Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yiel...Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.展开更多
Nowadays,high-quality phosphor-converted white light-emitting diodes(pc-WLEDs)ought to include cyan-emitting phosphors allowing for full-spectrum light similar to sunlight.Herein,we report a garnetstructured Ce^(3+)-d...Nowadays,high-quality phosphor-converted white light-emitting diodes(pc-WLEDs)ought to include cyan-emitting phosphors allowing for full-spectrum light similar to sunlight.Herein,we report a garnetstructured Ce^(3+)-doped SrLu_(2)Ga_(1.5)Al_(2.5)SiO_(12)(SLGASO)phosphor that significantly compensates for the absence of cyan light,known as the"cyan cavity".The SLGASO host crystallizes into a cubic structure with the Ia3d space group.The cell parameters were determined using Rietveld refinement.Under430 nm blue excitation,SLGASO:Ce^(3+)emits intense cyan-green light in the 450-700 nm wavelength range.The representative SLGASO:0.07Ce^(3+)phosphor has an internal quantum efficiency(IQE)of 95.4%and excellent thermal stability,remaining 92.7%of its initial emission intensity at 152℃.After 155 d of immersion in water,the luminous intensity of SLGASO:0.07Ce^(3+)remains constant,confirming its waterproofness.Furthermore,a pc-WLED device with luminous efficiency(LE)of 101.58 lm/W,color rendering index(Ra)of 91,correlated color temperature(CCT)of 4536 K,and Commission Internationale de L'Eclairage(CIE)chromaticity coordinates of(0.3555,0.3390)was fabricated by combining asprepared cyan-green-emitting SLGASO:0.07Ce^(3+),yellow-emitting Y_(3)Al_(5)O_(12):Ce^(3+)(YAG:Ce^(3+)),and redemitting(Ca,Sr)AlSiN_(3):Eu^(2+)phosphors,as well as a 450 nm blue chip.These findings indicate that SLGASO:0.07Ce^(3+)phosphor can bridge the cyan gap and improve the performance of as-fabricated fullvisible-spectrum WLEDs.展开更多
The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investiga...The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.展开更多
Stimulated emission and lasing of GaN-based laser diodes(LDs)were reported at 1995[1]and 1996[2],right after the breakthrough of p-type doping[3−5],material quality[6]and the invention of high-brightness GaN-based LED...Stimulated emission and lasing of GaN-based laser diodes(LDs)were reported at 1995[1]and 1996[2],right after the breakthrough of p-type doping[3−5],material quality[6]and the invention of high-brightness GaN-based LEDs[7,8].However,it took much longer time for GaN-based LDs to achieve high power,high wall plug efficiency,and long lifetime.Until 2019,Nichia reported blue LDs with these performances[9],which open wide applications with GaN-based blue LDs.展开更多
Er^(3+)-doped BaLaGaO_(4)green phosphors was synthesized through a high-temperature solid-state reaction technique.The phase structure and morphology test results of the phosphor indicate that the BaLaGaO_(4)material ...Er^(3+)-doped BaLaGaO_(4)green phosphors was synthesized through a high-temperature solid-state reaction technique.The phase structure and morphology test results of the phosphor indicate that the BaLaGaO_(4)material was successfully synthesized and Er^(3+)ions were successfully doped into the main lattice.This doping does change the basic structure of the crystal.BaLaGaO_(4):Er^(3+)phosphor exhibits bright green emission centered at 545 nm when excited by 381 nm ultraviolet light or 980 nm near-infrared light.The optimal doping concentration is found to be x=0.04.To quantify the temperature sensitivity of the phosphor,the fluorescence intensity ratio method was used.Within the temperature range of 298-473 K,the maximum relative sensitivities are 1.35%/K(298 K,381 nm)and 1.45%/K(298 K,980 nm),respectively.The maximum absolute sensitivities are 0.67%/K(473 K,381 nm)and 0.69%/K(473 K,980 nm),respectively.Finally,white light-emitting diodes(WLEDs)with a high colour index of Ra=82and a relatively low correlated colour temperature of CCT=5064 K are obtained by integrating the synthesized BaLaGaO_(4):0.04Er^(3+)green phosphor into warm WLEDs devices.These results suggest that Er^(3+)-activated BaLaGaO_(4)multifunctional phosphors hold considerable promise in the areas of optical temperature sensing and WLEDs phosphor conversion.展开更多
GaN diodes for high energy(64.8 MeV)proton detection were fabricated and investigated.A comparison of the performance of GaN diodes with different structures is presented,with a focus on sapphire and on GaN substrates...GaN diodes for high energy(64.8 MeV)proton detection were fabricated and investigated.A comparison of the performance of GaN diodes with different structures is presented,with a focus on sapphire and on GaN substrates,Schottky and pin diodes,and different active layer thicknesses.Pin diodes fabricated on a sapphire substrate are the best choice for a GaN proton detector working at 0 V bias.They are sensitive(minimum detectable proton beam<1 pA/cm^(2)),linear as a function of proton current and fast(<1 s).High proton current sensitivity and high spatial resolution of GaN diodes can be exploited in the future for proton imaging of patients in proton therapy.展开更多
