Superconducting diodes,which enable dissipationless supercurrent flow in one direction while blocking it in the reverse direction,are emerging as pivotal components for superconducting electronics.The development of e...Superconducting diodes,which enable dissipationless supercurrent flow in one direction while blocking it in the reverse direction,are emerging as pivotal components for superconducting electronics.The development of editable superconducting diodes could unlock transformative applications,including dynamically reconfigurable quantum circuits that adapt to operational requirements.Here,we report the first observation of the superconducting diode effect(SDE)in LaAlO_(3)/KTaO_(3) heterostructures—a two-dimensional oxide interface superconductor with exceptional tunability.We observe a strong SDE in Hall-bar(or strip-shaped)devices under perpendicular magnetic fields(<15 Oe),with efficiencies above 40%and rectification signals exceeding 10 mV.Through conductive atomic force microscope lithography,we demonstrate reversible nanoscale editing of the SDE’s polarity and efficiency by locally modifying the superconducting channel edges.This approach enables multiple nonvolatile configurations within a single device,realizing an editable superconducting diode.Our work establishes LaAlO_(3)/KTaO_(3) as a platform for vortex-based nonreciprocal transport and provides a pathway toward designer quantum circuits with on-demand functionalities.展开更多
基金supported by the National Key R&D Program of China (Grant No.2023YFA1406400)the National Natural Science Foundation of China (Grant Nos.12534005 and 12325402)。
文摘Superconducting diodes,which enable dissipationless supercurrent flow in one direction while blocking it in the reverse direction,are emerging as pivotal components for superconducting electronics.The development of editable superconducting diodes could unlock transformative applications,including dynamically reconfigurable quantum circuits that adapt to operational requirements.Here,we report the first observation of the superconducting diode effect(SDE)in LaAlO_(3)/KTaO_(3) heterostructures—a two-dimensional oxide interface superconductor with exceptional tunability.We observe a strong SDE in Hall-bar(or strip-shaped)devices under perpendicular magnetic fields(<15 Oe),with efficiencies above 40%and rectification signals exceeding 10 mV.Through conductive atomic force microscope lithography,we demonstrate reversible nanoscale editing of the SDE’s polarity and efficiency by locally modifying the superconducting channel edges.This approach enables multiple nonvolatile configurations within a single device,realizing an editable superconducting diode.Our work establishes LaAlO_(3)/KTaO_(3) as a platform for vortex-based nonreciprocal transport and provides a pathway toward designer quantum circuits with on-demand functionalities.