Necessary and sufficient conditions for the exact controllability and exact observability of a descriptor infinite dimensional system are obtained in the sense of distributional solution.These general results are used...Necessary and sufficient conditions for the exact controllability and exact observability of a descriptor infinite dimensional system are obtained in the sense of distributional solution.These general results are used to examine the exact controllability and exact observability of the Dzektser equation in the theory of seepage and the exact controllability of wave equation.展开更多
Magnetic semiconductors have been demonstrated to work at low temperatures, but not yet at room temperature for spin electronic applications. In contrast to the p-type diluted magnetic semiconductors, n-type diluted m...Magnetic semiconductors have been demonstrated to work at low temperatures, but not yet at room temperature for spin electronic applications. In contrast to the p-type diluted magnetic semiconductors, n-type diluted magnetic semiconductors are few. Using a combined method of the density function theory and quantum Monte Carlo simulation, we briefly discuss the recent progress to obtain diluted magnetic semiconductors with both p- and n-type carriers by choosing host semiconductors with a narrow band gap. In addition, the recent progress on two-dimensional intrinsic magnetic semiconductors with possible room temperature ferromangetism and quantum anomalous Hall effect are also discussed.展开更多
The two-dimensional kagome lattice serves as a prototypical platform for exploring quantum spin liquids owing to its pronounced geometric frustration.Substantial advancements have been achieved in herbertsmithite and ...The two-dimensional kagome lattice serves as a prototypical platform for exploring quantum spin liquids owing to its pronounced geometric frustration.Substantial advancements have been achieved in herbertsmithite and its structural analogs.These quantum spin liquid candidates exhibit large superexchange interactions yet resist magnetic ordering down to the lowest measurable temperatures,which are typically three or four orders of magnitude below the energy scale of the primary exchange energies.Nevertheless,the existence of unavoidable intrinsic interlayer magnetic impurities leads to persistent debates on their ground states.A breakthrough emerged with the discovery of YCu_(3)(OH)_(6+x)X_(3-x)(X=Cl,Br),a novel material family rigorously verifed to eliminate magnetic impurity interference.This short review highlights critical advances in these materials,emphasizing experimental signatures consistent with a Dirac quantum spin liquid and the observation of a oneninth magnetization plateau and possible quantum oscillations.Local structural characteristics play a crucial role in clarifying the complex emergent quantum phenomena of these materials.Collectively,these fndings establish this material class as a promising platform for investigating quantum spin liquid behavior in two-dimensional kagome lattices.展开更多
Background The patient-reported Dimensional Anhedonia Rating Scale(DARS)has been adapted into Chinese,so there is a need to evaluate its measurement properties in a Chinese population.Aims To evaluate the reliability ...Background The patient-reported Dimensional Anhedonia Rating Scale(DARS)has been adapted into Chinese,so there is a need to evaluate its measurement properties in a Chinese population.Aims To evaluate the reliability and validity of the DARS among Chinese individuals with major depressive disorder(MDD)and its treatment sensitivity in a prospective clinical study.Methods Data were from a multicentre,prospective clinical study(NCT03294525),which recruited both patients with MDD,who were followed for 8 weeks,and healthy controls(HCs),assessed at baseline only.The analysis included confirmatory factor analysis,validity and sensitivity to change.Results Patients’mean(standard deviation(SD))age was 34.8(11.0)years,with 68.7%being female.75.2%of patients with MDD had melancholic features,followed by 63.8%with anxious distress.Patients had experienced MDD for a mean(SD)of 9.2(18)months.DARS scores covered the full range of severity with no major floor or ceiling effects.Confirmatory factor analysis showed adequate fit statistics(comparative fit index 0.976,goodness-of-fit index 0.935 and root mean square error of approximation 0.055).Convergent validity with anhedonia-related measures was confirmed.While the correlation between the DARS and the Hamilton Depression Rating Scale was not strong(r=0.31,baseline),the DARS was found to differentiate between levels of depression.Greater improvements in DARS scores were seen with the Hamilton Rating Scale for Depression responder group(effect size 1.16)compared with the non-responder group(effect size 0.46).Conclusions This study comprehensively evaluated the measurement properties of the DARS using a Chinese population with MDD.Overall,the Chinese version of DARS demonstrates good psychometric properties and has been found to be responsive to change during antidepressant treatment.The DARS is a suitable scale for assessing patient-reported anhedonia in future clinical trials.展开更多