Perovskite light-emitting diodes(PeLEDs)have shown outstanding potential in next-generation lighting and display owing to the advantages of broad spectral tunability,excellent color purity,high photoluminescence quant...Perovskite light-emitting diodes(PeLEDs)have shown outstanding potential in next-generation lighting and display owing to the advantages of broad spectral tunability,excellent color purity,high photoluminescence quantum yields(PLQYs),and low processing cost.Device efficiency and stability are crucial indicators to evaluate whether a PeLED can meet commercial application requirements.In this review,we first discuss strategies for achieving high external quantum efficiencies(EQEs),including controlling charge injection and balance,enhancing radiative recombination,and improving light outcoupling efficiency.Next,we review recent advances in operational stability of PeLEDs and emphasize the mechanisms of degradation in PeLEDs,including ion migration,structural transformations,chemical interactions,and thermal degradation.Through detailed analysis and discussion,this review aims to facilitate progress and innovation in highly efficient and stable PeLEDs,which have significant promise for display and solid-state lighting technologies,as well as other emerging applications.展开更多
Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics,but recalcitrance nature of cotton makes it difficult to develop in vitro regeneration.Cotton’s recalcitrance is inf...Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics,but recalcitrance nature of cotton makes it difficult to develop in vitro regeneration.Cotton’s recalcitrance is influenced by genotype,explant type,and environmental conditions.To overcome these issues,this study uses different machine learning-based predictive models by employing multiple input factors.Cotyledonary node explants of two commercial cotton cultivars(STN-468 and GSN-12)were isolated from 7–8 days old seedlings,preconditioned with 5,10,and 20 mg·L^(-1) kinetin(KIN)for 10 days.Thereafter,explants were postconditioned on full Murashige and Skoog(MS),1/2MS,1/4MS,and full MS+0.05 mg·L^(-1) KIN,cultured in growth room enlightened with red and blue light-emitting diodes(LED)combination.Statistical analysis(analysis of variance,regression analysis)was employed to assess the impact of different treatments on shoot regeneration,with artificial intelligence(AI)models used for confirming the findings.Results GSN-12 exhibited superior shoot regeneration potential compared with STN-468,with an average of 4.99 shoots per explant versus 3.97.Optimal results were achieved with 5 mg·L^(-1) KIN preconditioning,1/4MS postconditioning,and 80%red LED,with maximum of 7.75 shoot count for GSN-12 under these conditions;while STN-468 reached 6.00 shoots under the conditions of 10 mg·L^(-1) KIN preconditioning,MS with 0.05 mg·L^(-1) KIN(postconditioning)and 75.0%red LED.Rooting was successfully achieved with naphthalene acetic acid and activated charcoal.Additionally,three different powerful AI-based models,namely,extreme gradient boost(XGBoost),random forest(RF),and the artificial neural network-based multilayer perceptron(MLP)regression models validated the findings.Conclusion GSN-12 outperformed STN-468 with optimal results from 5 mg·L^(-1) KIN+1/4MS+80%red LED.Application of machine learning-based prediction models to optimize cotton tissue culture protocols for shoot regeneration is helpful to improve cotton regeneration efficiency.展开更多
The packaging quality of coaxial laser diodes(CLDs)plays a pivotal role in determining their optical performance and long-term reliability.As the core packaging process,high-precision laser welding requires precise co...The packaging quality of coaxial laser diodes(CLDs)plays a pivotal role in determining their optical performance and long-term reliability.As the core packaging process,high-precision laser welding requires precise control of process parameters to suppress optical power loss.However,the complex nonlinear relationship between welding parameters and optical power loss renders traditional trial-and-error methods inefficient and imprecise.To address this challenge,a physics-informed(PI)and data-driven collaboration approach for welding parameter optimization is proposed.First,thermal-fluid-solid coupling finite element method(FEM)was employed to quantify the sensitivity of welding parameters to physical characteristics,including residual stress.This analysis facilitated the identification of critical factors contributing to optical power loss.Subsequently,a Gaussian process regression(GPR)model incorporating finite element simulation prior knowledge was constructed based on the selected features.By introducing physics-informed kernel(PIK)functions,stress distribution patterns were embedded into the prediction model,achieving high-precision optical power loss prediction.Finally,a Bayesian optimization(BO)algorithm with an adaptive sampling strategy was implemented for efficient parameter space exploration.Experimental results demonstrate that the proposedmethod effectively establishes explicit physical correlations between welding parameters and optical power loss.The optimized welding parameters reduced optical power loss by 34.1%,providing theoretical guidance and technical support for reliable CLD packaging.展开更多
