期刊文献+
共找到3,100篇文章
< 1 2 155 >
每页显示 20 50 100
Dimensionality reduction method based on energy order distribution for multi-nonlinearity-coupled rotor-bearing system
1
作者 Runchao ZHAO Yinghou JIAO +5 位作者 Zhiqian ZHAO Zengtao CHEN Hongwei GUO Zongquan DENG Zhitong LI Rongqiang LIU 《Chinese Journal of Aeronautics》 2025年第11期158-179,共22页
Gas turbine rotors are complex dynamic systems with high-dimensional,discrete,and multi-source nonlinear coupling characteristics.Significant amounts of resources and time are spent during the process of solving dynam... Gas turbine rotors are complex dynamic systems with high-dimensional,discrete,and multi-source nonlinear coupling characteristics.Significant amounts of resources and time are spent during the process of solving dynamic characteristics.Therefore,it is necessary to design a lowdimensional model that can well reflect the dynamic characteristics of high-dimensional system.To build such a low-dimensional model,this study developed a dimensionality reduction method considering global order energy distribution by modifying the proper orthogonal decomposition theory.First,sensitivity analysis of key dimensionality reduction parameters to the energy distribution was conducted.Then a high-dimensional rotor-bearing system considering the nonlinear stiffness and oil film force was reduced,and the accuracy and the reusability of the low-dimensional model under different operating conditions were examined.Finally,the response results of a multi-disk rotor-bearing test bench were reduced using the proposed method,and spectrum results were then compared experimentally.Numerical and experimental results demonstrate that,during the dimensionality reduction process,the solution period of dynamic response results has the most significant influence on the accuracy of energy preservation.The transient signal in the transformation matrix mainly affects the high-order energy distribution of the rotor system.The larger the proportion of steady-state signals is,the closer the energy tends to accumulate towards lower orders.The low-dimensional rotor model accurately reflects the frequency response characteristics of the original high-dimensional system with an accuracy of up to 98%.The proposed dimensionality reduction method exhibits significant application potential in the dynamic analysis of highdimensional systems coupled with strong nonlinearities under variable operating conditions. 展开更多
关键词 dimensionality reduction method Energy distribution High-dimensional rotor system Response prediction Rotor dynamics
原文传递
Dimensionality-Decomposition Based Deep Learning Approach for Non-Equilibrium Electric Double Layer Modeling
2
作者 Weijie Li Yajie Li +1 位作者 Maxim Avdeev Siqi Shi 《Chinese Physics Letters》 2025年第12期381-401,共21页
The electric double layer(EDL),formed by charge adsorption at the electrolyte–electrode interface,constitutes the microenvironment governing electrochemical reactions.However,due to scale mismatch between the EDL thi... The electric double layer(EDL),formed by charge adsorption at the electrolyte–electrode interface,constitutes the microenvironment governing electrochemical reactions.However,due to scale mismatch between the EDL thickness and electrode topography,solving the two-dimensional(2D)nonhomogeneous Poisson–Nernst–Planck(N-PNP)equations remains computationally intractable.This limitation hinders understanding of fundamental phenomena such as curvature-driven instabilities in 2D EDL.Here,we propose a dimensionality-decomposition strategy embedding a fully connected neural network(FCNN)to solve 2D N-PNP equations,in which the FCNN is trained on key electrochemical parameters by reducing the electrostatic boundary into multiple equivalent 1D representations.Through a representative case of LiPF6 reduction on lithium metal half-cell,nucleus size is unexpectedly found to have an important influence on dendrite morphology and tip kinetics.This work paves the way for bridging nanoscale and macroscale simulations with expandability to 2D situations of other 1D EDL models. 展开更多
关键词 non equilibrium dimensionality decomposition Poisson Nernst Planck equations electric double layer edl formed electrolyte electrode interfaceconstitutes charge adsorption electrochemical reactionshoweverdue deep learning
原文传递
Speech emotion recognition via discriminant-cascading dimensionality reduction 被引量:1
3
作者 王如刚 徐新洲 +3 位作者 黄程韦 吴尘 张昕然 赵力 《Journal of Southeast University(English Edition)》 EI CAS 2016年第2期151-157,共7页
In order to accurately identify speech emotion information, the discriminant-cascading effect in dimensionality reduction of speech emotion recognition is investigated. Based on the existing locality preserving projec... In order to accurately identify speech emotion information, the discriminant-cascading effect in dimensionality reduction of speech emotion recognition is investigated. Based on the existing locality preserving projections and graph embedding framework, a novel discriminant-cascading dimensionality reduction method is proposed, which is named discriminant-cascading locality preserving projections (DCLPP). The proposed method specifically utilizes supervised embedding graphs and it keeps the original space for the inner products of samples to maintain enough information for speech emotion recognition. Then, the kernel DCLPP (KDCLPP) is also proposed to extend the mapping form. Validated by the experiments on the corpus of EMO-DB and eNTERFACE'05, the proposed method can clearly outperform the existing common dimensionality reduction methods, such as principal component analysis (PCA), linear discriminant analysis (LDA), locality preserving projections (LPP), local discriminant embedding (LDE), graph-based Fisher analysis (GbFA) and so on, with different categories of classifiers. 展开更多
