Internet and broadband applications driven by data traffic demand have become key dri- vers for satellite constellations. The key technology to satisfy the high capacity requirements between satellites is optical sate...Internet and broadband applications driven by data traffic demand have become key dri- vers for satellite constellations. The key technology to satisfy the high capacity requirements between satellites is optical satellite networks by means of wavelength division multiplexing inter- satellite links (ISLs) with wavelength routing (WDM-OSN). Due to the limited optical amplifier bandwidth onboard the satellite, it is important to minimize the wavelength requirements to provi- sion requests. However, ISLs should be dynamically established and deleted for each satellite according to its visible satellites. Furthermore, different link assignments will result in different topologies, hence yielding different routings and wavelength assignments. Thus, a perfect match model-based link assignment scheme (LAS-PMM) is proposed to design an appropriate topology such that shorter path could be routed and less wavelengths could be assigned for each ISL along the path. Finally, simulation results show that in comparison to the regular Manhattan street net- work (MSN) topology, wavelength requirements and average end-to-end delay based on the topol- ogy generated by LAS-PMM could be reduced by 24.8% and 12.4%, respectively.展开更多
An automated method based on the curve chain was proposed for dimensioning of engineering drawings for the mechanical products.According to the internal relation between the features of 3D model feature and elements o...An automated method based on the curve chain was proposed for dimensioning of engineering drawings for the mechanical products.According to the internal relation between the features of 3D model feature and elements of 2D drawing,the curve chain was established to reflect the geometric topological structure between the elements.It divides the dimensions into the absolute dimensions within the cure chain and the relative dimensions between the curve chains.The parallel and lengthy relationship between the drawing elements of the constructed X and Y parallel matrix was solved to remove redundant elements in the curve chain and labeled the absolute dimensions of the remaining valid elements.The average minimum weight coefficient was introduced to judge the dependence on the relative dimensions between curve chains.Through the analysis of the overlap between the circular rectangular areas,including all the absolute dimensions of the curve chains,overlapping curve chains were merged,and their dimensions were rearranged to avoid the cross interference between them.The method was seamlessly integrated into the drafting module of product design software NX,and it developed an automated dimensioning system.The examples show that the system has excellent interactivity and robustness in the dimensioning of product engineering drawings.The dimension information is complete,accurate and reliable.展开更多
Recently, applications of real-time polling service (rtPS) in IEEE 802.16 wireless networks have gained considerable popularity. These applications generate large amounts of real time traffic in the network and thus m...Recently, applications of real-time polling service (rtPS) in IEEE 802.16 wireless networks have gained considerable popularity. These applications generate large amounts of real time traffic in the network and thus maintaining the quality of service (QoS) such as packet delay requirement in rtPS dominant networks is critical. Existing dimensioning methodology does not consider QoS parameters of rtPS in network dimensioning. Moreover, exhaustive and time-consuming simulations are required to evaluate the performance and QoS of rtPS. To overcome this problem, we propose an improved radio network dimensioning framework which considers QoS parameters of rtPS in network dimensioning. In this framework, an analytical model is developed to evaluate the capacity and performance of rtPS in IEEE 802.16 wireless networks. The proposed framework provides a fast and accurate means of finding the trade-off between system load and packet delay, thus providing network operators with an analytical tool that jointly considers coverage, capacity and QoS requirements for obtaining the minimum number of sites required. The accuracy of the proposed model is validated through simulations.展开更多
In wideband code division multiple access (WCDMA) cellular systems, the coverage radius of a cell depends on its current capacity level. As a result, existing WCDMA radio network dimensioning approaches require that c...In wideband code division multiple access (WCDMA) cellular systems, the coverage radius of a cell depends on its current capacity level. As a result, existing WCDMA radio network dimensioning approaches require that coverage and capacity planning be carried out jointly in an iterative manner in order to obtain the minimum site count needed while fulfilling both coverage and capacity requirements. This requires relatively long computational time, particularly when there are many scenarios or what-if cases to be considered. To overcome this problem, we propose an alternative radio network dimensioning approach where coverage planning and capacity planning can be carried out separately to reduce computational time. Besides, a portion of the values calculated in the initial iteration is preserved in a lookup graph, allowing future what-if analysis to be accomplished rapidly. Simulation results show that, unlike the existing approach, the planning and what-if analysis times of the proposed dimensioning approach are independent of the number of sce-narios considered. Lastly, we present a few case studies and show that the proposed dimensioning method can give the same prediction accuracy as the existing method.展开更多
As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal...As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.展开更多
For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial...For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial quotients.In this paper,we establish the Hausdorff dimension of the exceptional set where the growth rate is a general function.展开更多
In computer-aided structural design, the drawing of shear-walls cannot be easily automated; however, dimensioning of the shear-walls provides a method to automate the drawing. This paper presents a drawing recognitio...In computer-aided structural design, the drawing of shear-walls cannot be easily automated; however, dimensioning of the shear-walls provides a method to automate the drawing. This paper presents a drawing recognition method for automatic dimensioning of shear-walls. The regional relationship method includes a graphic shape template library that can learn new shear-wall shapes. The automatic dimensioning of shear-walls is then realized by matching the templates. The regional relationship method for graph recognition effectively describes the topological relationships for graphs to significantly increase the recognition efficiency.展开更多
