期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Strain engineering of anisotropic light-matter interactions in onedimensional P-P chain of SiP_(2) 被引量:2
1
作者 Fanghua Cheng Junwei Huang +10 位作者 Feng Qin Ling Zhou Xueting Dai Xiangyu Bi Caorong Zhang Zeya Li Ming Tang Caiyu Qiu Yangfan Lu Huiyang Gou Hongtao Yuan 《Nano Research》 SCIE EI CSCD 2022年第8期7378-7383,共6页
Strain engineering can serve as a powerful technique for modulating the exotic properties arising from the atomic structure of materials.Examples have been demonstrated that one-dimensional(1D)structure can serve as a... Strain engineering can serve as a powerful technique for modulating the exotic properties arising from the atomic structure of materials.Examples have been demonstrated that one-dimensional(1D)structure can serve as a great platform for modulating electronic band structure and phonon dispersion via strain control.Particularly,in a van der Waals material silicon diphosphide(SiP_(2)),quasi-1D zigzag phosphorus–phosphorus(P–P)chains are embedded inside the crystal structure,and can show unique phonon vibration modes and realize quasi-1D excitons.Manipulating those optical properties by the atom displacements via strain engineering is of great interest in understanding underlying mechanism of such P–P chains,however,which remains elusive.Herein,we demonstrate the strain engineering of Raman and photoluminescence(PL)spectra in quasi-1D P–P chains and resulting in anisotropic manipulation in SiP_(2).We find that the phonon frequencies of SiP_(2)in Raman spectra linearly evolve with a uniaxial strain along/perpendicular to the quasi-1D P–P chain directions.Interestingly,by applying tensile strain along the P–P chains,the band gap energy of strained SiP_(2)can significantly decrease with a tunable value of~55 meV.Based on arsenic(As)element doping into SiP_(2),the strain-induced redshifts of phonon frequencies decrease,indicating the stiffening of the phonon vibration with the increased arsenic doping level.Such results provide an opportunity for strain engineering of the light–matter interactions in the quasi-1D P–P chains of SiP_(2)crystal for potential optical applications. 展开更多
关键词 strain engineering silicon diphosphide RAMAN PHOTOLUMINESCENCE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部