关键词 speech emotion recognition discriminant-cascading locality preserving projections DISCRIMINANTANALYSIS dimensionality reduction
在线阅读 下载PDF
Incremental dimensionality reduction for efficiently solving Bayesian inverse problems
4
作者 Qing-Qing Li Bo Yu +3 位作者 Jia-Liang Xu Ning Wang Shi-Chao Wang Hui Zhou 《Petroleum Science》 2025年第10期4102-4116,共15页
The inversion of large sparse matrices poses a major challenge in geophysics,particularly in Bayesian seismic inversion,significantly limiting computational efficiency and practical applicability to largescale dataset... The inversion of large sparse matrices poses a major challenge in geophysics,particularly in Bayesian seismic inversion,significantly limiting computational efficiency and practical applicability to largescale datasets.Existing dimensionality reduction methods have achieved partial success in addressing this issue.However,they remain limited in terms of the achievable degree of dimensionality reduction.An incremental deep dimensionality reduction approach is proposed herein to significantly reduce matrix size and is applied to Bayesian linearized inversion(BLI),a stochastic seismic inversion approach that heavily depends on large sparse matrices inversion.The proposed method first employs a linear transformation based on the discrete cosine transform(DCT)to extract the matrix's essential information and eliminate redundant components,forming the foundation of the dimensionality reduction framework.Subsequently,an innovative iterative DCT-based dimensionality reduction process is applied,where the reduction magnitude is carefully calibrated at each iteration to incrementally reduce dimensionality,thereby effectively eliminating matrix redundancy in depth.This process is referred to as the incremental discrete cosine transform(IDCT).Ultimately,a linear IDCT-based reduction operator is constructed and applied to the kernel matrix inversion in BLI,resulting in a more efficient BLI framework.The proposed method was evaluated through synthetic and field data tests and compared with conventional dimensionality reduction methods.The IDCT approach significantly improves the dimensionality reduction efficiency of the core inversion matrix while preserving inversion accuracy,demonstrating prominent advantages in solving Bayesian inverse problems more efficiently. 展开更多
关键词 Dimension reduction Seismic inversion Discrete cosine transform
原文传递
DIMENSIONALITY REDUCTION BASED ON SVM AND LDA,AND ITS APPLICATION TO CLASSIFICATION TECHNIQUE 被引量:1
5
作者 杨波 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期306-312,共7页
Some dimensionality reduction (DR) approaches based on support vector machine (SVM) are proposed. But the acquirement of the projection matrix in these approaches only considers the between-class margin based on S... Some dimensionality reduction (DR) approaches based on support vector machine (SVM) are proposed. But the acquirement of the projection matrix in these approaches only considers the between-class margin based on SVM while ignoring the within-class information in data. This paper presents a new DR approach, call- ed the dimensionality reduction based on SVM and LDA (DRSL). DRSL considers the between-class margins from SVM and LDA, and the within-class compactness from LDA to obtain the projection matrix. As a result, DRSL can realize the combination of the between-class and within-class information and fit the between-class and within-class structures in data. Hence, the obtained projection matrix increases the generalization ability of subsequent classification techniques. Experiments applied to classification techniques show the effectiveness of the proposed method. 展开更多
关键词 classification information pattern recognition dimensionality reduction (DR) support vectormachine (SVM) linear discriminant analysis (LDA)
在线阅读 下载PDF
Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment 被引量:81
6
作者 张振跃 查宏远 《Journal of Shanghai University(English Edition)》 CAS 2004年第4期406-424,共19页
We present a new algorithm for manifold learning and nonlinear dimensionality reduction. Based on a set of unorganized data points sampled with noise from a parameterized manifold, the local geometry of the manifold i... We present a new algorithm for manifold learning and nonlinear dimensionality reduction. Based on a set of unorganized data points sampled with noise from a parameterized manifold, the local geometry of the manifold is learned by constructing an approximation for the tangent space at each point, and those tangent spaces are then aligned to give the global coordinates of the data points with respect to the underlying manifold. We also present an error analysis of our algorithm showing that reconstruction errors can be quite small in some cases. We illustrate our algorithm using curves and surfaces both in 2D/3D Euclidean spaces and higher dimensional Euclidean spaces. We also address several theoretical and algorithmic issues for further research and improvements. 展开更多
关键词 nonlinear dimensionality reduction principal manifold tangent space subspace alignment singular value decomposition.