This paper presents an overview of the functional dimensioning (FD) concept apptied to the construction sector. FD addresses the issue of toterance; construction involves severat trades working together white each t...This paper presents an overview of the functional dimensioning (FD) concept apptied to the construction sector. FD addresses the issue of toterance; construction involves severat trades working together white each trade has its own construction toterances. To investigate this probtem, three case studies are investigated. The first one describes a classic case of a window in a bay and the way constructors sotved the resulting toterance problems. The second case study describes the notion of chain dimension. The fast case study presents the notion of wedge as a sotution to sotve probtems related to toterance gap accumulation. This paper is of interest to the scientific community that is working to industrialize the construction sector and atso to architects (in the design), construction managers (onsfte), and manufacturers (construction trades).展开更多
Powered fight in birds is reliant on feathers forming an aerodynamic surface that resists air pressures.Many basic aspects of feather functionality are unknown,which hampers our understanding of wing function in birds...Powered fight in birds is reliant on feathers forming an aerodynamic surface that resists air pressures.Many basic aspects of feather functionality are unknown,which hampers our understanding of wing function in birds.This study measured the dimensions of primary and secondaryfight feathers of 19 species of parrots.The maximum force the feathers could withstand from below was also measured to mimic the pressuresexperienced during a downstroke.The analysis tested whether:(1)feather dimensions differed along the wing and among secondary and primary remiges;(2)the force that feathers could withstand varied among the remiges;and(3)there would be isometric relationships with bodymass for feather characteristics.The results show that body mass signifcantly affected vane width,rachis thickness,maximum force,and ultimate bending moment,but the relationship for feather length only approached signifcance.Many of the proximal secondary feathers showedsignifcantly lower values relative to the frst primary,whereas for distal primaries the values were greater.There were isometric relationships forforce measurements of primary and secondary feathers with body mass,but there was positive allometry for feather lengths and vane widths.The forces feathers can withstand vary along the wing may be a proxy for the aerodynamic properties of the feathers in situ.Broader taxonomicstudies that explore these topics are required for other species representing a range of different orders.A better understanding of the functionality of feathers will improve our understanding of how avian fight works particularly considering the variety in fight style and wing shape in birds.展开更多
Low porosity is very significant for cementitious composite materials(CCM)under freeze-thaw conditions.To reduce the porosity of CCM,we used wollastonite mineral fibers as a partial replacement for cement and aggregat...Low porosity is very significant for cementitious composite materials(CCM)under freeze-thaw conditions.To reduce the porosity of CCM,we used wollastonite mineral fibers as a partial replacement for cement and aggregate.The five combinations,in which 10%,32%,and 48%Wollastonite were added,were made for scanning using both scanning electron microscopy(SEM)and computed tomography scan technology(CT).Then,the 2D SEM pictures and the 3D pore distribution curves are obtained before and after the freezing and thawing processes,where the micro-pores in the CCM materials are shown.The fractal dimension is used to quantify the topography image in two dimensions,as well as the pore distribution in three dimensions.This method allows for the determination of both surface porosity and volume porosity,both of which show an increase in response to an escalation of freeze-thaw cycles.It is also found that the micro-damage in the concrete is of self-similarity,and in the context of the fractal dimension,the pore evolution can be quantitatively characterized across different sizes,ranging from local to global levels,before and after freezing and thawing.展开更多
Behavior analysts have long recognized the need to increase at least one behavior when attempting to decrease another and usually focus primarily upon increasing a wide variety of behaviors(White&Haring,1980).But ...Behavior analysts have long recognized the need to increase at least one behavior when attempting to decrease another and usually focus primarily upon increasing a wide variety of behaviors(White&Haring,1980).But the strengthening of any behavior relative to another is not necessarily simple and records of empirically supported treatment options can be interpreted in an over-simplified manner.The current paper attempts to connect various treatment options across behaviors through a common principle-levels of one behavior will tend to increase and levels of another will tend to decrease when the first behavior is made more efficient than the second.The primary objective of the current paper is to articulate a wide variety of variable dimensions available to behavior analysts,teachers,and other professionals responsible for behavior change.In complex environments,many factors are beyond our control and many treatment options are non-viable.The greater the variety of treatment options available,the“larger the analyst’s toolbox”,the greater the chance that viable treatments will be found and that ineffective strategies can be effectively modified before being set aside.One recurring theme is that various forms of response blocking can and should be minimized and replaced with strategies that make more desirable behavior more efficient than less desirable behavior,leading learners to“choose”more desirable behavior.An additional objective of the paper is to reframe the debate about whether it is appropriate to use extinction or punishment,wherein those strategies are frequently interpreted in absolute terms,in relation to decreasing undesirable behaviors,and inevitably result in negative side effects.A more nuanced discussion about extinction and punishment considers the extent to which parametric applications of either might be appropriate to make a less desirable behavior less efficient than a more desirable behavior and includes the potential impact upon increasing desirable behaviors.展开更多
Safe operation of underground reservoirs in coal mines is crucial for the coordinated exploitation of coal and water resources in western China.Mine water infiltration significantly influences the stability of the coa...Safe operation of underground reservoirs in coal mines is crucial for the coordinated exploitation of coal and water resources in western China.Mine water infiltration significantly influences the stability of the coal pillar.Therefore,laboratory tests were systematically carried out on coal from the Daliuta Coal Mine in Northwest China.Samples were taken in the vertical and parallel bedding directions and soaked for 0 d,2 d,4 d,or 16 d.In this study,atomic absorption spectroscopy(AAS),X-ray diffraction(XRD),and scanning electron microscopy(SEM)were used to analyze the variations in the water absorption characteristics and corresponding internal structure of the coal.Uniaxial compression tests and synchronous acoustic emission(AE)monitoring revealed the sample failure process and mechanical properties of the samples.Finally,the time-and frequency-domain characteristics of the AE signal were comprehensively analyzed using fractal dimension,fast Fourier transform,and cluster analysis.The strength and elastic modulus demonstrate significant anisotropy with different bedding planes and reveal the existence of the optimum water content.Specifically,the sample strength increases after 2 d of immersion,with increments of 23.3% and 0.6% for the vertical and parallel bedding samples,and decreases after 16 d of immersion,with decreases of 29% and 45% for the vertical and parallel samples,respectively.Additionally,shear cracks account for over 60% during the damage development of the samples.The proportion of tensile cracks is higher for samples with longer immersion times and parallel bedding planes.This research provides a theoretical basis for stability evaluation and protection of coal pillars in underground reservoirs using the AE technique.展开更多
