Background The patient-reported Dimensional Anhedonia Rating Scale(DARS)has been adapted into Chinese,so there is a need to evaluate its measurement properties in a Chinese population.Aims To evaluate the reliability ...Background The patient-reported Dimensional Anhedonia Rating Scale(DARS)has been adapted into Chinese,so there is a need to evaluate its measurement properties in a Chinese population.Aims To evaluate the reliability and validity of the DARS among Chinese individuals with major depressive disorder(MDD)and its treatment sensitivity in a prospective clinical study.Methods Data were from a multicentre,prospective clinical study(NCT03294525),which recruited both patients with MDD,who were followed for 8 weeks,and healthy controls(HCs),assessed at baseline only.The analysis included confirmatory factor analysis,validity and sensitivity to change.Results Patients’mean(standard deviation(SD))age was 34.8(11.0)years,with 68.7%being female.75.2%of patients with MDD had melancholic features,followed by 63.8%with anxious distress.Patients had experienced MDD for a mean(SD)of 9.2(18)months.DARS scores covered the full range of severity with no major floor or ceiling effects.Confirmatory factor analysis showed adequate fit statistics(comparative fit index 0.976,goodness-of-fit index 0.935 and root mean square error of approximation 0.055).Convergent validity with anhedonia-related measures was confirmed.While the correlation between the DARS and the Hamilton Depression Rating Scale was not strong(r=0.31,baseline),the DARS was found to differentiate between levels of depression.Greater improvements in DARS scores were seen with the Hamilton Rating Scale for Depression responder group(effect size 1.16)compared with the non-responder group(effect size 0.46).Conclusions This study comprehensively evaluated the measurement properties of the DARS using a Chinese population with MDD.Overall,the Chinese version of DARS demonstrates good psychometric properties and has been found to be responsive to change during antidepressant treatment.The DARS is a suitable scale for assessing patient-reported anhedonia in future clinical trials.展开更多
On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on ...On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.The forum was organised by the China Writers Association and co-organised by China National Publications Import&Export(Group)Corporation.展开更多
The growth of single-crystalα-Al_(2)O_(3) is crucial for a variety of applications in electronics and other fields,while the synthesis of its two-dimensional(2D)form is not easy due to the high activation energy.Here...The growth of single-crystalα-Al_(2)O_(3) is crucial for a variety of applications in electronics and other fields,while the synthesis of its two-dimensional(2D)form is not easy due to the high activation energy.Here,we demonstrate the growth of single-crystal 2Dα-Al_(2)O_(3) by high temperature(high-T)annealing of Ni foils.Tens of micrometers of 2Dα-Al_(2)O_(3) flakes grow on the surface of Ni foils,which is attributed to the precipitation of Al atoms from the Ni foil bulk to its surface,followed by the oxidation of Al atoms on the surface.In principle,the Ni foil acts as a solvent,where diluted metal atoms precipitate onto the surface and react with oxygen from the atmosphere to grow single-crystal 2D metal oxides.Our findings may also provide a promising method for synthesizing other single-crystal 2D metal oxides.展开更多
With the rapid development of information technology,the demand for high-performance and low-power microprocessors continues to grow.Traditional silicon-based semiconductor technologies have encountered numerous bottl...With the rapid development of information technology,the demand for high-performance and low-power microprocessors continues to grow.Traditional silicon-based semiconductor technologies have encountered numerous bottlenecks in performance enhancement,such as drain-induced barrier lowering,reduced mobility caused by interface scattering,and limited current on/off ratios.展开更多
1 Introduction In highway construction,flled embankments are trapezoidal,and the ground is always improved by sand wells or columns.During embankment construction,because the width and height of the embankment are cha...1 Introduction In highway construction,flled embankments are trapezoidal,and the ground is always improved by sand wells or columns.During embankment construction,because the width and height of the embankment are changing,a non-uniform load that varies with time and lateral location is applied to the underlying ground.The consolidation phenomenon under two-dimensional(2D)conditions will keep pace with the construction of the embankment.In addition,because of evaporation and rainfall,the soils are mostly unsaturated.Therefore,it is meaningful to research the consolidation properties of unsaturated ground under non-uniform loading.展开更多