A binary-mixed electron transport layer(ETL)has been reported for constructing solution-processable near-infrared organic light-emitting diodes(NIR OLEDs).Relative to the single-component ETL,the binarymixed ETL compo...A binary-mixed electron transport layer(ETL)has been reported for constructing solution-processable near-infrared organic light-emitting diodes(NIR OLEDs).Relative to the single-component ETL,the binarymixed ETL composed of PDINN:TPBi can enhance the carrier transport capacity,reduce device impedance,and weaken fiuorescence quenching of the emitting layer.By carefully selecting an appropriate luminescent material Y5(a nonfullerene electron acceptor in organic solar cells)and precisely fine-tuning the molecular aggregation in active layer using a mixed solvent,the morphology is optimized and luminescence performance is enhanced,resulting in efficient NIR OLEDs with an emission peak at 890 nm.The experiment showcases a Y5-based near-infrared OLED with a maximum radiance of 34.9 W sr^(-1)m^(-2)and a maximum external quantum efficiency of 0.50%,which is among the highest values reported for nondoped fiuorescent NIR OLEDs with an emission peak over 850 nm.展开更多
Triphenylamine(TPA)is the most promising donor fragment for the construction of long-wavelength thermally activated delayed fluorescence(TADF)emitters owing to its suitable dihedral angle that could enhance radiative ...Triphenylamine(TPA)is the most promising donor fragment for the construction of long-wavelength thermally activated delayed fluorescence(TADF)emitters owing to its suitable dihedral angle that could enhance radiative decay to compete with the serious non-radiative decay.However,the moderate electron-donating capacity of TPA seriously limits the selection of acceptor for constructing longwavelength TADF emitters with narrow bandgaps.To address this issue,in this work,the peripheral benzene of TPA was replaced with 1,4-benzodioxane and anisole to obtain two new electrondonating units N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-N-phenyl-2,3-dihydrobenzo[b][1,4]dioxin-6-amine(TPADBO,−5.02 eV)and 4-methoxy-N-(4-methoxyphenyl)-N-phenylaniline(TPAMO,−5.00 eV),which possess much shallower highest occupied molecule orbital(HOMO)energy levels than the prototype TPA(−5.33 eV).Based on TPA and the modified TPA donor fragments,three TADF emitters were designed and synthesized,namely Py-TPA,Py-TPADBO and Py-TPAMO,with the same acceptor fragment 12-(2,6-diisopropylphenyl)pyrido[2′,3′:5,6]pyrazino[2,3-f][1,10]phenanthroline(Py).Among them,Py-TPAMO exhibits the highest photoluminescence quantum yield of 78.4%and the smallest singlet-triplet energy gap,which is because the introduction of anisole does not cause significant molecule deformation for the excited Py-TPAMO.And Py-TPAMO-based OLEDs successfully realize a maximum external quantum efficiency of 25.5%with the emission peak at 605 nm.This work provides a series of candidate of donor fragments for the development of efficient long-wavelength TADF emitters.展开更多
Colloidal quantum dots(CQDs)are highly regarded for their outstanding photovoltaic characteristics,including excellent color purity,stability,high photoluminescence quantum yield(PLQY),narrow emission spectra,and ease...Colloidal quantum dots(CQDs)are highly regarded for their outstanding photovoltaic characteristics,including excellent color purity,stability,high photoluminescence quantum yield(PLQY),narrow emission spectra,and ease of solution processing.Despite significant progress in quantum dot light-emitting diodes(QLEDs)technology since its inception in 1994,blue QLEDs still fall short in efficiency and lifespan compared to red and green versions.The toxicity concerns associated with Cd/Pb-based quantum dots(QDs)have spurred the development of heavy-metal-free alternatives,such as groupⅡ−Ⅵ(e.g.,ZnSe-based QDs),groupⅢ−Ⅴ(e.g.,InP,GaN QDs),and carbon dots(CDs).In this review,we discuss the key properties and development history of quantum dots(QDs),various synthesis approaches,the role of surface ligands,and important considerations in developing core/shell(C/S)structured QDs.Additionally,we provide an outlook on the challenges and future directions for blue QLEDs.展开更多
In this study,a novel Ca_(2)GaTaO_(6):Sm^(3+)phosphor was developed using the conventional hightemperature solid-phase method.The phase structure and morphology test results of phosphor indicate that the Ca_(2)GaTaO_(...In this study,a novel Ca_(2)GaTaO_(6):Sm^(3+)phosphor was developed using the conventional hightemperature solid-phase method.The phase structure and morphology test results of phosphor indicate that the Ca_(2)GaTaO_(6):Sm^(3+)material was successfully synthesized and the Sm^(3+)ions were successfully doped into the host lattice.When utilizing 406 nm excitation,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor has the strongest emission intensity at 599 nm and shows orange-red emission,which is mainly owing to the^(4)G_(5/2)→^(6)H_(7/2)jump of Sm^(3+)ions.For the performance of different concentrations of Sm^(3+)ions,3 mol%performs the best.At this time,concentration quenching occurs,which is most predominantly induced by dipole-dipole(d-d)interactions.In terms of thermal stability,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor shows good properties,with the luminescence intensity at 423 K exhibiting 88.17%of that at 298 K.The white light-emitting diodes(WLEDs)devices prepared using Ca_(2)GaTaO_(6):Sm^(3+):0.03Sm^(3+)phosphor shows warm white light with excellent performance in terms of correlated color temperature and color rendering index(CCT=3642 K,CRI,Ra=93.5).In terms of anticounterfeit inks,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor also shows good potential.These research results show that Ca_(2)GaTaO_(6):Sm^(3+)phosphors have great performance for application in WLEDs and anti-counterfeit inks.展开更多