This research employs micro-CT scanning technology to analyze the porosity,pore fractal dimension,and spatial variability of sandstone preheated to 600℃ and subsequently cooled in water at varying temperatures(20℃,6...This research employs micro-CT scanning technology to analyze the porosity,pore fractal dimension,and spatial variability of sandstone preheated to 600℃ and subsequently cooled in water at varying temperatures(20℃,60℃,100℃).The study investigates the mechanisms by which various factors influence thermal shock damage,focusing on the effects of cooling water temperature and the boiling phase transition.The objective is to develop a method for characterizing thermal shock damage that considers spatial variability.The findings indicate that thermal shock damage is limited to a shallow depth beneath the surface,with increased severity near the surface.The boiling phase transition significantly enhances the convective heat transfer coefficient,resulting in substantially higher thermal shock damage when cooled with 100℃ boiling water compared to 20℃ and 60℃ water.Furthermore,for the entire specimen,heating damage exceeds thermal shock damage,and the influence of thermal shock diminishes as specimen size increases.This study addresses the limitations of traditional methods for assessing thermal shock damage that disregard spatial variability and provides practical guidance for engineering projects to manage thermal shock damage more effectively.展开更多
The flow characteristics of coalbed methane(CBM)are influenced by the coal rock fracture network,which serves as the primary gas transport channel.This has a significant effect on the permeability performance of coal ...The flow characteristics of coalbed methane(CBM)are influenced by the coal rock fracture network,which serves as the primary gas transport channel.This has a significant effect on the permeability performance of coal reservoirs.In any case,the traditional techniques of coal rock fracture observation are unable to precisely define the flow of CBM.In this study,coal samples were subjected to an in situ loading scanning test in order to create a pore network model(PNM)and determine the pore and fracture dynamic evolution law of the samples in the loading path.On this basis,the structural characteristic parameters of the samples were extracted from the PNM and the impact on the permeability performance of CBM was assessed.The findings demonstrate that the coal samples'internal porosity increases by 2.039%under uniaxial loading,the average throat pore radius increases by 205.5 to 36.1μm,and the loading has an impact on the distribution and morphology of the pores in the coal rock.The PNM was loaded into the finite element program COMSOL for seepage modeling,and the M3 stage showed isolated pore connectivity to produce microscopic fissures,which could serve as seepage channels.In order to confirm the viability of the PNM and COMSOL docking technology,the streamline distribution law of pressure and velocity fields during the coal sample loading process was examined.The absolute permeability of the coal samples was also obtained in order for comparison with the measured results.The macroscopic CBM flow mechanism in complex lowpermeability coal rocks can be revealed through three-dimensional reconstruction of the microscopic fracture structure and seepage simulation.This study lays the groundwork for the fine description and evaluation of coal reservoirs as well as the precise prediction of gas production in CBM wells.展开更多
Accurately reconstructing rock structures using numerical methods is vital in rock mechanics research community,especially when obtaining rock samples is difficult and expensive.The reconstructed models must reflect t...Accurately reconstructing rock structures using numerical methods is vital in rock mechanics research community,especially when obtaining rock samples is difficult and expensive.The reconstructed models must reflect the comprehensive characteristics of natural rock,including mineral content and spatial distributions.This study employs the bubbling method to reconstruct granite containing multiple minerals in both two-(2D)and three-dimensions(3D),proposing a general procedure for granite structure reconstruction.The bubbling method utilizes numerous bubbles(hemispheres or spheres)of varying sizes and gradually changing properties,which are randomly overlapped to create a heterogeneous plane(2D)or space(3D).The properties of these overlapped areas are adjusted based on the sum of neighboring bubbles'properties,allowing specific regions with extreme properties to be selected and intercepted to form the desired mineral shapes.The results demonstrate that the reproduced granite samples can accurately exhibit the mineral distributions and sizes of real granite,quantified by fractal dimension(D)and the hourglass parameter(V_(Sum)=V_(Total)).The proposed method is also suitable for reconstructing anisotropic granite models,with anisotropy described by a fitted elliptic curve derived from ratios between directional mineral sizes and cross-sectional dimensions.Based on these findings,a series of numerical granite models with similar structures were reconstructed and tested.Results indicate that different mineral distributions significantly impact the macroscopic mechanical behaviors,but variability in numerical simulation results decreases with increasing specimen size.The compressive and tensile strength values of the reconstructed numerical models show less variation than those of natural granite specimens.This suggests that,beyond mineral distribution,other factors such as internal defects within natural granite contribute to the observed discrepancies.Additionally,the bubbling method shows great potential for modeling porous structures and offers high computational efficiency.展开更多