On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on ...On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.The forum was organised by the China Writers Association and co-organised by China National Publications Import&Export(Group)Corporation.展开更多
BACKGROUND Intraoperative determination of resection margin and adequate residual liver parenchyma are the key points of hepatectomy for the treatment of liver tumors.Intraoperative ultrasound and indocyanine green fl...BACKGROUND Intraoperative determination of resection margin and adequate residual liver parenchyma are the key points of hepatectomy for the treatment of liver tumors.Intraoperative ultrasound and indocyanine green fluorescence navigation are the most commonly used methods at present,but the technical barriers limit their promotion.AIM To evaluate the value of the three-dimensional location approach with silk thread(3D-LAST)in precise resection of liver tumors.METHODS From September 2020 to January 2022,8 patients with liver tumors including hepatocellular carcinoma,intrahepatic cholangiocarcinoma,hilar cholangiocar-cinoma,and gastric cancer liver metastasis were included in this study.All patients underwent 3D-LAST in precise resection of liver tumors.RESULTS All patients(8/8,100%)underwent the operation successfully without any complications.During the mean follow-up of 8.7 months,all patients survived without tumor recurrence.CONCLUSION In conclusion,the 3D-LAST is a safe and effective new method for liver intraop-erative navigation,which is practical and easy to promote.Core Tip:The aim of this study is to evaluate the value of the three-dimensional location approach with silk thread(3D-LAST)in precise resection of liver tumors.Eight patients with liver tumors including hepatocellular carcinoma,intrahepatic cholangiocarcinoma,hilar cholangiocarcinoma,and gastric cancer liver metastasis underwent the operation successfully without any complications.During the mean follow-up of 8.7 months,all patients survived without tumor recurrence.In conclusion,the 3D-LAST is a safe and effective new method for liver intraoperative navigation,which is practical and easy to promote.INTRODUCTION Hepatectomy is widely used for the treatment of liver tumors.In recent decades,the concept and practice of hepatectomy have developed from irregular,regular and anatomical to the current precise resection.Necessary assistive technologies have enabled these advances.Intraoperative ultrasound(IOUS)localization and indocyanine green(ICG)fluorescence imaging guidance are two frequently-used approaches for laparoscopic hepatectomy[1,2].IOUS is an invaluable auxiliary means widely accepted in surgery for real-time diagnostic information to determine resection range and navigate the surgical path[3].However,the major limitation of IOUS is the time cost during the procedure for paging the sono-graphers and the difficulty of deciphering two dimensional images[4].ICG is a non-toxic water-soluble fluorophore that reveals fluorescence under the near-infrared spectrum[5].Since liver tissue penetration is limited to 5 to 10 mm,that restricted the visualization of deeper tumors by ICG excitation,thereby interfering with its application in laparoscopic hepatectomy[6].IOUS and ICG navigation require specific technical equipment,making implementation difficult in many centers.And these techniques will significantly increase the operation time.Three-dimensional(3D)visualization involves extracting features and producing volumetric images based on computed tomography(CT)through a computer postprocessing technique.This tool offers a reasonable approach to the clinical decision for the potential to display the complex internal anatomy in an intuitive and stereoscopic manner[7].In the past few decades,applying 3D simulation software for liver volume calculation,virtual simulation surgery,portal hypertension monitor,and surgical navigation has proven to be safe and effective[8].Therefore,we propose a new method to find obvious anatomical markers and calculate the resection range according to 3D positioning before operation.During the operation,the scope of resection was delineated with silk thread,and resection was performed.This is a new practical approach,which we named as 3D location approach with silk