在线阅读 下载PDF
Global aerodynamic design optimization based on data dimensionality reduction 被引量:14
7
作者 Yasong QIU Junqiang BAI +1 位作者 Nan LIU Chen WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第4期643-659,共17页
In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number... In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number of design variables are needed, the computational cost becomes prohibitive, and thus original global optimization strategies are required. To address this need, data dimensionality reduction method is combined with global optimization methods, thus forming a new global optimization system, aiming to improve the efficiency of conventional global optimization. The new optimization system involves applying Proper Orthogonal Decomposition(POD) in dimensionality reduction of design space while maintaining the generality of original design space. Besides, an acceleration approach for samples calculation in surrogate modeling is applied to reduce the computational time while providing sufficient accuracy. The optimizations of a transonic airfoil RAE2822 and the transonic wing ONERA M6 are performed to demonstrate the effectiveness of the proposed new optimization system. In both cases, we manage to reduce the number of design variables from 20 to 10 and from 42 to 20 respectively. The new design optimization system converges faster and it takes 1/3 of the total time of traditional optimization to converge to a better design, thus significantly reducing the overall optimization time and improving the efficiency of conventional global design optimization method. 展开更多
关键词 Aerodynamic shape design optimization Data dimensionality reduction Genetic algorithm Kriging surrogate model Proper orthogonal decomposition
原文传递
Multi-label dimensionality reduction and classification with extreme learning machines 被引量:9
8
作者 Lin Feng Jing Wang +1 位作者 Shenglan Liu Yao Xiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第3期502-513,共12页
In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the researc... In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification. 展开更多
关键词 MULTI-LABEL dimensionality reduction kernel trick classification.
在线阅读 下载PDF
Review on graph learning for dimensionality reduction of hyperspectral image 被引量:7
9
作者 Liangpei Zhang Fulin Luo 《Geo-Spatial Information Science》 SCIE CSCD 2020年第1期98-106,共9页
Graph learning is an effective manner to analyze the intrinsic properties of data.It has been widely used in the fields of dimensionality reduction and classification for data.In this paper,we focus on the graph learn... Graph learning is an effective manner to analyze the intrinsic properties of data.It has been widely used in the fields of dimensionality reduction and classification for data.In this paper,we focus on the graph learning-based dimensionality reduction for a hyperspectral image.Firstly,we review the development of graph learning and its application in a hyperspectral image.Then,we mainly discuss several representative graph methods including two manifold learning methods,two sparse graph learning methods,and two hypergraph learning methods.For manifold learning,we analyze neighborhood preserving embedding and locality preserving projections which are two classic manifold learning methods and can be transformed into the form of a graph.For sparse graph,we introduce sparsity preserving graph embedding and sparse graph-based discriminant analysis which can adaptively reveal data structure to construct a graph.For hypergraph learning,we review binary hypergraph and discriminant hyper-Laplacian projection which can represent the high-order relationship of data. 展开更多
关键词 Hyperspectral image dimensionality reduction CLASSIFICATION graph learning
原文传递
Nonlinear Dimensionality Reduction and Data Visualization:A Review 被引量:4
10
作者 Hujun Yin 《International Journal of Automation and computing》 EI 2007年第3期294-303,共10页
Dimensionality reduction and data visualization are useful and important processes in pattern recognition. Many techniques have been developed in the recent years. The self-organizing map (SOM) can be an efficient m... Dimensionality reduction and data visualization are useful and important processes in pattern recognition. Many techniques have been developed in the recent years. The self-organizing map (SOM) can be an efficient method for this purpose. This paper reviews recent advances in this area and related approaches such as multidimensional scaling (MDS), nonlinear PC A, principal manifolds, as well as the connections of the SOM and its recent variant, the visualization induced SOM (ViSOM), with these approaches. The SOM is shown to produce a quantized, qualitative scaling and while the ViSOM a quantitative or metric scaling and approximates principal curve/surface. The SOM can also be regarded as a generalized MDS to relate two metric spaces by forming a topological mapping between them. The relationships among various recently proposed techniques such as ViSOM, Isomap, LLE, and eigenmap are discussed and compared. 展开更多