A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and c...A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and carrier mobility of the hole transport layer (HTL) and emission layer (EML) in bilayer OLEDs of the structure anode/HTL/EML/cathode are numerically investigated.It is found that,for given values of the total thickness of organic layers,reduced depth of trap,total density of trap,and carrier mobility of HTL as well as EML,there exists an optimal thickness ratio of HTL to EML,by which a maximal quantum efficiency can be achieved.Through optimization of the thickness ratio,an enhancement of current density and quantum efficiency of as much as two orders of magnitude can be obtained.The dependences of the optimal thickness ratio to the characteristic trap energy,total density of trap and carrier mobility are numerically analyzed.展开更多
The 808nm laser diodes with a broad waveguide are designed and fabricated.The thickness of the Al_ 0.35 - Ga_ 0.65 As waveguide is increased to 0.9μm.In order to suppress the super modes,the thickness of the A...The 808nm laser diodes with a broad waveguide are designed and fabricated.The thickness of the Al_ 0.35 - Ga_ 0.65 As waveguide is increased to 0.9μm.In order to suppress the super modes,the thickness of the Al_ 0.55 Ga_ 0.45 As cladding layers is reduced to only 0.7μm while keeping the transverse radiation losses of the fundamental mode below 0.2cm -1 .The structures are grown by metal organic chemical vapour deposition.The devices show excellent performances.The maximum output power of 10.2W in the 100μm broad-area laser diodes is obtained.展开更多
GaAs PIN diodes optimized for X-band low loss and high isolation switch application are presented. The impact of diode physical characteristics and electrical parameters on switch performance is discussed. A new struc...GaAs PIN diodes optimized for X-band low loss and high isolation switch application are presented. The impact of diode physical characteristics and electrical parameters on switch performance is discussed. A new structure for GaAs PIN diodes is proposed and the fabrication process is described. GaAs PIN diodes with an on-state resistance of 〈2. 2Ω and off-state capacitance -〈20fF in the range of 100MHz to 12.1GHz are obtained.展开更多
A novel equivalent circuit model for a GaAs PIN diode is presented based on physical analysis. The diode is divided into three parts: the p^+ n^- junction, the i-layer, and the n^- n^+ junction, which are modeled s...A novel equivalent circuit model for a GaAs PIN diode is presented based on physical analysis. The diode is divided into three parts: the p^+ n^- junction, the i-layer, and the n^- n^+ junction, which are modeled separately. The entire model is then formed by combining the three sub-models. In this way, the model's accuracy is greatly enhanced. Furthermore, the corresponding parameter extraction method is easy, requiring no rigorous experiment or measurement. To validate this newly proposed model,fifteen groups of diodes are fabricated. Measurement shows that the model exactly represents behavior of GaAs PIN diodes under both forward and reversely biased conditions.展开更多
Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the...Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the tuning of the indium and nitrogen composition of the GalnNAs QWs, the emission wavelengths of the QWs can be tuned to 1.3μm. Ridge geometry waveguide laser diodes are fabricated. The lasing wavelength is 1.3μm under continuous current injection at room temperature with threshold current of 1kA/cm^2 for the laser diode structures with the cleaved facet mirrors. The output light power over 30mW is obtained.展开更多
A voltage controlled oscillator (VCO) which can generate 2 4GHz quadrature local oscillating (LO) signals is reported.It combines a LC VCO,realized by on chip symmetrical spiral inductors and differential diodes,an...A voltage controlled oscillator (VCO) which can generate 2 4GHz quadrature local oscillating (LO) signals is reported.It combines a LC VCO,realized by on chip symmetrical spiral inductors and differential diodes,and a two stage ring VCO.The principle of this VCO is demonstrated and further the phase noise is discussed in detail.The fabrication of prototype is demonstrated using 0 25μm single poly five metal N well salicide CMOS digital process.The reports show that the novel VCO is can generate quadrature LO signals with a tuning range of more than 300MHz as well as the phase noise--104 33dBc/Hz at 600KHz offset at 2 41GHz (when measuring only one port of differential outputs).In addition,this VCO can work in low power supply voltage and dissipate low power,thus it can be used in many integrated transceivers.展开更多
文摘Perovskite quantum dot light-emitting diodes(Pe-QLEDs)have shown immense application potential in display and lighting fields due to their narrow full-width at half maximum(FWHM)and high photoluminescence quantum yield(PLQY).Despite significant advancements in their performance,challenges such as defects and ion migration still hinder their long-term stability and operational efficiency.To address these issues,various optimization strategies,including ligand engineering,interface passivation,and self-assembly strategy,are being actively researched.This review focuses on the synthesis methods,challenges and optimization of perovskite quantum dots,which are critical for the commercialization and large-scale production of high-performance and stable Pe-QLEDs.