Two-dimensional(2D)fully compensated collinear magnetic materials ofer signifcant advantages for spintronic applications,including robustness against magnetic feld perturbations,no stray felds,and ultrafast dynamics.A...Two-dimensional(2D)fully compensated collinear magnetic materials ofer signifcant advantages for spintronic applications,including robustness against magnetic feld perturbations,no stray felds,and ultrafast dynamics.Among these materials,fully compensated ferrimagnets are particularly promising due to their unique characteristics such as the magneto-optical efect,completely spin-polarized currents,and the anomalous Hall efect.We performed a structural search on 2D unconventional stoichiometric Cr-I crystals using a global optimization algorithm.The most stable CrI-P21/m monolayer is a fully compensated ferrimagnetic semiconductor with a band gap of 1.57 eV and a high magnetic transition temperature of 592 K.The spontaneous spin splitting in CrI-P21/m originates from the inequivalent local coordination environments of Cr^(1)and Cr^(2)ions,yielding a mismatch in their 3d orbitals splitting.Notably,carrier doping at a concentration of 0.01 electrons or holes per atom enables reversible spin polarization,generating a fully spin-polarized current in CrI-P21/m.This performance makes it a highly promising candidate for spintronic devices.Our fndings not only provide a structural paradigm for discovering fully compensated ferrimagnets but also open a new avenue for designing zero-moment magnetic materials with intrinsic spin splitting.展开更多
The two-dimensional kagome lattice serves as a prototypical platform for exploring quantum spin liquids owing to its pronounced geometric frustration.Substantial advancements have been achieved in herbertsmithite and ...The two-dimensional kagome lattice serves as a prototypical platform for exploring quantum spin liquids owing to its pronounced geometric frustration.Substantial advancements have been achieved in herbertsmithite and its structural analogs.These quantum spin liquid candidates exhibit large superexchange interactions yet resist magnetic ordering down to the lowest measurable temperatures,which are typically three or four orders of magnitude below the energy scale of the primary exchange energies.Nevertheless,the existence of unavoidable intrinsic interlayer magnetic impurities leads to persistent debates on their ground states.A breakthrough emerged with the discovery of YCu_(3)(OH)_(6+x)X_(3-x)(X=Cl,Br),a novel material family rigorously verifed to eliminate magnetic impurity interference.This short review highlights critical advances in these materials,emphasizing experimental signatures consistent with a Dirac quantum spin liquid and the observation of a oneninth magnetization plateau and possible quantum oscillations.Local structural characteristics play a crucial role in clarifying the complex emergent quantum phenomena of these materials.Collectively,these fndings establish this material class as a promising platform for investigating quantum spin liquid behavior in two-dimensional kagome lattices.展开更多
The crossover between short-range and long-range(LR)universal behaviors remains a central theme in the physics of LR interacting systems.The competition between LR coupling and the Berezinskii-Kosterlitz-Thouless mech...The crossover between short-range and long-range(LR)universal behaviors remains a central theme in the physics of LR interacting systems.The competition between LR coupling and the Berezinskii-Kosterlitz-Thouless mechanism makes the problem more subtle and less understood in the two-dimensional(2D)XY model,a cornerstone for investigating low-dimensional phenomena and their implications in quantum computation.We study the 2D XY model with algebraically decaying interaction~1/r^(2+σ).Utilizing an advanced update strategy,we conduct LR Monte Carlo simulations of the model up to a linear size of L=8192.Our results demonstrate continuous phase transitions into a ferromagnetic phase forσ<2,which exhibit the simultaneous emergence of a long-ranged order and a power-law decaying correlation function due to the Goldstone mode.Furthermore,we fnd logarithmic scaling behaviors in the low-temperature phase atσ=2.The observed scaling behaviors in the low-temperature phase forσ≤2 agree with our theoretical analysis.Our fndings request further theoretical understanding and can be of practical application in cutting-edge experiments like Rydberg atom arrays.展开更多
We presents a generalized(2+1)-dimensional Sharma-Tasso-Olver-Burgers(STOB)equation,unifying dissipative and dispersive wave dynamics.By introducing an auxiliary potential𝑦as a new space variable and employing...We presents a generalized(2+1)-dimensional Sharma-Tasso-Olver-Burgers(STOB)equation,unifying dissipative and dispersive wave dynamics.By introducing an auxiliary potential𝑦as a new space variable and employing a simpler deformation algorithm,we deform the(1+1)-dimensional STOB model to higher dimensions.The resulting equation is proven Lax-integrable via introducing strong and weak Lax pairs.Traveling wave solutions of the(2+1)-dimensional STOB equation are derived through an ordinary differential equation reduction,with implicit solutions obtained for a special case.Crucially,we demonstrate that the system admits dispersionless decompositions into two types:Case 1 yields non-traveling twisted kink and bell solitons,while Case 2 involves complex implicit functions governed by cubic-algebraic constraints.Numerical visualizations reveal novel anisotropic soliton structures,and the decomposition methodology is shown to generalize broadly to other higher dimensional dispersionless decomposition solvable integrable systems.展开更多
Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to huma...Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to human papilloma virus(HPV)infection,early detection relies on HPV screening;however,late-stage prognosis remains poor,underscoring the need for novel diagnostic and therapeutic targets^([2]).展开更多
The precise control of wrinkles and strain gradients in nanofilm is of significant interest due to their profound influence on electronic band structures and spin states.Here,we employ ultrafast electron diffraction(U...The precise control of wrinkles and strain gradients in nanofilm is of significant interest due to their profound influence on electronic band structures and spin states.Here,we employ ultrafast electron diffraction(UED)to study the picosecond-scale dynamics of laser-induced bending in 2H-MoTe2 thin films.展开更多
Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scali...Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scaling and universality,the former has recently also been demonstrated to exhibit scaling and universal behavior within a mesoscopic,coarse-grained Landau-Ginzburg theory.Here we apply this theory to a microscopic model-the paradigmatic Ising model,which undergoes FOPTs between two ordered phases below its critical temperature-and unambiguously demonstrate universal scaling behavior in such FOPTs.These results open the door for extending the theory to other microscopic FOPT systems and experimentally testing them to systematically uncover their scaling and universal behavior.展开更多
The presence of a van Hove singularity(vHS)at the Fermi level can trigger magnetic instability by mediating a spontaneous transition from paramagnetic to magnetically ordered states.While electrostatic doping(typicall...The presence of a van Hove singularity(vHS)at the Fermi level can trigger magnetic instability by mediating a spontaneous transition from paramagnetic to magnetically ordered states.While electrostatic doping(typically achieved via ionic gating)to shift the vHS to the Fermi level provides a general mechanism for engineering such magnetism,its volatile nature often leads to the collapse of induced states upon gate field removal.Here,a novel scheme is presented for non-volatile magnetic control by utilizing ferroelectric heterostructures to achieve reversible magnetism switching.Using two-dimensional VSiN_(3),a nonmagnetic material with Mexican-hat electronic band dispersions hosting vHSs,as a prototype,it is preliminarily demonstrated that both electron and hole doping can robustly induce magnetism.Further,by interfacing VSiN_(3)with ferroelectric Sc_(2)CO_(2),reversible switching of its magnetic state via polarization-driven heterointerfacial charge transfer is achieved.This mechanism enables a dynamic transition between insulating and half-metallic phases in VSiN_(3),establishing a pathway to design multiferroic tunnel junctions with giant tunneling electroresistance or magnetoresistance.This work bridges non-volatile ferroelectric control with vHS-enhanced magnetism,opening opportunities for energy-efficient and high-performance spintronic devices and non-volatile memory devices.展开更多
This paper presents two novel algorithms for feature extraction-Subpattern Complete Two Dimensional Linear Discriminant Principal Component Analysis (SpC2DLDPCA) and Subpattern Complete Two Dimensional Locality Preser...This paper presents two novel algorithms for feature extraction-Subpattern Complete Two Dimensional Linear Discriminant Principal Component Analysis (SpC2DLDPCA) and Subpattern Complete Two Dimensional Locality Preserving Principal Component Analysis (SpC2DLPPCA). The modified SpC2DLDPCA and SpC2DLPPCA algorithm over their non-subpattern version and Subpattern Complete Two Dimensional Principal Component Analysis (SpC2DPCA) methods benefit greatly in the following four points: (1) SpC2DLDPCA and SpC2DLPPCA can avoid the failure that the larger dimension matrix may bring about more consuming time on computing their eigenvalues and eigenvectors. (2) SpC2DLDPCA and SpC2DLPPCA can extract local information to implement recognition. (3)The idea of subblock is introduced into Two Dimensional Principal Component Analysis (2DPCA) and Two Dimensional Linear Discriminant Analysis (2DLDA). SpC2DLDPCA combines a discriminant analysis and a compression technique with low energy loss. (4) The idea is also introduced into 2DPCA and Two Dimensional Locality Preserving projections (2DLPP), so SpC2DLPPCA can preserve local neighbor graph structure and compact feature expressions. Finally, the experiments on the CASIA(B) gait database show that SpC2DLDPCA and SpC2DLPPCA have higher recognition accuracies than their non-subpattern versions and SpC2DPCA.展开更多