关键词 dimensionality reduction nonlinear data projection multidimensional scaling self-organizing maps nonlinear PCA principal manifold
在线阅读 下载PDF
Image feature optimization based on nonlinear dimensionality reduction 被引量:3
11
作者 Rong ZHU Min YAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第12期1720-1737,共18页
Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping... Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping between highand low-dimensional space via a five-tuple model. Nonlinear dimensionality reduction based on manifold learning provides a feasible way for solving such a problem. We propose a novel globular neighborhood based locally linear embedding (GNLLE) algorithm using neighborhood update and an incremental neighbor search scheme, which not only can handle sparse datasets but also has strong anti-noise capability and good topological stability. Given that the distance measure adopted in nonlinear dimensionality reduction is usually based on pairwise similarity calculation, we also present a globular neighborhood and path clustering based locally linear embedding (GNPCLLE) algorithm based on path-based clustering. Due to its full consideration of correlations between image data, GNPCLLE can eliminate the distortion of the overall topological structure within the dataset on the manifold. Experimental results on two image sets show the effectiveness and efficiency of the proposed algorithms. 展开更多
关键词 Image feature optimization Nonlinear dimensionality reduction Manifold learning Locally linear embedding (LLE)
原文传递
Feature Extraction and Dimensionality Reduction of Arc Sound under Typical Penetration Status in Metal Inert Gas Welding 被引量:2
12
作者 LIU Lijun LAN Hu +1 位作者 ZHENG Hongyan JIAN Xiaoxia 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第2期293-298,共6页
Arc sound is well known as the potential and available resource for monitoring and controlling of the weld penetration status,which is very important to the welding process quality control,so any attentions have been ... Arc sound is well known as the potential and available resource for monitoring and controlling of the weld penetration status,which is very important to the welding process quality control,so any attentions have been paid to the relationships between the arc sound and welding parameters.Some non-linear mapping models correlating the arc sound to welding parameters have been established with the help of neural networks.However,the research of utilizing arc sound to monitor and diagnose welding process is still in its infancy.A self-made real-time sensing system is applied to make a study of arc sound under typical penetration status,including partial penetration,unstable penetration,full penetration and excessive penetration,in metal inert-gas(MIG) flat tailored welding with spray transfer.Arc sound is pretreated by using wavelet de-noising and short-time windowing technologies,and its characteristics,characterizing weld penetration status,of time-domain,frequency-domain,cepstrum-domain and geometric-domain are extracted.Subsequently,high-dimensional eigenvector is constructed and feature-level parameters are successfully fused utilizing the concept of primary principal component analysis(PCA).Ultimately,60-demensional eigenvector is replaced by the synthesis of 8-demensional vector,which achieves compression for feature space and provides technical supports for pattern classification of typical penetration status with the help of arc sound in MIG welding in the future. 展开更多
关键词 metal inert gas welding PENETRATION arc sound feature extraction dimensionality reduction
在线阅读 下载PDF
DIMENSIONALITY REDUCTION FOR HYPERSPECTRAL IMAGERY BASED ON FASTICA 被引量:4
13
作者 Xin Qin Nian Yongjian +2 位作者 Li Xiu Wan Jianwei Su Linghua 《Journal of Electronics(China)》 2009年第6期831-835,共5页