thread(3D-LAST).RESULTS During the study period from September 2020 to January 2022,5 patients with hepatocellular carcinoma,1 patient with intrahepatic cholangiocarcinoma,1 patient with hilar cholangiocarcinoma,and 1 patient with gastric cancer liver metastasis were assessed for liver resection.There were 5 males and 3 females.The mean age of these patients was 54.3±10.2 years(34-66 years).Preoperative 3D positioning was conducted and the scope of resection was delineated with a surgical suture successfully performed in all 8 patients without complications.The treatment results of these 8 patients are shown in Table 1.The 90-day operative mortality was zero.Complications worse than Dindo-Clavien IIIa was not observed at a mean follow-up time of 8.7 months(4-16 months),there was no evidence of tumor recurrence or extrahepatic metastasis.At the time of reporting,the patients are all alive and lead normal lives.We take one patient as an example,58-year-old male,who found a liver lesion 10 months after gastric cancer surgery.Enhanced CT showed that the lesion was located in the liver S5,about 1.5 cm in diameter,and considered metastatic lesions.We performed 3D-LAST guided hepatectomy on this patient(Figure 1).Other representative 3D-LAST surgical procedures are shown in Figure 2.展开更多
With the rapid development of information technology,the demand for high-performance and low-power microprocessors continues to grow.Traditional silicon-based semiconductor technologies have encountered numerous bottl...With the rapid development of information technology,the demand for high-performance and low-power microprocessors continues to grow.Traditional silicon-based semiconductor technologies have encountered numerous bottlenecks in performance enhancement,such as drain-induced barrier lowering,reduced mobility caused by interface scattering,and limited current on/off ratios.展开更多
The growth of single-crystalα-Al_(2)O_(3) is crucial for a variety of applications in electronics and other fields,while the synthesis of its two-dimensional(2D)form is not easy due to the high activation energy.Here...The growth of single-crystalα-Al_(2)O_(3) is crucial for a variety of applications in electronics and other fields,while the synthesis of its two-dimensional(2D)form is not easy due to the high activation energy.Here,we demonstrate the growth of single-crystal 2Dα-Al_(2)O_(3) by high temperature(high-T)annealing of Ni foils.Tens of micrometers of 2Dα-Al_(2)O_(3) flakes grow on the surface of Ni foils,which is attributed to the precipitation of Al atoms from the Ni foil bulk to its surface,followed by the oxidation of Al atoms on the surface.In principle,the Ni foil acts as a solvent,where diluted metal atoms precipitate onto the surface and react with oxygen from the atmosphere to grow single-crystal 2D metal oxides.Our findings may also provide a promising method for synthesizing other single-crystal 2D metal oxides.展开更多
Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring...Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring their functional integrity and performance.To achieve sustainable manufacturing in FDM,it is necessary to optimize the print quality and time efficiency concurrently.However,owing to the complex interactions of printing parameters,achieving a balanced optimization of both remains challenging.This study examines four key factors affecting dimensional accuracy and print time:printing speed,layer thickness,nozzle temperature,and bed temperature.Fifty parameter sets were generated using enhanced Latin hypercube sampling.A whale optimization algorithm(WOA)-enhanced support vector regression(SVR)model was developed to predict dimen-sional errors and print time effectively,with non-dominated sorting genetic algorithm Ⅲ(NSGA-Ⅲ)utilized for multi-objective optimization.The technique for Order Preference by Similarity to Ideal Solution(TOPSIS)was applied to select a balanced solution from the Pareto front.In experimental validation,the parts printed using the optimized parameters exhibited excellent dimensional accuracy and printing efficiency.This study comprehensively considered optimizing the printing time and size to meet quality requirements while achieving higher printing efficiency and aiding in the realization of sustainable manufacturing in the field of AM.In addition,the printing of a specific prosthetic component was used as a case study,highlighting the high demands on both dimensional precision and printing efficiency.The optimized process parameters required significantly less printing time,while satisfying the dimensional accuracy requirements.This study provides valuable insights for achieving sustainable AM using FDM.展开更多