Anion exchange membrane fuel cells(AEMFCs),regarded as a promising alternative to proton exchange membrane fuel cells(PEMFCs),have garnered increasing attention because of their cost-effectiveness by using the non-nob...Anion exchange membrane fuel cells(AEMFCs),regarded as a promising alternative to proton exchange membrane fuel cells(PEMFCs),have garnered increasing attention because of their cost-effectiveness by using the non-noble metal catalysts and hydrocarbon-based ionomers as membrane[1].However,despite of extensive researches on non-noble metal catalysts such as Co[2].展开更多
We utilize two different theories to prove that cosmic dark energy density is the complimentary Legendre transformation of ordinary energy and vice versa as given by E(dark) = mc2 (21/22) and E(ordinary) = mc2/22. The...We utilize two different theories to prove that cosmic dark energy density is the complimentary Legendre transformation of ordinary energy and vice versa as given by E(dark) = mc2 (21/22) and E(ordinary) = mc2/22. The first theory used is based on G ‘t Hooft’s remarkably simple renormalization procedure in which a neat mathematical maneuver is introduced via the dimensionality of our four dimensional spacetime. Thus, ‘t Hooft used instead of D = 4 and then took at the end of an intricate and subtle computation the limit to obtain the result while avoiding various problems including the pole singularity at D = 4. Here and in contradistinction to the classical form of dimensional and renormalization we set and do not take the limit where and is the theoretically and experimentally well established Hardy’s generic quantum entanglement. At the end we see that the dark energy density is simply the ratio of and the smooth disentangled D = 4, i.e. (dark) = (4 -k)/4 = 3.8196011/4 = 0.9549150275. Consequently where we have ignored the fine structure details by rounding 21 + k to 21 and 22 + k to 22 in a manner not that much different from of the original form of dimensional regularization theory. The result is subsequently validated by another equally ingenious approach due mainly to E. Witten and his school of topological quantum field theory. We notice that in that theory the local degrees of freedom are zero. Therefore, we are dealing essentially with pure gravity where are the degrees of freedom and is the corresponding dimension. The results and the conclusion of the paper are summarized in Figure 1-3, Table 1 and Flow Chart 1.展开更多
In order to get the exact traveling wave solutions to nonlinear partial differential equation, the complete discrimination system for polynomial and direct integral method are applied to the considered equation. All s...In order to get the exact traveling wave solutions to nonlinear partial differential equation, the complete discrimination system for polynomial and direct integral method are applied to the considered equation. All single traveling wave solutions to the equation can be obtained. As an example, we give the solutions to (3 + 1)-dimensional breaking soliton equation.展开更多
Crohn's disease,a transmural inflammatory bowel disease,remains a difficult entity to diagnose clinically.Over the last decade,multidetector computed tomography(CT) has become the method of choice for noninvasive ...Crohn's disease,a transmural inflammatory bowel disease,remains a difficult entity to diagnose clinically.Over the last decade,multidetector computed tomography(CT) has become the method of choice for noninvasive evaluation of the small bowel,and has proved to be of significant value in the diagnosis of Crohn's disease.Advancements in CT enterography protocol design,three dimensional(3-D) post-processing software,and CT scanner technology have allowed increasing accuracy in diagnosis,and the acquisition of studies at a much lower radiation dose.The cases in this review will illustrate that the use of 3-D technique,proper enterography protocol design,and a detailed understanding of the different manifestations of Crohn's disease are all critical in properly diagnosing the full range of possible complications in Crohn's patients.In particular,CT enterography has proven to be effective in identifying involvement of the small and large bowel(including active inflammation,stigmata of chronic inflammation,and Crohn's-related bowel neoplasia) by Crohn's disease,as well as the extra-enteric manifestations of the disease,including fistulae,sinus tracts,abscesses,and urologic/hepatobiliary/osseous complications.Moreover,the proper use of 3-D technique(including volume rendering and maximum intensity projection) as a routine component of enterography interpretation can play a vital role in improving diagnostic accuracy.展开更多
基金supported by the National Natural Science Foundation of China(No.82371530,82171529)the Capital Health Development Special Research Project(2022-1-4111)the National Key Technology R and D Program(No.2015BAI13B01).
