both analytical and numerical methods, we solve a dimensionless nonlocal nonlinear discrete Gross–Pitaevskii equation with both the short-range contact interaction and the long-range dipole–dipole interaction. It is shown that, the stability of dipolar condensate in modulated deep optical lattice can be controled by coupled effects of the contact interaction, the dipolar interaction and the external modulation. The system can be stabilized when the dipolar interaction, the contact interaction, the average strength of potential and the ratio of amplitude to frequency of the modulation satisfy a critical condition. In addition, the breather state, the diffused state and the attractive-interaction-induced-trapped state are predicted. The dipolar interaction and the external modulation of the lattice play important roles in stabilizing the condensate.展开更多
The dynamics of the three coupled dipolar Bose–Einstein condensates containing N bosons is investigated within a mean-field semiclassical picture based on the coherent-state method. Varieties of periodic solutions (...The dynamics of the three coupled dipolar Bose–Einstein condensates containing N bosons is investigated within a mean-field semiclassical picture based on the coherent-state method. Varieties of periodic solutions (configured as vortex, single depleted well, and dimerlike states) are obtained analytically when the fixed points are identified on the N=constant. The system dynamics are studied via numeric integration of trimer motion equations, thus revealing macroscopic effects of population inversion and self-trapping with different initial states. In particular, the trajectory of the oscillations of the populations in each well shows how the dynamics of the condensates are effected by the presence of dipole–dipole interaction and gauge field.展开更多
基金the National Natural Science Foundation of China(92261203,22101116,21971106)the Science Research Foun dation of jilin Province(YDZJ202301ZYTS478)。
文摘Manipulating magnetic couplings in molecular magnets is of great importance in improving the mag-netic properties of such materials.It has been proved that by adjusting the strength of magnetic cou-plings and the arrangement of the intermolecular magnetic dipoles,magnetic blocking can be significantly enhanced.Herein manipulating the intramolecular dipole interactions by ligand modifica-tion was attempted with the use of three closely related dinuclear Er(Ⅲ)complexes of a common chemical formula of[(COT^(R))Er(μ-CI)(THF)]_(2)(COT^(R)is monosubstituted cyclooctatetraenide dianions with R=diphenylmethylsilyl(Ph_(2)MeS)for 1,triethylsilyl(TES)for 2,and triisopropylsilyl(TIPS)for 3).Each of these complexes features a centrosymmetric dinuclear core unit with their component Er(Ⅲ)ions doubly bridged by two chloro ligands and further coordinated with a capping substituted corR ligand and a coordinated THF molecule.Magnetic studies reveal that the complexes display similar ferromagnetic couplings with comparable single-molecule magnetic behaviors.The ferromagnetic couplings dominated by the intramolecular dipole interactions are found to be 0.7614,0.7380,and 0.5635 cm^(-1)for 1,2,and 3,respectively.The angles(θ)between the magnetic easy axes and the intramolecular Er-Er lines are 24.88(2)°,25.23(1),and 31.85(5),leading to transversal dipole fields of 0.0114,0.0113,and 0.0125 T for 1,2,and 3,respectively.Although the different ligand substitution generates a sizable difference of about 7 in theθangle,the resulting difference in the dipole interactions is not sufficiently strong to cause any significant differences in their magnetic properties.Further change in theθangles to the"side-by-side"(θ=90°)or"head-to-tail"(θ=0°)arrangement of the magnetic easy axes,achievable by rational mo-lecular design,is expected to lead to molecular magnetic materials with much enhanced properties.
基金Project supported by the National Natural Science Foundation of China(Grant No.11174026)。
文摘Using the Bose-Fermi mapping method,we obtain the exact ground state wavefunction of one-dimensional(1D)Bose gas with the zero-range dipolar interaction in the strongly repulsive contact interaction limit.Its ground state density distributions for both repulsive and attractive dipole interactions are exhibited.It is shown that in the case of the finite dipole interaction the density profiles do not change obviously with the increase of dipole interaction and display the typical shell structure of Tonks-Girardeau gases.As the repulsive dipole interaction is greatly strong,the density decreases at the center of the trap and displays a sunken valley.As the attractive dipole interaction increases,the density displays more oscillations and sharp peaks appear in the strong attraction limit,which mainly originate from the atoms occupying the low single particle levels.