With the exponential growth of the internet of things,artificial intelligence,and energy-efficient high-volume data digital communications,there is an urgent demand to develop new information technologies with high st...With the exponential growth of the internet of things,artificial intelligence,and energy-efficient high-volume data digital communications,there is an urgent demand to develop new information technologies with high storage capacity.This needs to address the looming challenge of conventional Von Neumann architecture and Moore's law bottleneck for future data-intensive computing applications.A promising remedy lies in memristors,which offer distinct advantages of scalability,rapid access times,stable data retention,low power consumption,multistate storage capability and fast operation.Among the various materials used for active layers in memristors,low dimensional perovskite semiconductors with structural diversity and superior stability exhibit great potential for next generation memristor applications,leveraging hysteresis characteristics caused by ion migration and defects.In this review the progress of low-dimensional perovskite memory devices is comprehensively summarized.The working mechanism and fundamental processes,including ion migration dynamics,charge carrier transport and electronic resistance that underlies the switching behavior of memristors are discussed.Additionally,the device parameters are analyzed with special focus on the effective methods to improve electrical performance and operational stability.Finally,the challenges and perspective on major hurdles of low-dimensional perovskite memristors in the expansive application domains are provided.展开更多
The anatomy of the human liver is complex,and the vascular system is highly variable.Moreover,the use of traditional com-puted tomography(CT)two-dimensional(2D)images to recon-struct the tissue and organs requires exp...The anatomy of the human liver is complex,and the vascular system is highly variable.Moreover,the use of traditional com-puted tomography(CT)two-dimensional(2D)images to recon-struct the tissue and organs requires experienced doctors and lim-its the sharing and discussion of therapeutic plans[1].展开更多
In this paper,the physics informed neural network(PINN)deep learning method is applied to solve two-dimensional nonlocal equations,including the partial reverse space y-nonlocal Mel'nikov equation,the partial reve...In this paper,the physics informed neural network(PINN)deep learning method is applied to solve two-dimensional nonlocal equations,including the partial reverse space y-nonlocal Mel'nikov equation,the partial reverse space-time nonlocal Mel'nikov equation and the nonlocal twodimensional nonlinear Schr?dinger(NLS)equation.By the PINN method,we successfully derive a data-driven two soliton solution,lump solution and rogue wave solution.Numerical simulation results indicate that the error range between the data-driven solution and the exact solution is relatively small,which verifies the effectiveness of the PINN deep learning method for solving high dimensional nonlocal equations.Moreover,the parameter discovery of the partial reverse space-time nonlocal Mel'nikov equation is analysed in terms of its soliton solution for the first time.展开更多
To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for con...To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for constructing an industrial robot assembly system based on virtual reality technology.Focusing on the shaft hole assembly,the mechanical characteristics of the industrial robot shaft hole assembly process are analyzed and a dynamic model is established for shaft hole assembly operations.The key elements of virtual assembly operations for industrial robots are summarized and a five-dimensional model is proposed for industrial robot virtual operations.Utilizing the Unity3D engine based on the 5-D model for industrial robot virtual operations,an industrial robot shaft hole assembly system is developed.This system enables virtual assembly operations,displays physical attributes,and provides valuable references for the research of virtual systems.展开更多
1 Introduction In highway construction,flled embankments are trapezoidal,and the ground is always improved by sand wells or columns.During embankment construction,because the width and height of the embankment are cha...1 Introduction In highway construction,flled embankments are trapezoidal,and the ground is always improved by sand wells or columns.During embankment construction,because the width and height of the embankment are changing,a non-uniform load that varies with time and lateral location is applied to the underlying ground.The consolidation phenomenon under two-dimensional(2D)conditions will keep pace with the construction of the embankment.In addition,because of evaporation and rainfall,the soils are mostly unsaturated.Therefore,it is meaningful to research the consolidation properties of unsaturated ground under non-uniform loading.展开更多