文摘Background The patient-reported Dimensional Anhedonia Rating Scale(DARS)has been adapted into Chinese,so there is a need to evaluate its measurement properties in a Chinese population.Aims To evaluate the reliability and validity of the DARS among Chinese individuals with major depressive disorder(MDD)and its treatment sensitivity in a prospective clinical study.Methods Data were from a multicentre,prospective clinical study(NCT03294525),which recruited both patients with MDD,who were followed for 8 weeks,and healthy controls(HCs),assessed at baseline only.The analysis included confirmatory factor analysis,validity and sensitivity to change.Results Patients’mean(standard deviation(SD))age was 34.8(11.0)years,with 68.7%being female.75.2%of patients with MDD had melancholic features,followed by 63.8%with anxious distress.Patients had experienced MDD for a mean(SD)of 9.2(18)months.DARS scores covered the full range of severity with no major floor or ceiling effects.Confirmatory factor analysis showed adequate fit statistics(comparative fit index 0.976,goodness-of-fit index 0.935 and root mean square error of approximation 0.055).Convergent validity with anhedonia-related measures was confirmed.While the correlation between the DARS and the Hamilton Depression Rating Scale was not strong(r=0.31,baseline),the DARS was found to differentiate between levels of depression.Greater improvements in DARS scores were seen with the Hamilton Rating Scale for Depression responder group(effect size 1.16)compared with the non-responder group(effect size 0.46).Conclusions This study comprehensively evaluated the measurement properties of the DARS using a Chinese population with MDD.Overall,the Chinese version of DARS demonstrates good psychometric properties and has been found to be responsive to change during antidepressant treatment.The DARS is a suitable scale for assessing patient-reported anhedonia in future clinical trials.
文摘On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.The forum was organised by the China Writers Association and co-organised by China National Publications Import&Export(Group)Corporation.
基金supported by Shenzhen Science and Technology Program(No.KQTD20200820113010022).
文摘The growth of single-crystalα-Al_(2)O_(3) is crucial for a variety of applications in electronics and other fields,while the synthesis of its two-dimensional(2D)form is not easy due to the high activation energy.Here,we demonstrate the growth of single-crystal 2Dα-Al_(2)O_(3) by high temperature(high-T)annealing of Ni foils.Tens of micrometers of 2Dα-Al_(2)O_(3) flakes grow on the surface of Ni foils,which is attributed to the precipitation of Al atoms from the Ni foil bulk to its surface,followed by the oxidation of Al atoms on the surface.In principle,the Ni foil acts as a solvent,where diluted metal atoms precipitate onto the surface and react with oxygen from the atmosphere to grow single-crystal 2D metal oxides.Our findings may also provide a promising method for synthesizing other single-crystal 2D metal oxides.
文摘With the rapid development of information technology,the demand for high-performance and low-power microprocessors continues to grow.Traditional silicon-based semiconductor technologies have encountered numerous bottlenecks in performance enhancement,such as drain-induced barrier lowering,reduced mobility caused by interface scattering,and limited current on/off ratios.
基金supported by the National Nature Science Foundation of China(No.12172211)the National Key Research and Development Program of China(No.2019YFC1509800)。
文摘1 Introduction In highway construction,flled embankments are trapezoidal,and the ground is always improved by sand wells or columns.During embankment construction,because the width and height of the embankment are changing,a non-uniform load that varies with time and lateral location is applied to the underlying ground.The consolidation phenomenon under two-dimensional(2D)conditions will keep pace with the construction of the embankment.In addition,because of evaporation and rainfall,the soils are mostly unsaturated.Therefore,it is meaningful to research the consolidation properties of unsaturated ground under non-uniform loading.