基金the National Natural Science Foundation of China(Grants Nos.12164022,11864018,and 12174288)the Fundamental Research Funds for the Provincial Universities of Zhejiang Province,China(Grant No.GK199900299012-015)。
文摘We present a work of manipulating collective unconventional photon blockade(UCPB)and nonreciprocal UCPB(NUCPB)in a cavity-driven system composed of an asymmetrical single-mode cavity and two interacting identical twolevel atoms(TLAs).When the atoms do not interact directly,the frequency and intensity restrictions of collective UCPB can be specified,and a giant NUCPB exists due to the splitting of optimal atom–cavity coupling strength in proper parameter regime.However,if a weak atom–atom interaction which provides a new and feeble quantum interference pathway to UCPB is taken into account,two restrictions of UCPB are combined complexly,which are rigorous to be matched simultaneously.Due to the push-and-pull effect induced by weak dipole–dipole interaction,the UCPB regime is compressed more or less.NUCPB is improved as a higher contrast is present when the two complex UCPB restrictions are matched,while it is suppressed when the restrictions are mismatched.In general,whether NUCPB is suppressed or promoted depends on its working parameters.Our findings show a prospective access to produce giant quantum nonreciprocity by a couple of weakly interacting atoms.
文摘Our analysis of published results of experiments in the Polar Regions substantiates and further develops our new approach to the photochemical processes in the polar stratosphere involving the charged particles. The dipole interaction of molecules with charged particles, primarily with ions, leads to the adhesion and disintegration of a number of molecules including ozone. Molecules acquire additional energy on the surface of the charged particles, enabling reactions that are not possible in space. Galactic cosmic rays are the main source of ions in the polar stratosphere, their equilibrium concentration at altitudes of 15 to 25 km can reach up ~ (1-5) ~ 103 ions/cm3. Estimations show that if the ozone destruction in the regime of"collision" with ions then the lifetime of ozone will vary from 10 days to 2 months. We suppose that alongside with the chlorine mechanism of ozone destruction there is a mechanism of ozone decay on a charged particle which can act also at those latitudes and altitudes where chlorine oxide CIO is absent, as well as in the night conditions. Here, we demonstrated the close connection of photochemical processes with the dynamic, electrical and condensational phenomena in the stratosphere, in particular, with the accumulation of unipolar charged particles on the upper and lower boundaries of the polar stratospheric clouds and aerosol layers as a result of the activity of the global electric circuit.
文摘The geometry and binding interaction of M+CO2 (M represents the firstrow transition metals) were studied using ab initio methods. In some cases the frequency calculations and basis set superposition error corrections were included. For all the complexes under the study, the linear structures were found to be the equilibrium structure. The distances of M+—O in R(M+—O) in which M has 4s electrons are obvious longer than those in which M has no 4s electrons, and from Sc to Zn the change trend is decreased, accompanied with some oscillation. The binding energy has an opposite change trend to that of the R(M+—O). Linear M+CO2 has the same spin as M+, while Tshape structures may have different spins. The static electronic interaction was found to be about 80% of the total binding energy.
文摘The dipole–dipole interaction model is employed to investigate the angular dependence of the levitation and lateral forces acting on a small magnet in an anti-symmetric magnet/superconducting sphere system. Breaking the symmetry of the system enables us to study the lateral force which is important in the stability of the magnet above a superconducting sphere in the Meissner state. Under the assumption that the lateral displacement of the magnet is small compared to the physical dimensions of our proposed system, analytical expressions are obtained for the levitation and lateral forces as a function of the geometrical parameters of the superconductor as well as the height, the lateral displacement, and the orientation of the magnetic moment of the magnet. The dependence of the levitation force on the height of the levitating magnet is similar to that in the symmetric magnet/superconducting sphere system within the range of proposed lateral displacements. It is found that the levitation force is linearly dependent on the lateral displacement whereas the lateral force is independent of this displacement. A sinusoidal variation of both forces as a function of the polar and azimuthal angles specifying the orientation of the magnetic moment is observed. The relationship between the stability and the orientation of the magnetic moment is discussed for different orientations.