The high dimensions of hyperspectral imagery have caused burden for further processing. A new Fast Independent Component Analysis (FastICA) approach to dimensionality reduction for hyperspectral imagery is presented. ... The high dimensions of hyperspectral imagery have caused burden for further processing. A new Fast Independent Component Analysis (FastICA) approach to dimensionality reduction for hyperspectral imagery is presented. The virtual dimensionality is introduced to determine the number of dimensions needed to be preserved. Since there is no prioritization among independent components generated by the FastICA,the mixing matrix of FastICA is initialized by endmembers,which were extracted by using unsupervised maximum distance method. Minimum Noise Fraction (MNF) is used for preprocessing of original data,which can reduce the computational complexity of FastICA significantly. Finally,FastICA is performed on the selected principal components acquired by MNF to generate the expected independent components in accordance with the order of endmembers. Experimental results demonstrate that the proposed method outperforms second-order statistics-based transforms such as principle components analysis. 展开更多
关键词 Hyperspectral imagery dimensionality reduction Independent Component Analysis(ICA)
在线阅读 下载PDF
Augmented Industrial Data-Driven Modeling Under the Curse of Dimensionality 被引量:2
14
作者 Xiaoyu Jiang Xiangyin Kong Zhiqiang Ge 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第6期1445-1461,共17页
The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased si... The curse of dimensionality refers to the problem o increased sparsity and computational complexity when dealing with high-dimensional data.In recent years,the types and vari ables of industrial data have increased significantly,making data driven models more challenging to develop.To address this prob lem,data augmentation technology has been introduced as an effective tool to solve the sparsity problem of high-dimensiona industrial data.This paper systematically explores and discusses the necessity,feasibility,and effectiveness of augmented indus trial data-driven modeling in the context of the curse of dimen sionality and virtual big data.Then,the process of data augmen tation modeling is analyzed,and the concept of data boosting augmentation is proposed.The data boosting augmentation involves designing the reliability weight and actual-virtual weigh functions,and developing a double weighted partial least squares model to optimize the three stages of data generation,data fusion and modeling.This approach significantly improves the inter pretability,effectiveness,and practicality of data augmentation in the industrial modeling.Finally,the proposed method is verified using practical examples of fault diagnosis systems and virtua measurement systems in the industry.The results demonstrate the effectiveness of the proposed approach in improving the accu racy and robustness of data-driven models,making them more suitable for real-world industrial applications. 展开更多
关键词 Index Terms—Curse of dimensionality data augmentation data-driven modeling industrial processes machine learning
在线阅读 下载PDF
Dimensionality Reduction by Mutual Information for Text Classification 被引量:2
15
作者 刘丽珍 宋瀚涛 陆玉昌 《Journal of Beijing Institute of Technology》 EI CAS 2005年第1期32-36,共5页
The frame of text classification system was presented. The high dimensionality in feature space for text classification was studied. The mutual information is a widely used information theoretic measure, in a descript... The frame of text classification system was presented. The high dimensionality in feature space for text classification was studied. The mutual information is a widely used information theoretic measure, in a descriptive way, to measure the stochastic dependency of discrete random variables. The measure method was used as a criterion to reduce high dimensionality of feature vectors in text classification on Web. Feature selections or conversions were performed by using maximum mutual information including linear and non-linear feature conversions. Entropy was used and extended to find right features commendably in pattern recognition systems. Favorable foundation would be established for text classification mining. 展开更多
关键词 text classification mutual information dimensionality reduction
在线阅读 下载PDF
Two linear subpattern dimensionality reduction algorithms 被引量:1
16
作者 贲晛烨 孟维晓 +1 位作者 王泽 王科俊 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2012年第5期47-53,共7页