基金supported by the Natural Science Foundation of Wenzhou Institute,University of Chinese Academy of Sciences(UCAS)(Grant No.WIUCASQD2023004)the National Natural Science Foundation of China(Grant Nos.12304006,12404265,and 12435001)+2 种基金the Natural Science Foundation of Shanghai,China(Grant No.23JC1401400)the Natural Science Foundation of Wenzhou(Grant No.L2023005)the Fundamental Research Funds for the Central Universities of East China University of Science and Technology。
文摘Two-dimensional(2D)fully compensated collinear magnetic materials ofer signifcant advantages for spintronic applications,including robustness against magnetic feld perturbations,no stray felds,and ultrafast dynamics.Among these materials,fully compensated ferrimagnets are particularly promising due to their unique characteristics such as the magneto-optical efect,completely spin-polarized currents,and the anomalous Hall efect.We performed a structural search on 2D unconventional stoichiometric Cr-I crystals using a global optimization algorithm.The most stable CrI-P21/m monolayer is a fully compensated ferrimagnetic semiconductor with a band gap of 1.57 eV and a high magnetic transition temperature of 592 K.The spontaneous spin splitting in CrI-P21/m originates from the inequivalent local coordination environments of Cr^(1)and Cr^(2)ions,yielding a mismatch in their 3d orbitals splitting.Notably,carrier doping at a concentration of 0.01 electrons or holes per atom enables reversible spin polarization,generating a fully spin-polarized current in CrI-P21/m.This performance makes it a highly promising candidate for spintronic devices.Our fndings not only provide a structural paradigm for discovering fully compensated ferrimagnets but also open a new avenue for designing zero-moment magnetic materials with intrinsic spin splitting.
文摘The two-dimensional kagome lattice serves as a prototypical platform for exploring quantum spin liquids owing to its pronounced geometric frustration.Substantial advancements have been achieved in herbertsmithite and its structural analogs.These quantum spin liquid candidates exhibit large superexchange interactions yet resist magnetic ordering down to the lowest measurable temperatures,which are typically three or four orders of magnitude below the energy scale of the primary exchange energies.Nevertheless,the existence of unavoidable intrinsic interlayer magnetic impurities leads to persistent debates on their ground states.A breakthrough emerged with the discovery of YCu_(3)(OH)_(6+x)X_(3-x)(X=Cl,Br),a novel material family rigorously verifed to eliminate magnetic impurity interference.This short review highlights critical advances in these materials,emphasizing experimental signatures consistent with a Dirac quantum spin liquid and the observation of a oneninth magnetization plateau and possible quantum oscillations.Local structural characteristics play a crucial role in clarifying the complex emergent quantum phenomena of these materials.Collectively,these fndings establish this material class as a promising platform for investigating quantum spin liquid behavior in two-dimensional kagome lattices.
基金supported by the National Natural Science Foundation of China(Grant Nos.12204173 and 12275263)the Innovation Program for Quantum Science and Technology(Grant No.2021ZD0301900)supported by the Natural Science Foundation of Fujian Province 802 of China(Grant No.2023J02032)。
文摘The crossover between short-range and long-range(LR)universal behaviors remains a central theme in the physics of LR interacting systems.The competition between LR coupling and the Berezinskii-Kosterlitz-Thouless mechanism makes the problem more subtle and less understood in the two-dimensional(2D)XY model,a cornerstone for investigating low-dimensional phenomena and their implications in quantum computation.We study the 2D XY model with algebraically decaying interaction~1/r^(2+σ).Utilizing an advanced update strategy,we conduct LR Monte Carlo simulations of the model up to a linear size of L=8192.Our results demonstrate continuous phase transitions into a ferromagnetic phase forσ<2,which exhibit the simultaneous emergence of a long-ranged order and a power-law decaying correlation function due to the Goldstone mode.Furthermore,we fnd logarithmic scaling behaviors in the low-temperature phase atσ=2.The observed scaling behaviors in the low-temperature phase forσ≤2 agree with our theoretical analysis.Our fndings request further theoretical understanding and can be of practical application in cutting-edge experiments like Rydberg atom arrays.
基金supported by the National Natural Science Foundations of China(Grant Nos.12235007,12375003,and 11975131).
文摘We presents a generalized(2+1)-dimensional Sharma-Tasso-Olver-Burgers(STOB)equation,unifying dissipative and dispersive wave dynamics.By introducing an auxiliary potential𝑦as a new space variable and employing a simpler deformation algorithm,we deform the(1+1)-dimensional STOB model to higher dimensions.The resulting equation is proven Lax-integrable via introducing strong and weak Lax pairs.Traveling wave solutions of the(2+1)-dimensional STOB equation are derived through an ordinary differential equation reduction,with implicit solutions obtained for a special case.Crucially,we demonstrate that the system admits dispersionless decompositions into two types:Case 1 yields non-traveling twisted kink and bell solitons,while Case 2 involves complex implicit functions governed by cubic-algebraic constraints.Numerical visualizations reveal novel anisotropic soliton structures,and the decomposition methodology is shown to generalize broadly to other higher dimensional dispersionless decomposition solvable integrable systems.