Two-dimensional(2D)fully compensated collinear magnetic materials ofer signifcant advantages for spintronic applications,including robustness against magnetic feld perturbations,no stray felds,and ultrafast dynamics.A...Two-dimensional(2D)fully compensated collinear magnetic materials ofer signifcant advantages for spintronic applications,including robustness against magnetic feld perturbations,no stray felds,and ultrafast dynamics.Among these materials,fully compensated ferrimagnets are particularly promising due to their unique characteristics such as the magneto-optical efect,completely spin-polarized currents,and the anomalous Hall efect.We performed a structural search on 2D unconventional stoichiometric Cr-I crystals using a global optimization algorithm.The most stable CrI-P21/m monolayer is a fully compensated ferrimagnetic semiconductor with a band gap of 1.57 eV and a high magnetic transition temperature of 592 K.The spontaneous spin splitting in CrI-P21/m originates from the inequivalent local coordination environments of Cr^(1)and Cr^(2)ions,yielding a mismatch in their 3d orbitals splitting.Notably,carrier doping at a concentration of 0.01 electrons or holes per atom enables reversible spin polarization,generating a fully spin-polarized current in CrI-P21/m.This performance makes it a highly promising candidate for spintronic devices.Our fndings not only provide a structural paradigm for discovering fully compensated ferrimagnets but also open a new avenue for designing zero-moment magnetic materials with intrinsic spin splitting.展开更多
Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by ...Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by enlarging the receptive field,which indicates how the convolution process extracts features in a high dimensional feature space.However,its functionality is restricted to the spatial dimension and network depth,limiting further improvements in network performance due to insufficient information interaction and representation.Crucially,the potential of high dimensional feature space in the channel dimension and the exploration of network width/resolution remain largely untapped.In this paper,we consider nonlinear transforms from the perspective of feature space,defining high-dimensional feature spaces in different dimensions and investigating the specific effects.Firstly,we introduce the dimension increasing and decreasing transforms in both channel and spatial dimensions to obtain high dimensional feature space and achieve better feature extraction.Secondly,we design a channel-spatial fusion residual transform(CSR),which incorporates multi-dimensional transforms for a more effective representation.Furthermore,we simplify the proposed fusion transform to obtain a slim architecture(CSR-sm),balancing network complexity and compression performance.Finally,we build the overall network with stacked CSR transforms to achieve better compression and reconstruction.Experimental results demonstrate that the proposed method can achieve superior ratedistortion performance compared to the existing LIC methods and traditional codecs.Specifically,our proposed method achieves 9.38%BD-rate reduction over VVC on Kodak dataset.展开更多
This paper proposes the Leg Dimensional Synergistic Optimization Strategy(LDSOS)for humanoid robotic legs based on mechanism decoupling and performance assignment.The proposed method addresses the interdependent effec...This paper proposes the Leg Dimensional Synergistic Optimization Strategy(LDSOS)for humanoid robotic legs based on mechanism decoupling and performance assignment.The proposed method addresses the interdependent effects of dimensional parameters on the local and whole mechanisms in the design of hybrid humanoid robotic legs.It sequentially optimizes the dimensional parameters of the local and whole mechanism,thereby balancing the motion performance requirements of both.Additionally,it considers the assignment of efficient performance resources between the Local Functional Workspace(LFW)and the Whole Available Workspace(WAW).To facilitate the modeling and optimization process,a local/whole Equivalent Configuration Framework(ECF)is introduced.By decoupling the hybrid mechanism into a whole mechanism and multiple local mechanisms,the ECF enhances the efficiency of design,modeling,and performance evaluation.Prototype experiments are conducted to validate the effectiveness of LDSOS.This research provides an effective configuration framework for humanoid robotic leg design,establishing a theoretical and practical foundation for future optimized designs of humanoid robotic legs and pioneering novel approaches to the design of complex hybrid humanoid robotic legs.展开更多