This paper presents two novel algorithms for feature extraction-Subpattern Complete Two Dimensional Linear Discriminant Principal Component Analysis (SpC2DLDPCA) and Subpattern Complete Two Dimensional Locality Preser... This paper presents two novel algorithms for feature extraction-Subpattern Complete Two Dimensional Linear Discriminant Principal Component Analysis (SpC2DLDPCA) and Subpattern Complete Two Dimensional Locality Preserving Principal Component Analysis (SpC2DLPPCA). The modified SpC2DLDPCA and SpC2DLPPCA algorithm over their non-subpattern version and Subpattern Complete Two Dimensional Principal Component Analysis (SpC2DPCA) methods benefit greatly in the following four points: (1) SpC2DLDPCA and SpC2DLPPCA can avoid the failure that the larger dimension matrix may bring about more consuming time on computing their eigenvalues and eigenvectors. (2) SpC2DLDPCA and SpC2DLPPCA can extract local information to implement recognition. (3)The idea of subblock is introduced into Two Dimensional Principal Component Analysis (2DPCA) and Two Dimensional Linear Discriminant Analysis (2DLDA). SpC2DLDPCA combines a discriminant analysis and a compression technique with low energy loss. (4) The idea is also introduced into 2DPCA and Two Dimensional Locality Preserving projections (2DLPP), so SpC2DLPPCA can preserve local neighbor graph structure and compact feature expressions. Finally, the experiments on the CASIA(B) gait database show that SpC2DLDPCA and SpC2DLPPCA have higher recognition accuracies than their non-subpattern versions and SpC2DPCA. 展开更多
关键词 subpattern dimensionality reduction Subpattern COMPLETE TWO DIMENSIONAL LINEAR Discriminant Principal COMPONENT ANALYSIS (SpC2DLDPCA) Subpattern COMPLETE TWO DIMENSIONAL Locality Preserving Principal COMPONENT ANALYSIS (SpC2DLPPCA) gait recognition
在线阅读 下载PDF
Graph-Based Dimensionality Reduction for Hyperspectral Imagery: A Review 被引量:1
17
作者 Zhen Ye Shihao Shi +4 位作者 Zhan Cao Lin Bai Cuiling Li Tao Sun Yongqiang Xi 《Journal of Beijing Institute of Technology》 EI CAS 2021年第2期91-112,共22页
Hyperspectral image(HSI)contains a wealth of spectral information,which makes fine classification of ground objects possible.In the meanwhile,overly redundant information in HSI brings many challenges.Specifically,the... Hyperspectral image(HSI)contains a wealth of spectral information,which makes fine classification of ground objects possible.In the meanwhile,overly redundant information in HSI brings many challenges.Specifically,the lack of training samples and the high computational cost are the inevitable obstacles in the design of classifier.In order to solve these problems,dimensionality reduction is usually adopted.Recently,graph-based dimensionality reduction has become a hot topic.In this paper,the graph-based methods for HSI dimensionality reduction are summarized from the following aspects.1)The traditional graph-based methods employ Euclidean distance to explore the local information of samples in spectral feature space.2)The dimensionality-reduction methods based on sparse or collaborative representation regard the sparse or collaborative coefficients as graph weights to effectively reduce reconstruction errors and represent most important information of HSI in the dictionary.3)Improved methods based on sparse or collaborative graph have made great progress by considering global low-rank information,local intra-class information and spatial information.In order to compare typical techniques,three real HSI datasets were used to carry out relevant experiments,and then the experimental results were analysed and discussed.Finally,the future development of this research field is prospected. 展开更多
关键词 hyperspectral image dimensionality reduction graph embedding sparse representation collaborative representation
在线阅读 下载PDF
Spatial weight matrix in dimensionality reduction reconstruction for microelectromechanical system-based photoacoustic microscopy 被引量:1
18
作者 Yuanzheng Ma Chang Lu +2 位作者 Kedi Xiong Wuyu Zhang Sihua Yang 《Visual Computing for Industry,Biomedicine,and Art》 2020年第1期247-256,共10页