基金supported by the National Natural Science Foundations of China(21801254,52002411,52272174,22205017,U1301242)China Postdoctoral Science Foundation(2022M720400,2023M743978)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education of China(20130171130001)the Ministry of Science,Technological Development,and Innovation of the Republic of Serbia(451-03-66/2024-03/200017)。
文摘Nowadays,high-quality phosphor-converted white light-emitting diodes(pc-WLEDs)ought to include cyan-emitting phosphors allowing for full-spectrum light similar to sunlight.Herein,we report a garnetstructured Ce^(3+)-doped SrLu_(2)Ga_(1.5)Al_(2.5)SiO_(12)(SLGASO)phosphor that significantly compensates for the absence of cyan light,known as the"cyan cavity".The SLGASO host crystallizes into a cubic structure with the Ia3d space group.The cell parameters were determined using Rietveld refinement.Under430 nm blue excitation,SLGASO:Ce^(3+)emits intense cyan-green light in the 450-700 nm wavelength range.The representative SLGASO:0.07Ce^(3+)phosphor has an internal quantum efficiency(IQE)of 95.4%and excellent thermal stability,remaining 92.7%of its initial emission intensity at 152℃.After 155 d of immersion in water,the luminous intensity of SLGASO:0.07Ce^(3+)remains constant,confirming its waterproofness.Furthermore,a pc-WLED device with luminous efficiency(LE)of 101.58 lm/W,color rendering index(Ra)of 91,correlated color temperature(CCT)of 4536 K,and Commission Internationale de L'Eclairage(CIE)chromaticity coordinates of(0.3555,0.3390)was fabricated by combining asprepared cyan-green-emitting SLGASO:0.07Ce^(3+),yellow-emitting Y_(3)Al_(5)O_(12):Ce^(3+)(YAG:Ce^(3+)),and redemitting(Ca,Sr)AlSiN_(3):Eu^(2+)phosphors,as well as a 450 nm blue chip.These findings indicate that SLGASO:0.07Ce^(3+)phosphor can bridge the cyan gap and improve the performance of as-fabricated fullvisible-spectrum WLEDs.
基金support from the National Key Research and Development Program of China(2024YFA1207700)National Natural Science Foundation of China(52072141,52102170).
文摘The quantum confinement effect fundamentally alters the optical and electronic properties of quantum dots(QDs),making them versatile building blocks for next-generation light-emitting diodes(LEDs).This study investigates how quantum confinement governs the charge transport,exciton dynamics,and emission efficiency in QD-LEDs,using CsPbI_(3) QDs as a model system.By systematically varying QD sizes,we reveal size-dependent trade-offs in LED performance,such as enhanced efficiency for smaller QDs but increased brightness and stability for larger QDs under high current densities.Our findings offer critical insights into the design of high-performance QD-LEDs,paving the way for scalable and energy-efficient optoelectronic devices.
基金supported by the Natural Science Foundation of Jiangsu Province(Grant.BK20232042).
文摘Stimulated emission and lasing of GaN-based laser diodes(LDs)were reported at 1995[1]and 1996[2],right after the breakthrough of p-type doping[3−5],material quality[6]and the invention of high-brightness GaN-based LEDs[7,8].However,it took much longer time for GaN-based LDs to achieve high power,high wall plug efficiency,and long lifetime.Until 2019,Nichia reported blue LDs with these performances[9],which open wide applications with GaN-based blue LDs.
基金supported by the National Natural Science Foundation of China(52403403)Guizhou Provincial Basic Research Program(Natural Science)(Qian ke he ji chu-ZK2024 YiBan 095)。
文摘Er^(3+)-doped BaLaGaO_(4)green phosphors was synthesized through a high-temperature solid-state reaction technique.The phase structure and morphology test results of the phosphor indicate that the BaLaGaO_(4)material was successfully synthesized and Er^(3+)ions were successfully doped into the main lattice.This doping does change the basic structure of the crystal.BaLaGaO_(4):Er^(3+)phosphor exhibits bright green emission centered at 545 nm when excited by 381 nm ultraviolet light or 980 nm near-infrared light.The optimal doping concentration is found to be x=0.04.To quantify the temperature sensitivity of the phosphor,the fluorescence intensity ratio method was used.Within the temperature range of 298-473 K,the maximum relative sensitivities are 1.35%/K(298 K,381 nm)and 1.45%/K(298 K,980 nm),respectively.The maximum absolute sensitivities are 0.67%/K(473 K,381 nm)and 0.69%/K(473 K,980 nm),respectively.Finally,white light-emitting diodes(WLEDs)with a high colour index of Ra=82and a relatively low correlated colour temperature of CCT=5064 K are obtained by integrating the synthesized BaLaGaO_(4):0.04Er^(3+)green phosphor into warm WLEDs devices.These results suggest that Er^(3+)-activated BaLaGaO_(4)multifunctional phosphors hold considerable promise in the areas of optical temperature sensing and WLEDs phosphor conversion.