Based on the fractal theory,this paper takes the form of performing architecture as the research object,and systematically discusses the application value of fractal dimension in architectural design.By expounding the...Based on the fractal theory,this paper takes the form of performing architecture as the research object,and systematically discusses the application value of fractal dimension in architectural design.By expounding the self-affine,self-similarity,and iterative generation characteristics of fractal geometry,the Box-Counting Dimension method is introduced as a quantitative tool to measure the dimensions of the roof plane,facade,and spatial shape of Wuzhen Grand Theatre and Harbin Grand Theatre.The research shows that the geometric complexity of Wuzhen Grand Theater in the“fifth façade”and multi-faceted façade is significantly higher than that of Harbin Grand Theater,and its morphological design is more inclined to echo the texture of the surrounding water towns.The Harbin Grand Theater realizes the dialogue with the natural environment with simple nonlinear lines.The research proves that fractal dimension can effectively quantify the complexity of architectural form,provide a scientific basis for the form design,environmental integration,and form interpretation of performance architecture,and expand the mathematical analysis dimension of architectural form design.展开更多
Cross-cultural interactions between China and the global community have intensified,notably marked by the expanding international reach of Chinese films and television productions.Given the diverse cultural background...Cross-cultural interactions between China and the global community have intensified,notably marked by the expanding international reach of Chinese films and television productions.Given the diverse cultural backgrounds of different regions,the task of making adapted TV series resonate with the values of the audiences in the target regions has presented a substantial challenge.As the popular Chinese TV series The Legend of Zhen Huan and its American adaptation Empresses in the Palace garnered acclaim within their respective domestic markets,they exhibited rating disparities in cross-cultural acceptance,which offers a novel perspective for analyzing intercultural communication.Building on this phenomenon,this study employs Hofstede’s Cultural Dimensions Theory and Kluckhohn and Strodtbeck’s Values Orientation Theory to conduct a comparative analysis of the theme songs from the two series.By deconstructing the contextual contents embedded in these musical compositions,the research aims to elucidate the underlying cultural and cognitive differences between Chinese and American audiences,which lead to their distinct acceptances of the series.展开更多
AI continues to reshape industries at a rapid pace,which reminds us of the growing importance of standardization.Standards and conformity assessment are essential to addressing the socio-technical dimensions of AI—en...AI continues to reshape industries at a rapid pace,which reminds us of the growing importance of standardization.Standards and conformity assessment are essential to addressing the socio-technical dimensions of AI—ensuring its safe,ethical,and inclusive adoption across different sectors.展开更多
The Chang 7 sandstone is characterized by complex micro-pore structures,strong heterogeneity,and differential fluid distribution.These characteristics result in low oil recovery.In this paper,various techniques,includ...The Chang 7 sandstone is characterized by complex micro-pore structures,strong heterogeneity,and differential fluid distribution.These characteristics result in low oil recovery.In this paper,various techniques,including high-pressure mercury intrusion,nuclear magnetic resonance,scanning electron microscope,thin section,and X-ray diffraction,are employed to quantitatively evaluate the occurrence characteristics and influencing factors of movable fluids in Chang 7 sandstone reservoirs from the Heshui Block with different fractal structures.Results show that the dominant sandstone type is feldspar lithic fragment sandstone.Chang 7 reservoir has been divided into three types(typesⅠ,Ⅱ,andⅢ)based on capillary pressure curves and pore structure parameters.These reservoirs are characterized by various fractal structures and different movable fluids distribution.Multiple possible factors affecting the movable fluid distribution are analyzed,including physical properties,pore structure,pore size distribution,mineral content,and heterogeneity.Movable fluid saturation is positively correlated with physical properties,weighted average pore-throat radius,median pore-throat radius,final residual mercury saturation,and maximum mercury withdrawal saturation.In contrast,it is negatively correlated with displacement pressure and has no obvious correlation with the sorting coefficient.Micron-and submicron-scale pores are beneficial to the movable fluid occurrence,while nano-scale pores are vice versa.The influence of mineral content on movable fluid occurrence varies with mineral types.Quartz is conducive to the movable fluid occurrence in submicron-scale pores,while carbonate cementation inhibits the movable fluid occurrence in submicron-scale pores.The inhibition of clay on the movable fluid occurrence is mainly reflected in submicron-and nano-scale pores and varies with clay mineral types.The influence of heterogeneity on the movable fluid occurrence is mainly reflected in submicron-scale pores.The occurrence models of movable fluid vary with reservoir types.展开更多
The phenomenon of photothermally induced transparency(PTIT)arises from the nonlinear behavior of an optical cavity,resulting from the heating of mirrors.By introducing a coupling field in the form of a standing wave,P...The phenomenon of photothermally induced transparency(PTIT)arises from the nonlinear behavior of an optical cavity,resulting from the heating of mirrors.By introducing a coupling field in the form of a standing wave,PTIT can be transitioned into photothermally induced grating(PTIG).A two-dimensional(2D)diffraction pattern is achieved through the adjustment of key parameters such as coupling strength and effective detuning.Notably,we observe first,second,and third-order intensity distributions,with the ability to transfer probe energy predominantly to the third order by fine-tuning the coupling strength.The intensity distribution is characterized by(±m,±n),where m,n=1,2,3.This proposed 2D grating system offers a novel platform for manipulating PTIG,presenting unique possibilities for enhanced functionality and control.展开更多
基金supported by the National Natural Science Foundation of China(Nos.61471238,61433009)
文摘Internet and broadband applications driven by data traffic demand have become key dri- vers for satellite constellations. The key technology to satisfy the high capacity requirements between satellites is optical satellite networks by means of wavelength division multiplexing inter- satellite links (ISLs) with wavelength routing (WDM-OSN). Due to the limited optical amplifier bandwidth onboard the satellite, it is important to minimize the wavelength requirements to provi- sion requests. However, ISLs should be dynamically established and deleted for each satellite according to its visible satellites. Furthermore, different link assignments will result in different topologies, hence yielding different routings and wavelength assignments. Thus, a perfect match model-based link assignment scheme (LAS-PMM) is proposed to design an appropriate topology such that shorter path could be routed and less wavelengths could be assigned for each ISL along the path. Finally, simulation results show that in comparison to the regular Manhattan street net- work (MSN) topology, wavelength requirements and average end-to-end delay based on the topol- ogy generated by LAS-PMM could be reduced by 24.8% and 12.4%, respectively.