基金supported by a project funded by the Hebei Provincial Central Guidance Local Science and Technology Development Fund(236Z7714G)。
文摘Cervical cancer,a leading malignancy globally,poses a significant threat to women's health,with an estimated 604,000 new cases and 342,000 deaths reported in 2020^([1]).As cervical cancer is closely linked to human papilloma virus(HPV)infection,early detection relies on HPV screening;however,late-stage prognosis remains poor,underscoring the need for novel diagnostic and therapeutic targets^([2]).
基金supported by the High-level Talent Research Start-up Project Funding of Henan Academy of Sciences(Project No.241827012)the National Natural Science Foundation of China(Grant Nos.U22A6005 and 62271450)+1 种基金the National Key Research and Development Program of China(Grant Nos.2021YFA1301502,2024YFA1408701,and 2024YFA1408403)the Synergetic Extreme Condition User Facility(SECUF,https://cstr.cn/31123.02.SECUF)。
文摘The precise control of wrinkles and strain gradients in nanofilm is of significant interest due to their profound influence on electronic band structures and spin states.Here,we employ ultrafast electron diffraction(UED)to study the picosecond-scale dynamics of laser-induced bending in 2H-MoTe2 thin films.
基金supported by the National Natural Science Foundation of China(Grant No.12175316).
文摘Phase transitions,as one of the most intriguing phenomena in nature,are divided into first-order phase transitions(FOPTs)and continuous ones in current classification.While the latter shows striking phenomena of scaling and universality,the former has recently also been demonstrated to exhibit scaling and universal behavior within a mesoscopic,coarse-grained Landau-Ginzburg theory.Here we apply this theory to a microscopic model-the paradigmatic Ising model,which undergoes FOPTs between two ordered phases below its critical temperature-and unambiguously demonstrate universal scaling behavior in such FOPTs.These results open the door for extending the theory to other microscopic FOPT systems and experimentally testing them to systematically uncover their scaling and universal behavior.
基金supported by the National Natural Science Foundation of China(Grant Nos.62174016,12474047,12204202,and 11974355)the Basic Research Program of Jiangsu(Grant No.BK20220679)+1 种基金the Fund for Shanxi“1331Project”the Research Project Supported by Shanxi Scholarship Council of China.
文摘The presence of a van Hove singularity(vHS)at the Fermi level can trigger magnetic instability by mediating a spontaneous transition from paramagnetic to magnetically ordered states.While electrostatic doping(typically achieved via ionic gating)to shift the vHS to the Fermi level provides a general mechanism for engineering such magnetism,its volatile nature often leads to the collapse of induced states upon gate field removal.Here,a novel scheme is presented for non-volatile magnetic control by utilizing ferroelectric heterostructures to achieve reversible magnetism switching.Using two-dimensional VSiN_(3),a nonmagnetic material with Mexican-hat electronic band dispersions hosting vHSs,as a prototype,it is preliminarily demonstrated that both electron and hole doping can robustly induce magnetism.Further,by interfacing VSiN_(3)with ferroelectric Sc_(2)CO_(2),reversible switching of its magnetic state via polarization-driven heterointerfacial charge transfer is achieved.This mechanism enables a dynamic transition between insulating and half-metallic phases in VSiN_(3),establishing a pathway to design multiferroic tunnel junctions with giant tunneling electroresistance or magnetoresistance.This work bridges non-volatile ferroelectric control with vHS-enhanced magnetism,opening opportunities for energy-efficient and high-performance spintronic devices and non-volatile memory devices.