基金support from MATRIX(ANR-22-CE92-0047)with financial support from ITMI Cancer of Aviesan within the framework of the 2021−2030 Cancer Control Strategy,on funds administrated by INSERM through the project NECTAR.Matilde Siviero acknowledges funding from the French−German University/Saarbrücken(contract CDOC-06-2022).
文摘GaN diodes for high energy(64.8 MeV)proton detection were fabricated and investigated.A comparison of the performance of GaN diodes with different structures is presented,with a focus on sapphire and on GaN substrates,Schottky and pin diodes,and different active layer thicknesses.Pin diodes fabricated on a sapphire substrate are the best choice for a GaN proton detector working at 0 V bias.They are sensitive(minimum detectable proton beam<1 pA/cm^(2)),linear as a function of proton current and fast(<1 s).High proton current sensitivity and high spatial resolution of GaN diodes can be exploited in the future for proton imaging of patients in proton therapy.
基金supported by the National Key Research and Development Program of China(No.2022YFA1204800)the Scientific Research Innovation Capability Support Project for Young Faculty(No.ZYGXQNJSKYCXNLZCXM-I25),China+1 种基金the National Natural Science Foundation of China(No.62274144)the Zhejiang Provincial Government,China.
文摘Perovskite light-emitting diodes(PeLEDs)have shown outstanding potential in next-generation lighting and display owing to the advantages of broad spectral tunability,excellent color purity,high photoluminescence quantum yields(PLQYs),and low processing cost.Device efficiency and stability are crucial indicators to evaluate whether a PeLED can meet commercial application requirements.In this review,we first discuss strategies for achieving high external quantum efficiencies(EQEs),including controlling charge injection and balance,enhancing radiative recombination,and improving light outcoupling efficiency.Next,we review recent advances in operational stability of PeLEDs and emphasize the mechanisms of degradation in PeLEDs,including ion migration,structural transformations,chemical interactions,and thermal degradation.Through detailed analysis and discussion,this review aims to facilitate progress and innovation in highly efficient and stable PeLEDs,which have significant promise for display and solid-state lighting technologies,as well as other emerging applications.
文摘Background Plant tissue culture has emerged as a tool for improving cotton propagation and genetics,but recalcitrance nature of cotton makes it difficult to develop in vitro regeneration.Cotton’s recalcitrance is influenced by genotype,explant type,and environmental conditions.To overcome these issues,this study uses different machine learning-based predictive models by employing multiple input factors.Cotyledonary node explants of two commercial cotton cultivars(STN-468 and GSN-12)were isolated from 7–8 days old seedlings,preconditioned with 5,10,and 20 mg·L^(-1) kinetin(KIN)for 10 days.Thereafter,explants were postconditioned on full Murashige and Skoog(MS),1/2MS,1/4MS,and full MS+0.05 mg·L^(-1) KIN,cultured in growth room enlightened with red and blue light-emitting diodes(LED)combination.Statistical analysis(analysis of variance,regression analysis)was employed to assess the impact of different treatments on shoot regeneration,with artificial intelligence(AI)models used for confirming the findings.Results GSN-12 exhibited superior shoot regeneration potential compared with STN-468,with an average of 4.99 shoots per explant versus 3.97.Optimal results were achieved with 5 mg·L^(-1) KIN preconditioning,1/4MS postconditioning,and 80%red LED,with maximum of 7.75 shoot count for GSN-12 under these conditions;while STN-468 reached 6.00 shoots under the conditions of 10 mg·L^(-1) KIN preconditioning,MS with 0.05 mg·L^(-1) KIN(postconditioning)and 75.0%red LED.Rooting was successfully achieved with naphthalene acetic acid and activated charcoal.Additionally,three different powerful AI-based models,namely,extreme gradient boost(XGBoost),random forest(RF),and the artificial neural network-based multilayer perceptron(MLP)regression models validated the findings.Conclusion GSN-12 outperformed STN-468 with optimal results from 5 mg·L^(-1) KIN+1/4MS+80%red LED.Application of machine learning-based prediction models to optimize cotton tissue culture protocols for shoot regeneration is helpful to improve cotton regeneration efficiency.
基金funded by the National Key R&D Program of China,Grant No.2024YFF0504904.
文摘The packaging quality of coaxial laser diodes(CLDs)plays a pivotal role in determining their optical performance and long-term reliability.As the core packaging process,high-precision laser welding requires precise control of process parameters to suppress optical power loss.However,the complex nonlinear relationship between welding parameters and optical power loss renders traditional trial-and-error methods inefficient and imprecise.To address this challenge,a physics-informed(PI)and data-driven collaboration approach for welding parameter optimization is proposed.First,thermal-fluid-solid coupling finite element method(FEM)was employed to quantify the sensitivity of welding parameters to physical characteristics,including residual stress.This analysis facilitated the identification of critical factors contributing to optical power loss.Subsequently,a Gaussian process regression(GPR)model incorporating finite element simulation prior knowledge was constructed based on the selected features.By introducing physics-informed kernel(PIK)functions,stress distribution patterns were embedded into the prediction model,achieving high-precision optical power loss prediction.Finally,a Bayesian optimization(BO)algorithm with an adaptive sampling strategy was implemented for efficient parameter space exploration.Experimental results demonstrate that the proposedmethod effectively establishes explicit physical correlations between welding parameters and optical power loss.The optimized welding parameters reduced optical power loss by 34.1%,providing theoretical guidance and technical support for reliable CLD packaging.