基金This work is supported by the Science and Technology Planning Project of Ronggui(grant number RGJF(2017)27H-8).
文摘An automated method based on the curve chain was proposed for dimensioning of engineering drawings for the mechanical products.According to the internal relation between the features of 3D model feature and elements of 2D drawing,the curve chain was established to reflect the geometric topological structure between the elements.It divides the dimensions into the absolute dimensions within the cure chain and the relative dimensions between the curve chains.The parallel and lengthy relationship between the drawing elements of the constructed X and Y parallel matrix was solved to remove redundant elements in the curve chain and labeled the absolute dimensions of the remaining valid elements.The average minimum weight coefficient was introduced to judge the dependence on the relative dimensions between curve chains.Through the analysis of the overlap between the circular rectangular areas,including all the absolute dimensions of the curve chains,overlapping curve chains were merged,and their dimensions were rearranged to avoid the cross interference between them.The method was seamlessly integrated into the drafting module of product design software NX,and it developed an automated dimensioning system.The examples show that the system has excellent interactivity and robustness in the dimensioning of product engineering drawings.The dimension information is complete,accurate and reliable.
文摘Recently, applications of real-time polling service (rtPS) in IEEE 802.16 wireless networks have gained considerable popularity. These applications generate large amounts of real time traffic in the network and thus maintaining the quality of service (QoS) such as packet delay requirement in rtPS dominant networks is critical. Existing dimensioning methodology does not consider QoS parameters of rtPS in network dimensioning. Moreover, exhaustive and time-consuming simulations are required to evaluate the performance and QoS of rtPS. To overcome this problem, we propose an improved radio network dimensioning framework which considers QoS parameters of rtPS in network dimensioning. In this framework, an analytical model is developed to evaluate the capacity and performance of rtPS in IEEE 802.16 wireless networks. The proposed framework provides a fast and accurate means of finding the trade-off between system load and packet delay, thus providing network operators with an analytical tool that jointly considers coverage, capacity and QoS requirements for obtaining the minimum number of sites required. The accuracy of the proposed model is validated through simulations.
文摘In wideband code division multiple access (WCDMA) cellular systems, the coverage radius of a cell depends on its current capacity level. As a result, existing WCDMA radio network dimensioning approaches require that coverage and capacity planning be carried out jointly in an iterative manner in order to obtain the minimum site count needed while fulfilling both coverage and capacity requirements. This requires relatively long computational time, particularly when there are many scenarios or what-if cases to be considered. To overcome this problem, we propose an alternative radio network dimensioning approach where coverage planning and capacity planning can be carried out separately to reduce computational time. Besides, a portion of the values calculated in the initial iteration is preserved in a lookup graph, allowing future what-if analysis to be accomplished rapidly. Simulation results show that, unlike the existing approach, the planning and what-if analysis times of the proposed dimensioning approach are independent of the number of sce-narios considered. Lastly, we present a few case studies and show that the proposed dimensioning method can give the same prediction accuracy as the existing method.
基金financially supported by the National Key R&D Program of China(No.2022YFE0121300)the National Natural Science Foundation of China(No.52374376)the Introduction Plan for High-end Foreign Experts(No.G2023105001L)。
文摘As a mathematical analysis method,fractal analysis can be used to quantitatively describe irregular shapes with self-similar or self-affine properties.Fractal analysis has been used to characterize the shapes of metal materials at various scales and dimensions.Conventional methods make it difficult to quantitatively describe the relationship between the regular characteristics and properties of metal material surfaces and interfaces.However,fractal analysis can be used to quantitatively describe the shape characteristics of metal materials and to establish the quantitative relationships between the shape characteristics and various properties of metal materials.From the perspective of two-dimensional planes and three-dimensional curved surfaces,this paper reviews the current research status of the fractal analysis of metal precipitate interfaces,metal grain boundary interfaces,metal-deposited film surfaces,metal fracture surfaces,metal machined surfaces,and metal wear surfaces.The relationship between the fractal dimensions and properties of metal material surfaces and interfaces is summarized.Starting from three perspectives of fractal analysis,namely,research scope,image acquisition methods,and calculation methods,this paper identifies the direction of research on fractal analysis of metal material surfaces and interfaces that need to be developed.It is believed that revealing the deep influence mechanism between the fractal dimensions and properties of metal material surfaces and interfaces will be the key research direction of the fractal analysis of metal materials in the future.