A micro-electromechanical system(MEMS)scanning mirror accelerates the raster scanning of optical-resolution photoacoustic microscopy(OR-PAM).However,the nonlinear tilt angular-voltage characteristic of a MEMS mirror i... A micro-electromechanical system(MEMS)scanning mirror accelerates the raster scanning of optical-resolution photoacoustic microscopy(OR-PAM).However,the nonlinear tilt angular-voltage characteristic of a MEMS mirror introduces distortion into the maximum back-projection image.Moreover,the size of the airy disk,ultrasonic sensor properties,and thermal effects decrease the resolution.Thus,in this study,we proposed a spatial weight matrix(SWM)with a dimensionality reduction for image reconstruction.The three-layer SWM contains the invariable information of the system,which includes a spatial dependent distortion correction and 3D deconvolution.We employed an ordinal-valued Markov random field and the Harris Stephen algorithm,as well as a modified delay-and-sum method during a time reversal.The results from the experiments and a quantitative analysis demonstrate that images can be effectively reconstructed using an SWM;this is also true for severely distorted images.The index of the mutual information between the reference images and registered images was 70.33 times higher than the initial index,on average.Moreover,the peak signal-to-noise ratio was increased by 17.08%after 3D deconvolution.This accomplishment offers a practical approach to image reconstruction and a promising method to achieve a real-time distortion correction for MEMS-based OR-PAM. 展开更多
关键词 Photoacoustic microscopy Spatial weight matrix dimensionality reduction Distortion correction Mutual information
在线阅读 下载PDF
An Actual Survey of Dimensionality Reduction 被引量:4
19
作者 Alireza Sarveniazi 《American Journal of Computational Mathematics》 2014年第2期55-72,共18页
Dimension reduction is defined as the processes of projecting high-dimensional data to a much lower-dimensional space. Dimension reduction methods variously applied in regression, classification, feature analysis and ... Dimension reduction is defined as the processes of projecting high-dimensional data to a much lower-dimensional space. Dimension reduction methods variously applied in regression, classification, feature analysis and visualization. In this paper, we review in details the last and most new version of methods that extensively developed in the past decade. 展开更多
关键词 dimensionality REDUCTION METHODS
在线阅读 下载PDF
Testing Rating Scale Unidimensionality Using the Principal Component Analysis (PCA)/<i>t</i>-Test Protocol with the Rasch Model: The Primacy of Theory over Statistics 被引量:1
20
作者 Peter Hagell 《Open Journal of Statistics》 2014年第6期456-465,共10页
Psychometric theory requires unidimensionality (i.e., scale items should represent a common latent variable). One advocated approach to test unidimensionality within the Rasch model is to identify two item sets from a... Psychometric theory requires unidimensionality (i.e., scale items should represent a common latent variable). One advocated approach to test unidimensionality within the Rasch model is to identify two item sets from a Principal Component Analysis (PCA) of residuals, estimate separate person measures based on the two item sets, compare the two estimates on a person-by-person basis using t-tests and determine the number of cases that differ significantly at the 0.05-level;if ≤5% of tests are significant, or the lower bound of a binomial 95% confidence interval (CI) of the observed proportion overlaps 5%, then it is suggested that strict unidimensionality can be inferred;otherwise the scale is multidimensional. Given its proposed significance and potential implications, this procedure needs detailed scrutiny. This paper explores the impact of sample size and method of estimating the 95% binomial CI upon conclusions according to recommended conventions. Normal approximation, “exact”, Wilson, Agresti-Coull, and Jeffreys binomial CIs were calculated for observed proportions of 0.06, 0.08 and 0.10 and sample sizes from n= 100 to n= 2500. Lower 95%CI boundaries were inspected regarding coverage of the 5% threshold. Results showed that all binomial 95% CIs included as well as excluded 5% as an effect of sample size for all three investigated proportions, except for the Wilson, Agresti-Coull, and JeffreysCIs, which did not include 5% for any sample size with a 10% observed proportion. The normal approximation CI was most sensitive to sample size. These data illustrate that the PCA/t-test protocol should be used and interpreted as any hypothesis testing procedure and is dependent on sample size as well as binomial CI estimation procedure. The PCA/t-test protocol should not be viewed as a “definite” test of unidimensionality and does not replace an integrated quantitative/qualitative interpretation based on an explicit variable definition in view of the perspective, context and purpose of measurement. 展开更多
关键词 CONFIDENCE INTERVALS dimensionality PSYCHOMETRICS RASCH Model Validity
暂未订购
上一页 1 2 155 下一页 到第
使用帮助 返回顶部