基金supported by the National Natural Science Foundation of China(Grant Nos.11305037,11347114,and 11374054)the Natural Science Foundation of Fujian Province,China(Grant No.2013J01012)
文摘We investigate the effect of the dipole–dipole interaction(DDI) on the photon statistics with two atoms trapped in an optical cavity driven by a laser field and subjected to cooperative emission. By means of the quantum trajectory analysis and the second-order correlation functions, we show that the photon statistics of the cavity transmission can be flexibly modulated by the DDI while the incoming coherent laser selectively excites the atom–cavity system’s nonlinear Jaynes–Cummings ladder of excited states. Finally, we find that the effect of the cooperatively atomic emission can also be revealed by the numerical simulations and can be explained with a simplified picture. The DDI induced nonlinearity gives rise to highly nonclassical photon emission from the cavity that is significant for quantum information processing and quantum communication.
基金National Key Basic Research Program of China(973 Program,2012CB417403)
文摘After compositing three representative ENSO indices,El Nio events have been divided into an eastern pattern(EP) and a central pattern(CP).By using EOF,correlation and composite analysis,the relationship and possible mechanisms between Indian Ocean Dipole(IOD) and two types of El Nio were investigated.IOD events,originating from Indo-Pacific scale air-sea interaction,are composed of two modes,which are associated with EP and CP El Ni o respectively.The IOD mode related to EP El Nio events(named as IOD1) is strongest at the depth of 50 to 150 m along the equatorial Indian Ocean.Besides,it shows a quasi-symmetric distribution,stronger in the south of the Equator.The IOD mode associated with CP El Nio(named as IOD2) has strongest signal in tropical southern Indian Ocean surface.In terms of mechanisms,before EP El Nio peaks,anomalous Walker circulation produces strong anomalous easterlies in equatorial Indian Ocean,resulting in upwelling in the east,decreasing sea temperature there;a couple of anomalous anticyclones(stronger in the south) form off the Equator where warm water accumulates,and thus the IOD1 occurs.When CP El Nio develops,anomalous Walker circulation is weaker and shifts its center to the west,therefore anomalous easterlies in equatorial Indian Ocean is less strong.Besides,the anticyclone south of Sumatra strengthens,and the southerlies east of it bring cold water from higher latitudes and northerlies west of it bring warm water from lower latitudes to the 15° to 25°S zone.Meanwhile,there exists strong divergence in the east and convergence in the west part of tropical southern Indian Ocean,making sea temperature fall and rise separately.Therefore,IOD2 lies farther south.
基金Project supported by the National Natural Science Foundation of China (Grant No 10374025)the Natural Science Foundation of Hunan Province of China (Grant No 07JJ3013)the Education Ministry of Hunan Province of China (Grant No 06A038)
文摘This paper presents a treatment of the entanglement transfer between atoms in two distant cavities coupled by an optical fibre. If the atoms resonantly and collectively interact with the local single-mode cavity fields and the dipole-dipole interaction between the atoms is neglected, then it shows that a complete transfer of entanglement from one pair of atoms to another can be deterministically realized. Furthermore, it also investigates the effects of dipole-dipole interaction on entanglement transfer on the condition that the interaction between the atoms and the cavity is much weaker than the coupling between the cavity and the fibre.
基金supported by the Joint Fund of the National Natural Science Foundation of China and the China Academy of Engineering Physics(Grant No.1097602/A06)
文摘This paper investigates the influences of atom field coupling and dipole-dipole coupling for atoms on the entanglement between two atoms by means of concurrence, The results show that the sudden death occurs when the atom field coupling is strong enough, and the collapse and the revival appear when the dipole-dipole interaction is strong enough.
基金supported by the National Natural Science Foundation of China (Nos. 51373108 and 21574088)
文摘In this study, we attempt to prepare a new blending system of poly(vinylidene fluoride) (PVDF) and aliphatic polyketone (POK) by melt compounding, The latter is a promising engineering plastic with comprehensive mechanical performances. When POK acted as minor phase to homogeneously disperse in and intimately contact with PVDF matrix, the brittle tensile behavior of neat PVDF transferred into a remarkably flexible manner (the elongation at break increased for 20 times), and more interestingly, the room- temperature durability of β-form PVDF in the uniaxially drawn blend film was obviously better than that in the neat PVDF film. Fourier transform infrared spectroscopy revealed that specific dipole interaction existed between CF2 group of PVDF and C=O group of POK. The intermolecular dipolar interaction induced good compatibility in the PVDF/POK blends, as evidently proved by fine two-phase morphology and decreased melting points of POK crystals. Therefore, the good compatibility and interracial enhancement are responsible for the improvement of the stretch ductility and β-form room-temperature durability of the PVDF/POK blends.