We assume exponential corrections to the entropy of 5D charged Ad S black hole solutions,which are derived within the framework of Einstein-Gauss-Bonnet gravity and nonlinear electrodynamics.Additionally,we consider t...We assume exponential corrections to the entropy of 5D charged Ad S black hole solutions,which are derived within the framework of Einstein-Gauss-Bonnet gravity and nonlinear electrodynamics.Additionally,we consider two distinct versions of 5D charged Ad S black holes by setting the parameters q→0 and k→0(where q represents the charge,and k is the non-linear parameter).We investigate these black holes in the extended phase space,where the cosmological constant is interpreted as pressure,demonstrating the first law of black hole thermodynamics.The focus extends to understanding the thermal stability or instability,as well as identifying first and second-order phase transitions.This exploration is carried out through the analysis of various thermodynamic quantities,including heat capacity at constant pressure,Gibbs free energy(GFE),Helmholtz free energy(HFE),and the trace of the Hessian matrix.In order to visualize phase transitions,identify critical points,analyze stability and provide comprehensive analysis,we have made the contour plot of the mentioned thermodynamic quantities and observed that our results are very consistent.These investigations are conducted within the context of exponentially corrected entropies,providing valuable insights into the intricate thermodynamic behavior of these 5D charged Ad S black holes under different parameter limits.展开更多
基金This work was supported by the National Natural Science Foundation of China(11926402,61973338).
文摘Necessary and sufficient conditions for the exact controllability and exact observability of a descriptor infinite dimensional system are obtained in the sense of distributional solution.These general results are used to examine the exact controllability and exact observability of the Dzektser equation in the theory of seepage and the exact controllability of wave equation.
基金supported by NSFC (Grant No. Y81Z01A1A9)CAS (Grant No. Y929013EA2)+3 种基金UCAS (Grant No.110200M208)the Strategic Priority Research Program of CAS (Grant No. XDB28000000)the National Key R&D Program of China (Grant No.11834014)Beijing Municipal Science & Technology Commission (Grant No. Z181100004218001)
文摘Magnetic semiconductors have been demonstrated to work at low temperatures, but not yet at room temperature for spin electronic applications. In contrast to the p-type diluted magnetic semiconductors, n-type diluted magnetic semiconductors are few. Using a combined method of the density function theory and quantum Monte Carlo simulation, we briefly discuss the recent progress to obtain diluted magnetic semiconductors with both p- and n-type carriers by choosing host semiconductors with a narrow band gap. In addition, the recent progress on two-dimensional intrinsic magnetic semiconductors with possible room temperature ferromangetism and quantum anomalous Hall effect are also discussed.
文摘The two-dimensional kagome lattice serves as a prototypical platform for exploring quantum spin liquids owing to its pronounced geometric frustration.Substantial advancements have been achieved in herbertsmithite and its structural analogs.These quantum spin liquid candidates exhibit large superexchange interactions yet resist magnetic ordering down to the lowest measurable temperatures,which are typically three or four orders of magnitude below the energy scale of the primary exchange energies.Nevertheless,the existence of unavoidable intrinsic interlayer magnetic impurities leads to persistent debates on their ground states.A breakthrough emerged with the discovery of YCu_(3)(OH)_(6+x)X_(3-x)(X=Cl,Br),a novel material family rigorously verifed to eliminate magnetic impurity interference.This short review highlights critical advances in these materials,emphasizing experimental signatures consistent with a Dirac quantum spin liquid and the observation of a oneninth magnetization plateau and possible quantum oscillations.Local structural characteristics play a crucial role in clarifying the complex emergent quantum phenomena of these materials.Collectively,these fndings establish this material class as a promising platform for investigating quantum spin liquid behavior in two-dimensional kagome lattices.
基金supported by the National Natural Science Foundation of China(No.82371530,82171529)the Capital Health Development Special Research Project(2022-1-4111)the National Key Technology R and D Program(No.2015BAI13B01).