基金Sponsored by the National Science Foundation of China( Grant No. 61201370,61100103)the Independent Innovation Foundation of Shandong University( Grant No. 2012DX07)
文摘This paper presents two novel algorithms for feature extraction-Subpattern Complete Two Dimensional Linear Discriminant Principal Component Analysis (SpC2DLDPCA) and Subpattern Complete Two Dimensional Locality Preserving Principal Component Analysis (SpC2DLPPCA). The modified SpC2DLDPCA and SpC2DLPPCA algorithm over their non-subpattern version and Subpattern Complete Two Dimensional Principal Component Analysis (SpC2DPCA) methods benefit greatly in the following four points: (1) SpC2DLDPCA and SpC2DLPPCA can avoid the failure that the larger dimension matrix may bring about more consuming time on computing their eigenvalues and eigenvectors. (2) SpC2DLDPCA and SpC2DLPPCA can extract local information to implement recognition. (3)The idea of subblock is introduced into Two Dimensional Principal Component Analysis (2DPCA) and Two Dimensional Linear Discriminant Analysis (2DLDA). SpC2DLDPCA combines a discriminant analysis and a compression technique with low energy loss. (4) The idea is also introduced into 2DPCA and Two Dimensional Locality Preserving projections (2DLPP), so SpC2DLPPCA can preserve local neighbor graph structure and compact feature expressions. Finally, the experiments on the CASIA(B) gait database show that SpC2DLDPCA and SpC2DLPPCA have higher recognition accuracies than their non-subpattern versions and SpC2DPCA.
基金supported by the National Natural Science Foundation of China(Nos.22162014 and U24A2044).
文摘Anion exchange membrane fuel cells(AEMFCs),regarded as a promising alternative to proton exchange membrane fuel cells(PEMFCs),have garnered increasing attention because of their cost-effectiveness by using the non-noble metal catalysts and hydrocarbon-based ionomers as membrane[1].However,despite of extensive researches on non-noble metal catalysts such as Co[2].
文摘We utilize two different theories to prove that cosmic dark energy density is the complimentary Legendre transformation of ordinary energy and vice versa as given by E(dark) = mc2 (21/22) and E(ordinary) = mc2/22. The first theory used is based on G ‘t Hooft’s remarkably simple renormalization procedure in which a neat mathematical maneuver is introduced via the dimensionality of our four dimensional spacetime. Thus, ‘t Hooft used instead of D = 4 and then took at the end of an intricate and subtle computation the limit to obtain the result while avoiding various problems including the pole singularity at D = 4. Here and in contradistinction to the classical form of dimensional and renormalization we set and do not take the limit where and is the theoretically and experimentally well established Hardy’s generic quantum entanglement. At the end we see that the dark energy density is simply the ratio of and the smooth disentangled D = 4, i.e. (dark) = (4 -k)/4 = 3.8196011/4 = 0.9549150275. Consequently where we have ignored the fine structure details by rounding 21 + k to 21 and 22 + k to 22 in a manner not that much different from of the original form of dimensional regularization theory. The result is subsequently validated by another equally ingenious approach due mainly to E. Witten and his school of topological quantum field theory. We notice that in that theory the local degrees of freedom are zero. Therefore, we are dealing essentially with pure gravity where are the degrees of freedom and is the corresponding dimension. The results and the conclusion of the paper are summarized in Figure 1-3, Table 1 and Flow Chart 1.
文摘In order to get the exact traveling wave solutions to nonlinear partial differential equation, the complete discrimination system for polynomial and direct integral method are applied to the considered equation. All single traveling wave solutions to the equation can be obtained. As an example, we give the solutions to (3 + 1)-dimensional breaking soliton equation.
文摘Crohn's disease,a transmural inflammatory bowel disease,remains a difficult entity to diagnose clinically.Over the last decade,multidetector computed tomography(CT) has become the method of choice for noninvasive evaluation of the small bowel,and has proved to be of significant value in the diagnosis of Crohn's disease.Advancements in CT enterography protocol design,three dimensional(3-D) post-processing software,and CT scanner technology have allowed increasing accuracy in diagnosis,and the acquisition of studies at a much lower radiation dose.The cases in this review will illustrate that the use of 3-D technique,proper enterography protocol design,and a detailed understanding of the different manifestations of Crohn's disease are all critical in properly diagnosing the full range of possible complications in Crohn's patients.In particular,CT enterography has proven to be effective in identifying involvement of the small and large bowel(including active inflammation,stigmata of chronic inflammation,and Crohn's-related bowel neoplasia) by Crohn's disease,as well as the extra-enteric manifestations of the disease,including fistulae,sinus tracts,abscesses,and urologic/hepatobiliary/osseous complications.Moreover,the proper use of 3-D technique(including volume rendering and maximum intensity projection) as a routine component of enterography interpretation can play a vital role in improving diagnostic accuracy.