基金Project supported by the National Natural Science Foundation of China(Grant No.11004092)the Foundation of Science and Technology Department of Liaoning Province,China(Grant No.201602455)。
文摘A series of Sr_(2)MgSi_(2)O_(7):Tb^(3+)nanophosphors is prepared using a high-temperature solid-state reaction.The x-ray diffraction patterns show that the crystal structure of the sample is not significantly affected by Tb^(3+)ions.However,the images of the scanning electron microscope illustrate that the average size of nanoparticles becomes larger with the increase of Tb^(3+)concentration.Unlike earlier investigations on down-conversion emission of Tb^(3+)ion excited by deep ultraviolet light,in this work,the photoluminescence characteristics of Sr_(2)MgSi_(2)O_(7)nanophosphors doped with different Tb^(3+)concentrations are analyzed under 374-nm excitations.The intense green emission at 545 nm is observed at an optimal doping concentration of 1.6 mol%.The main reason for the concentration quenching is due to the electric dipole-electric dipole interaction among Tb^(3+)ions.
基金supported by the National Natural Science Foundation of China under Grant No.11405031 and No.11875108the National Natural Science Foundation of Fujian Province China under Grant No.2019J01219。
文摘We propose a scheme to achieve nuclear–nuclear indirect interactions mediated by a mechanically driven nitrogen-vacancy(NV)center in a diamond.Here we demonstrate twoqubit entangling gates and quantum-state transfer between two carbon nuclei.When the dipole–dipole interaction strength is much larger than the driving field strength,the scheme is robust against decoherence caused by coupling between the NV center(nuclear spins)and the environment.Conveniently,precise control of dipole coupling is not required so this scheme is insensitive to fluctuating positions of the nuclear spins and the NV center.Our scheme provides a general blueprint for multi-nuclear-spin gates and for multi-party communication.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11764039, 11847304, 11865014, 11475027, 11305132, and 11274255)the Natural Science Foundation of Gansu Province,China (Grant No. 17JR5RA076)Scientific Research Project of Gansu Higher Education,China (Grant No. 2016A-005)。
文摘We study the stabilization properties of dipolar Bose–Einstein condensate in a deep one-dimensional optical lattice with an additional external parametrically modulated harmonic trap potential. Through both analytical and numerical methods, we solve a dimensionless nonlocal nonlinear discrete Gross–Pitaevskii equation with both the short-range contact interaction and the long-range dipole–dipole interaction. It is shown that, the stability of dipolar condensate in modulated deep optical lattice can be controled by coupled effects of the contact interaction, the dipolar interaction and the external modulation. The system can be stabilized when the dipolar interaction, the contact interaction, the average strength of potential and the ratio of amplitude to frequency of the modulation satisfy a critical condition. In addition, the breather state, the diffused state and the attractive-interaction-induced-trapped state are predicted. The dipolar interaction and the external modulation of the lattice play important roles in stabilizing the condensate.
基金Project supported by the National Key Basic Research Special Foundation of China(Grant Nos.2011CB921502,2012CB821305,2009CB930701,and 2010CB922904)the National Natural Science Foundation of China(Grant Nos.10934010,11228409,and 61227902)the National Natural Science Foundation of China–The Research Grants Council(Grant Nos.11061160490 and 1386-N-HKU748/10)
文摘The dynamics of the three coupled dipolar Bose–Einstein condensates containing N bosons is investigated within a mean-field semiclassical picture based on the coherent-state method. Varieties of periodic solutions (configured as vortex, single depleted well, and dimerlike states) are obtained analytically when the fixed points are identified on the N=constant. The system dynamics are studied via numeric integration of trimer motion equations, thus revealing macroscopic effects of population inversion and self-trapping with different initial states. In particular, the trajectory of the oscillations of the populations in each well shows how the dynamics of the condensates are effected by the presence of dipole–dipole interaction and gauge field.