基金supported by the National Natural Science Foundation of China(No.51973020)Beijing Natural Science Foundation(No.2232052)。
文摘A binary-mixed electron transport layer(ETL)has been reported for constructing solution-processable near-infrared organic light-emitting diodes(NIR OLEDs).Relative to the single-component ETL,the binarymixed ETL composed of PDINN:TPBi can enhance the carrier transport capacity,reduce device impedance,and weaken fiuorescence quenching of the emitting layer.By carefully selecting an appropriate luminescent material Y5(a nonfullerene electron acceptor in organic solar cells)and precisely fine-tuning the molecular aggregation in active layer using a mixed solvent,the morphology is optimized and luminescence performance is enhanced,resulting in efficient NIR OLEDs with an emission peak at 890 nm.The experiment showcases a Y5-based near-infrared OLED with a maximum radiance of 34.9 W sr^(-1)m^(-2)and a maximum external quantum efficiency of 0.50%,which is among the highest values reported for nondoped fiuorescent NIR OLEDs with an emission peak over 850 nm.
基金supported by the National Natural Science Foundation of China (Nos. 62222503, 52073040 and 52130304)the Sichuan Science and Technology Program (Nos. 2024NSFSC0012,2023NSFSC1973 and 2024NSFSC1446)+2 种基金the China Postdoctoral Science Foundation (Nos. 2023M740504 and GZC20230380)the Sichuan Provincial Human Resources and Social Security Department Programthe Collaborative Innovation Center of Suzhou Nano Science&Technology
文摘Triphenylamine(TPA)is the most promising donor fragment for the construction of long-wavelength thermally activated delayed fluorescence(TADF)emitters owing to its suitable dihedral angle that could enhance radiative decay to compete with the serious non-radiative decay.However,the moderate electron-donating capacity of TPA seriously limits the selection of acceptor for constructing longwavelength TADF emitters with narrow bandgaps.To address this issue,in this work,the peripheral benzene of TPA was replaced with 1,4-benzodioxane and anisole to obtain two new electrondonating units N-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-N-phenyl-2,3-dihydrobenzo[b][1,4]dioxin-6-amine(TPADBO,−5.02 eV)and 4-methoxy-N-(4-methoxyphenyl)-N-phenylaniline(TPAMO,−5.00 eV),which possess much shallower highest occupied molecule orbital(HOMO)energy levels than the prototype TPA(−5.33 eV).Based on TPA and the modified TPA donor fragments,three TADF emitters were designed and synthesized,namely Py-TPA,Py-TPADBO and Py-TPAMO,with the same acceptor fragment 12-(2,6-diisopropylphenyl)pyrido[2′,3′:5,6]pyrazino[2,3-f][1,10]phenanthroline(Py).Among them,Py-TPAMO exhibits the highest photoluminescence quantum yield of 78.4%and the smallest singlet-triplet energy gap,which is because the introduction of anisole does not cause significant molecule deformation for the excited Py-TPAMO.And Py-TPAMO-based OLEDs successfully realize a maximum external quantum efficiency of 25.5%with the emission peak at 605 nm.This work provides a series of candidate of donor fragments for the development of efficient long-wavelength TADF emitters.
基金supported by the National Key Research and Development Program of China(2024YFE0103600)the National Natural Science Foundation of China(NSFC)(62474119,62205230,and 62175171)Suzhou Key Laboratory of Functional Nano&Soft Materials,Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Project,Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.
文摘Colloidal quantum dots(CQDs)are highly regarded for their outstanding photovoltaic characteristics,including excellent color purity,stability,high photoluminescence quantum yield(PLQY),narrow emission spectra,and ease of solution processing.Despite significant progress in quantum dot light-emitting diodes(QLEDs)technology since its inception in 1994,blue QLEDs still fall short in efficiency and lifespan compared to red and green versions.The toxicity concerns associated with Cd/Pb-based quantum dots(QDs)have spurred the development of heavy-metal-free alternatives,such as groupⅡ−Ⅵ(e.g.,ZnSe-based QDs),groupⅢ−Ⅴ(e.g.,InP,GaN QDs),and carbon dots(CDs).In this review,we discuss the key properties and development history of quantum dots(QDs),various synthesis approaches,the role of surface ligands,and important considerations in developing core/shell(C/S)structured QDs.Additionally,we provide an outlook on the challenges and future directions for blue QLEDs.