文摘Background The patient-reported Dimensional Anhedonia Rating Scale(DARS)has been adapted into Chinese,so there is a need to evaluate its measurement properties in a Chinese population.Aims To evaluate the reliability and validity of the DARS among Chinese individuals with major depressive disorder(MDD)and its treatment sensitivity in a prospective clinical study.Methods Data were from a multicentre,prospective clinical study(NCT03294525),which recruited both patients with MDD,who were followed for 8 weeks,and healthy controls(HCs),assessed at baseline only.The analysis included confirmatory factor analysis,validity and sensitivity to change.Results Patients’mean(standard deviation(SD))age was 34.8(11.0)years,with 68.7%being female.75.2%of patients with MDD had melancholic features,followed by 63.8%with anxious distress.Patients had experienced MDD for a mean(SD)of 9.2(18)months.DARS scores covered the full range of severity with no major floor or ceiling effects.Confirmatory factor analysis showed adequate fit statistics(comparative fit index 0.976,goodness-of-fit index 0.935 and root mean square error of approximation 0.055).Convergent validity with anhedonia-related measures was confirmed.While the correlation between the DARS and the Hamilton Depression Rating Scale was not strong(r=0.31,baseline),the DARS was found to differentiate between levels of depression.Greater improvements in DARS scores were seen with the Hamilton Rating Scale for Depression responder group(effect size 1.16)compared with the non-responder group(effect size 0.46).Conclusions This study comprehensively evaluated the measurement properties of the DARS using a Chinese population with MDD.Overall,the Chinese version of DARS demonstrates good psychometric properties and has been found to be responsive to change during antidepressant treatment.The DARS is a suitable scale for assessing patient-reported anhedonia in future clinical trials.
文摘On the evening of May 3Oth,the parallel forum"Equality and Inclusiveness&Harmonious Coexistence:Multi-dimensional Narratives of Civilisations from Writers'Perspective",as part of the 4th Dialogue on Exchanges and Mutual Learning among Civilisations,was held in Dunhuang.The forum was organised by the China Writers Association and co-organised by China National Publications Import&Export(Group)Corporation.
文摘BACKGROUND Intraoperative determination of resection margin and adequate residual liver parenchyma are the key points of hepatectomy for the treatment of liver tumors.Intraoperative ultrasound and indocyanine green fluorescence navigation are the most commonly used methods at present,but the technical barriers limit their promotion.AIM To evaluate the value of the three-dimensional location approach with silk thread(3D-LAST)in precise resection of liver tumors.METHODS From September 2020 to January 2022,8 patients with liver tumors including hepatocellular carcinoma,intrahepatic cholangiocarcinoma,hilar cholangiocar-cinoma,and gastric cancer liver metastasis were included in this study.All patients underwent 3D-LAST in precise resection of liver tumors.RESULTS All patients(8/8,100%)underwent the operation successfully without any complications.During the mean follow-up of 8.7 months,all patients survived without tumor recurrence.CONCLUSION In conclusion,the 3D-LAST is a safe and effective new method for liver intraop-erative navigation,which is practical and easy to promote.Core Tip:The aim of this study is to evaluate the value of the three-dimensional location approach with silk thread(3D-LAST)in precise resection of liver tumors.Eight patients with liver tumors including hepatocellular carcinoma,intrahepatic cholangiocarcinoma,hilar cholangiocarcinoma,and gastric cancer liver metastasis underwent the operation successfully without any complications.During the mean follow-up of 8.7 months,all patients survived without tumor recurrence.In conclusion,the 3D-LAST is a safe and effective new method for liver intraoperative navigation,which is practical and easy to promote.INTRODUCTION Hepatectomy is widely used for the treatment of liver tumors.In recent decades,the concept and practice of hepatectomy have developed from irregular,regular and anatomical to the current precise resection.Necessary assistive technologies have enabled these advances.Intraoperative ultrasound(IOUS)localization and indocyanine green(ICG)fluorescence imaging guidance are two frequently-used approaches for laparoscopic hepatectomy[1,2].IOUS is an invaluable