基金Supported by Projects from Chongqing Municipal Science and Technology Commission(CSTB2022NSCQ-MSX0445)。
文摘For the Sylvester continued fraction expansions of real numbers,FAN et al.(2007)proved that,for almost all real numbers,the nth partial quotient grows exponentially with respect to the product of the first n-1 partial quotients.In this paper,we establish the Hausdorff dimension of the exceptional set where the growth rate is a general function.
文摘In computer-aided structural design, the drawing of shear-walls cannot be easily automated; however, dimensioning of the shear-walls provides a method to automate the drawing. This paper presents a drawing recognition method for automatic dimensioning of shear-walls. The regional relationship method includes a graphic shape template library that can learn new shear-wall shapes. The automatic dimensioning of shear-walls is then realized by matching the templates. The regional relationship method for graph recognition effectively describes the topological relationships for graphs to significantly increase the recognition efficiency.
文摘This paper presents an overview of the functional dimensioning (FD) concept apptied to the construction sector. FD addresses the issue of toterance; construction involves severat trades working together white each trade has its own construction toterances. To investigate this probtem, three case studies are investigated. The first one describes a classic case of a window in a bay and the way constructors sotved the resulting toterance problems. The second case study describes the notion of chain dimension. The fast case study presents the notion of wedge as a sotution to sotve probtems related to toterance gap accumulation. This paper is of interest to the scientific community that is working to industrialize the construction sector and atso to architects (in the design), construction managers (onsfte), and manufacturers (construction trades).
文摘Powered fight in birds is reliant on feathers forming an aerodynamic surface that resists air pressures.Many basic aspects of feather functionality are unknown,which hampers our understanding of wing function in birds.This study measured the dimensions of primary and secondaryfight feathers of 19 species of parrots.The maximum force the feathers could withstand from below was also measured to mimic the pressuresexperienced during a downstroke.The analysis tested whether:(1)feather dimensions differed along the wing and among secondary and primary remiges;(2)the force that feathers could withstand varied among the remiges;and(3)there would be isometric relationships with bodymass for feather characteristics.The results show that body mass signifcantly affected vane width,rachis thickness,maximum force,and ultimate bending moment,but the relationship for feather length only approached signifcance.Many of the proximal secondary feathers showedsignifcantly lower values relative to the frst primary,whereas for distal primaries the values were greater.There were isometric relationships forforce measurements of primary and secondary feathers with body mass,but there was positive allometry for feather lengths and vane widths.The forces feathers can withstand vary along the wing may be a proxy for the aerodynamic properties of the feathers in situ.Broader taxonomicstudies that explore these topics are required for other species representing a range of different orders.A better understanding of the functionality of feathers will improve our understanding of how avian fight works particularly considering the variety in fight style and wing shape in birds.
文摘Low porosity is very significant for cementitious composite materials(CCM)under freeze-thaw conditions.To reduce the porosity of CCM,we used wollastonite mineral fibers as a partial replacement for cement and aggregate.The five combinations,in which 10%,32%,and 48%Wollastonite were added,were made for scanning using both scanning electron microscopy(SEM)and computed tomography scan technology(CT).Then,the 2D SEM pictures and the 3D pore distribution curves are obtained before and after the freezing and thawing processes,where the micro-pores in the CCM materials are shown.The fractal dimension is used to quantify the topography image in two dimensions,as well as the pore distribution in three dimensions.This method allows for the determination of both surface porosity and volume porosity,both of which show an increase in response to an escalation of freeze-thaw cycles.It is also found that the micro-damage in the concrete is of self-similarity,and in the context of the fractal dimension,the pore evolution can be quantitatively characterized across different sizes,ranging from local to global levels,before and after freezing and thawing.
文摘Behavior analysts have long recognized the need to increase at least one behavior when attempting to decrease another and usually focus primarily upon increasing a wide variety of behaviors(White&Haring,1980).But the strengthening of any behavior relative to another is not necessarily simple and records of empirically supported treatment options can be interpreted in an over-simplified manner.The current paper attempts to connect various treatment options across behaviors through a common principle-levels of one behavior will tend to increase and levels of another will tend to decrease when the first behavior is made more efficient than the second.The primary objective of the current paper is to articulate a wide variety of variable dimensions available to behavior analysts,teachers,and other professionals responsible for behavior change.In complex environments,many factors are beyond our control and many treatment options are non-viable.The greater the variety of treatment options available,the“larger the analyst’s toolbox”,the greater the chance that viable treatments will be found and that ineffective strategies can be effectively modified before being set aside.One recurring theme is that various forms of response blocking can and should be minimized and replaced with strategies that make more desirable behavior more efficient than less desirable behavior,leading learners to“choose”more desirable behavior.An additional objective of the paper is to reframe the debate about whether it is appropriate to use extinction or punishment,wherein those strategies are frequently interpreted in absolute terms,in relation to decreasing undesirable behaviors,and inevitably result in negative side effects.A more nuanced discussion about extinction and punishment considers the extent to which parametric applications of either might be appropriate to make a less desirable behavior less efficient than a more desirable behavior and includes the potential impact upon increasing desirable behaviors.