基金supported by Guizhou Provincial Basic Research Program(Natural Science)(Qian ke he ji chu-ZK2024 YiBan 095)。
文摘In this study,a novel Ca_(2)GaTaO_(6):Sm^(3+)phosphor was developed using the conventional hightemperature solid-phase method.The phase structure and morphology test results of phosphor indicate that the Ca_(2)GaTaO_(6):Sm^(3+)material was successfully synthesized and the Sm^(3+)ions were successfully doped into the host lattice.When utilizing 406 nm excitation,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor has the strongest emission intensity at 599 nm and shows orange-red emission,which is mainly owing to the^(4)G_(5/2)→^(6)H_(7/2)jump of Sm^(3+)ions.For the performance of different concentrations of Sm^(3+)ions,3 mol%performs the best.At this time,concentration quenching occurs,which is most predominantly induced by dipole-dipole(d-d)interactions.In terms of thermal stability,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor shows good properties,with the luminescence intensity at 423 K exhibiting 88.17%of that at 298 K.The white light-emitting diodes(WLEDs)devices prepared using Ca_(2)GaTaO_(6):Sm^(3+):0.03Sm^(3+)phosphor shows warm white light with excellent performance in terms of correlated color temperature and color rendering index(CCT=3642 K,CRI,Ra=93.5).In terms of anticounterfeit inks,the Ca_(2)GaTaO_(6):Sm^(3+)phosphor also shows good potential.These research results show that Ca_(2)GaTaO_(6):Sm^(3+)phosphors have great performance for application in WLEDs and anti-counterfeit inks.
文摘A numerical model for bilayer organic light-emitting diodes (OLEDs) is developed under the basis of trapped charge limited conduction.The dependences of the current density on the layer thickness,trap properties and carrier mobility of the hole transport layer (HTL) and emission layer (EML) in bilayer OLEDs of the structure anode/HTL/EML/cathode are numerically investigated.It is found that,for given values of the total thickness of organic layers,reduced depth of trap,total density of trap,and carrier mobility of HTL as well as EML,there exists an optimal thickness ratio of HTL to EML,by which a maximal quantum efficiency can be achieved.Through optimization of the thickness ratio,an enhancement of current density and quantum efficiency of as much as two orders of magnitude can be obtained.The dependences of the optimal thickness ratio to the characteristic trap energy,total density of trap and carrier mobility are numerically analyzed.
文摘The 808nm laser diodes with a broad waveguide are designed and fabricated.The thickness of the Al_ 0.35 - Ga_ 0.65 As waveguide is increased to 0.9μm.In order to suppress the super modes,the thickness of the Al_ 0.55 Ga_ 0.45 As cladding layers is reduced to only 0.7μm while keeping the transverse radiation losses of the fundamental mode below 0.2cm -1 .The structures are grown by metal organic chemical vapour deposition.The devices show excellent performances.The maximum output power of 10.2W in the 100μm broad-area laser diodes is obtained.
文摘GaAs PIN diodes optimized for X-band low loss and high isolation switch application are presented. The impact of diode physical characteristics and electrical parameters on switch performance is discussed. A new structure for GaAs PIN diodes is proposed and the fabrication process is described. GaAs PIN diodes with an on-state resistance of 〈2. 2Ω and off-state capacitance -〈20fF in the range of 100MHz to 12.1GHz are obtained.
文摘A novel equivalent circuit model for a GaAs PIN diode is presented based on physical analysis. The diode is divided into three parts: the p^+ n^- junction, the i-layer, and the n^- n^+ junction, which are modeled separately. The entire model is then formed by combining the three sub-models. In this way, the model's accuracy is greatly enhanced. Furthermore, the corresponding parameter extraction method is easy, requiring no rigorous experiment or measurement. To validate this newly proposed model,fifteen groups of diodes are fabricated. Measurement shows that the model exactly represents behavior of GaAs PIN diodes under both forward and reversely biased conditions.
文摘Material growth and device fabrication of the first 1.3μm quantum well (QW) edge emitting laser diodes in China are reported. Through the optimization of the molecular beam epitaxy (MBE) growth conditions and the tuning of the indium and nitrogen composition of the GalnNAs QWs, the emission wavelengths of the QWs can be tuned to 1.3μm. Ridge geometry waveguide laser diodes are fabricated. The lasing wavelength is 1.3μm under continuous current injection at room temperature with threshold current of 1kA/cm^2 for the laser diode structures with the cleaved facet mirrors. The output light power over 30mW is obtained.
文摘A voltage controlled oscillator (VCO) which can generate 2 4GHz quadrature local oscillating (LO) signals is reported.It combines a LC VCO,realized by on chip symmetrical spiral inductors and differential diodes,and a two stage ring VCO.The principle of this VCO is demonstrated and further the phase noise is discussed in detail.The fabrication of prototype is demonstrated using 0 25μm single poly five metal N well salicide CMOS digital process.The reports show that the novel VCO is can generate quadrature LO signals with a tuning range of more than 300MHz as well as the phase noise--104 33dBc/Hz at 600KHz offset at 2 41GHz (when measuring only one port of differential outputs).In addition,this VCO can work in low power supply voltage and dissipate low power,thus it can be used in many integrated transceivers.