基金supported by the National Natural Science Foundation of China(Grant Nos.52174084 and U23B20146)the Open Fund for State Key Laboratory of Water Resource Protection and Utilization in Coal Mining(Grant No.WPUKFJJ2022-07)。
文摘Safe operation of underground reservoirs in coal mines is crucial for the coordinated exploitation of coal and water resources in western China.Mine water infiltration significantly influences the stability of the coal pillar.Therefore,laboratory tests were systematically carried out on coal from the Daliuta Coal Mine in Northwest China.Samples were taken in the vertical and parallel bedding directions and soaked for 0 d,2 d,4 d,or 16 d.In this study,atomic absorption spectroscopy(AAS),X-ray diffraction(XRD),and scanning electron microscopy(SEM)were used to analyze the variations in the water absorption characteristics and corresponding internal structure of the coal.Uniaxial compression tests and synchronous acoustic emission(AE)monitoring revealed the sample failure process and mechanical properties of the samples.Finally,the time-and frequency-domain characteristics of the AE signal were comprehensively analyzed using fractal dimension,fast Fourier transform,and cluster analysis.The strength and elastic modulus demonstrate significant anisotropy with different bedding planes and reveal the existence of the optimum water content.Specifically,the sample strength increases after 2 d of immersion,with increments of 23.3% and 0.6% for the vertical and parallel bedding samples,and decreases after 16 d of immersion,with decreases of 29% and 45% for the vertical and parallel samples,respectively.Additionally,shear cracks account for over 60% during the damage development of the samples.The proportion of tensile cracks is higher for samples with longer immersion times and parallel bedding planes.This research provides a theoretical basis for stability evaluation and protection of coal pillars in underground reservoirs using the AE technique.
基金financially supported by the National Natural Science Foundation of China(Grant No.51874207)the Natural Science Foundation of Shanxi Province(Grant Nos.202303021211042 and 202303011222006).
文摘This research employs micro-CT scanning technology to analyze the porosity,pore fractal dimension,and spatial variability of sandstone preheated to 600℃ and subsequently cooled in water at varying temperatures(20℃,60℃,100℃).The study investigates the mechanisms by which various factors influence thermal shock damage,focusing on the effects of cooling water temperature and the boiling phase transition.The objective is to develop a method for characterizing thermal shock damage that considers spatial variability.The findings indicate that thermal shock damage is limited to a shallow depth beneath the surface,with increased severity near the surface.The boiling phase transition significantly enhances the convective heat transfer coefficient,resulting in substantially higher thermal shock damage when cooled with 100℃ boiling water compared to 20℃ and 60℃ water.Furthermore,for the entire specimen,heating damage exceeds thermal shock damage,and the influence of thermal shock diminishes as specimen size increases.This study addresses the limitations of traditional methods for assessing thermal shock damage that disregard spatial variability and provides practical guidance for engineering projects to manage thermal shock damage more effectively.
基金The National Key R&D Program,Grant/Award Number:2023YFC2907203National Natural Science Foundation of China,Grant/Award Numbers:52374121,52074121。
文摘The flow characteristics of coalbed methane(CBM)are influenced by the coal rock fracture network,which serves as the primary gas transport channel.This has a significant effect on the permeability performance of coal reservoirs.In any case,the traditional techniques of coal rock fracture observation are unable to precisely define the flow of CBM.In this study,coal samples were subjected to an in situ loading scanning test in order to create a pore network model(PNM)and determine the pore and fracture dynamic evolution law of the samples in the loading path.On this basis,the structural characteristic parameters of the samples were extracted from the PNM and the impact on the permeability performance of CBM was assessed.The findings demonstrate that the coal samples'internal porosity increases by 2.039%under uniaxial loading,the average throat pore radius increases by 205.5 to 36.1μm,and the loading has an impact on the distribution and morphology of the pores in the coal rock.The PNM was loaded into the finite element program COMSOL for seepage modeling,and the M3 stage showed isolated pore connectivity to produce microscopic fissures,which could serve as seepage channels.In order to confirm the viability of the PNM and COMSOL docking technology,the streamline distribution law of pressure and velocity fields during the coal sample loading process was examined.The absolute permeability of the coal samples was also obtained in order for comparison with the measured results.The macroscopic CBM flow mechanism in complex lowpermeability coal rocks can be revealed through three-dimensional reconstruction of the microscopic fracture structure and seepage simulation.This study lays the groundwork for the fine description and evaluation of coal reservoirs as well as the precise prediction of gas production in CBM wells.
基金funded by the National Key Research and Development Program of China(Grant No.2022YFC2903904)National Natural Science Foundation of China(Grant Nos.U1906208 and U21A20106).
文摘Accurately reconstructing rock structures using numerical methods is vital in rock mechanics research community,especially when obtaining rock samples is difficult and expensive.The reconstructed models must reflect the comprehensive characteristics of natural rock,including mineral content and spatial distributions.This study employs the bubbling method to reconstruct granite containing multiple minerals in both two-(2D)and three-dimensions(3D),proposing a general procedure for granite structure reconstruction.The bubbling method utilizes numerous bubbles(hemispheres or spheres)of varying sizes and gradually changing properties,which are randomly overlapped to create a heterogeneous plane(2D)or space(3D).The properties of these overlapped areas are adjusted based on the sum of neighboring bubbles'properties,allowing specific regions with extreme properties to be selected and intercepted to form the desired mineral shapes.The results demonstrate that the reproduced granite samples can accurately exhibit the mineral distributions and sizes of real granite,quantified by fractal dimension(D)and the hourglass parameter(V_(Sum)=V_(Total)).The proposed method is also suitable for reconstructing anisotropic granite models,with anisotropy described by a fitted elliptic curve derived from ratios between directional mineral sizes and cross-sectional dimensions.Based on these findings,a series of numerical granite models with similar structures were reconstructed and tested.Results indicate that different mineral distributions significantly impact the macroscopic mechanical behaviors,but variability in numerical simulation results decreases with increasing specimen size.The compressive and tensile strength values of the reconstructed numerical models show less variation than those of natural granite specimens.This suggests that,beyond mineral distribution,other factors such as internal defects within natural granite contribute to the observed discrepancies.Additionally,the bubbling method shows great potential for modeling porous structures and offers high computational efficiency.
基金Jiangxi Province Intelligent Building Engineering Research Center Open Fund Project,Fractal Theory of Performing Architectural Form Design Research(Project No.:EZ202111440).
文摘Based on the fractal theory,this paper takes the form of performing architecture as the research object,and systematically discusses the application value of fractal dimension in architectural design.By expounding the self-affine,self-similarity,and iterative generation characteristics of fractal geometry,the Box-Counting Dimension method is introduced as a quantitative tool to measure the dimensions of the roof plane,facade,and spatial shape of Wuzhen Grand Theatre and Harbin Grand Theatre.The research shows that the geometric complexity of Wuzhen Grand Theater in the“fifth façade”and multi-faceted façade is significantly higher than that of Harbin Grand Theater,and its morphological design is more inclined to echo the texture of the surrounding water towns.The Harbin Grand Theater realizes the dialogue with the natural environment with simple nonlinear lines.The research proves that fractal dimension can effectively quantify the complexity of architectural form,provide a scientific basis for the form design,environmental integration,and form interpretation of performance architecture,and expand the mathematical analysis dimension of architectural form design.
文摘Cross-cultural interactions between China and the global community have intensified,notably marked by the expanding international reach of Chinese films and television productions.Given the diverse cultural backgrounds of different regions,the task of making adapted TV series resonate with the values of the audiences in the target regions has presented a substantial challenge.As the popular Chinese TV series The Legend of Zhen Huan and its American adaptation Empresses in the Palace garnered acclaim within their respective domestic markets,they exhibited rating disparities in cross-cultural acceptance,which offers a novel perspective for analyzing intercultural communication.Building on this phenomenon,this study employs Hofstede’s Cultural Dimensions Theory and Kluckhohn and Strodtbeck’s Values Orientation Theory to conduct a comparative analysis of the theme songs from the two series.By deconstructing the contextual contents embedded in these musical compositions,the research aims to elucidate the underlying cultural and cognitive differences between Chinese and American audiences,which lead to their distinct acceptances of the series.
文摘AI continues to reshape industries at a rapid pace,which reminds us of the growing importance of standardization.Standards and conformity assessment are essential to addressing the socio-technical dimensions of AI—ensuring its safe,ethical,and inclusive adoption across different sectors.
基金funded by the National Natural Science Foundation of China(41872127)。
文摘The Chang 7 sandstone is characterized by complex micro-pore structures,strong heterogeneity,and differential fluid distribution.These characteristics result in low oil recovery.In this paper,various techniques,including high-pressure mercury intrusion,nuclear magnetic resonance,scanning electron microscope,thin section,and X-ray diffraction,are employed to quantitatively evaluate the occurrence characteristics and influencing factors of movable fluids in Chang 7 sandstone reservoirs from the Heshui Block with different fractal structures.Results show that the dominant sandstone type is feldspar lithic fragment sandstone.Chang 7 reservoir has been divided into three types(typesⅠ,Ⅱ,andⅢ)based on capillary pressure curves and pore structure parameters.These reservoirs are characterized by various fractal structures and different movable fluids distribution.Multiple possible factors affecting the movable fluid distribution are analyzed,including physical properties,pore structure,pore size distribution,mineral content,and heterogeneity.Movable fluid saturation is positively correlated with physical properties,weighted average pore-throat radius,median pore-throat radius,final residual mercury saturation,and maximum mercury withdrawal saturation.In contrast,it is negatively correlated with displacement pressure and has no obvious correlation with the sorting coefficient.Micron-and submicron-scale pores are beneficial to the movable fluid occurrence,while nano-scale pores are vice versa.The influence of mineral content on movable fluid occurrence varies with mineral types.Quartz is conducive to the movable fluid occurrence in submicron-scale pores,while carbonate cementation inhibits the movable fluid occurrence in submicron-scale pores.The inhibition of clay on the movable fluid occurrence is mainly reflected in submicron-and nano-scale pores and varies with clay mineral types.The influence of heterogeneity on the movable fluid occurrence is mainly reflected in submicron-scale pores.The occurrence models of movable fluid vary with reservoir types.
文摘The phenomenon of photothermally induced transparency(PTIT)arises from the nonlinear behavior of an optical cavity,resulting from the heating of mirrors.By introducing a coupling field in the form of a standing wave,PTIT can be transitioned into photothermally induced grating(PTIG).A two-dimensional(2D)diffraction pattern is achieved through the adjustment of key parameters such as coupling strength and effective detuning.Notably,we observe first,second,and third-order intensity distributions,with the ability to transfer probe energy predominantly to the third order by fine-tuning the coupling strength.The intensity distribution is characterized by(±m,±n),where m,n=1,2,3.This proposed 2D grating system offers a novel platform for manipulating PTIG,presenting unique possibilities for enhanced functionality and control.