auxiliary means widely accepted in surgery for real-time diagnostic information to determine resection range and navigate the surgical path[3].However,the major limitation of IOUS is the time cost during the procedure for paging the sono-graphers and the difficulty of deciphering two dimensional images[4].ICG is a non-toxic water-soluble fluorophore that reveals fluorescence under the near-infrared spectrum[5].Since liver tissue penetration is limited to 5 to 10 mm,that restricted the visualization of deeper tumors by ICG excitation,thereby interfering with its application in laparoscopic hepatectomy[6].IOUS and ICG navigation require specific technical equipment,making implementation difficult in many centers.And these techniques will significantly increase the operation time.Three-dimensional(3D)visualization involves extracting features and producing volumetric images based on computed tomography(CT)through a computer postprocessing technique.This tool offers a reasonable approach to the clinical decision for the potential to display the complex internal anatomy in an intuitive and stereoscopic manner[7].In the past few decades,applying 3D simulation software for liver volume calculation,virtual simulation surgery,portal hypertension monitor,and surgical navigation has proven to be safe and effective[8].Therefore,we propose a new method to find obvious anatomical markers and calculate the resection range according to 3D positioning before operation.During the operation,the scope of resection was delineated with silk thread,and resection was performed.This is a new practical approach,which we named as 3D location approach with silk thread(3D-LAST).RESULTS During the study period from September 2020 to January 2022,5 patients with hepatocellular carcinoma,1 patient with intrahepatic cholangiocarcinoma,1 patient with hilar cholangiocarcinoma,and 1 patient with gastric cancer liver metastasis were assessed for liver resection.There were 5 males and 3 females.The mean age of these patients was 54.3±10.2 years(34-66 years).Preoperative 3D positioning was conducted and the scope of resection was delineated with a surgical suture successfully performed in all 8 patients without complications.The treatment results of these 8 patients are shown in Table 1.The 90-day operative mortality was zero.Complications worse than Dindo-Clavien IIIa was not observed at a mean follow-up time of 8.7 months(4-16 months),there was no evidence of tumor recurrence or extrahepatic metastasis.At the time of reporting,the patients are all alive and lead normal lives.We take one patient as an example,58-year-old male,who found a liver lesion 10 months after gastric cancer surgery.Enhanced CT showed that the lesion was located in the liver S5,about 1.5 cm in diameter,and considered metastatic lesions.We performed 3D-LAST guided hepatectomy on this patient(Figure 1).Other representative 3D-LAST surgical procedures are shown in Figure 2.
文摘With the rapid development of information technology,the demand for high-performance and low-power microprocessors continues to grow.Traditional silicon-based semiconductor technologies have encountered numerous bottlenecks in performance enhancement,such as drain-induced barrier lowering,reduced mobility caused by interface scattering,and limited current on/off ratios.
基金supported by Shenzhen Science and Technology Program(No.KQTD20200820113010022).
文摘The growth of single-crystalα-Al_(2)O_(3) is crucial for a variety of applications in electronics and other fields,while the synthesis of its two-dimensional(2D)form is not easy due to the high activation energy.Here,we demonstrate the growth of single-crystal 2Dα-Al_(2)O_(3) by high temperature(high-T)annealing of Ni foils.Tens of micrometers of 2Dα-Al_(2)O_(3) flakes grow on the surface of Ni foils,which is attributed to the precipitation of Al atoms from the Ni foil bulk to its surface,followed by the oxidation of Al atoms on the surface.In principle,the Ni foil acts as a solvent,where diluted metal atoms precipitate onto the surface and react with oxygen from the atmosphere to grow single-crystal 2D metal oxides.Our findings may also provide a promising method for synthesizing other single-crystal 2D metal oxides.
基金supporteded by Natural Science Foundation of Shanghai(Grant No.22ZR1463900)State Key Laboratory of Mechanical System and Vibration(Grant No.MSV202318)the Fundamental Research Funds for the Central Universities(Grant No.22120220649).
文摘Additive manufacturing(AM),particularly fused deposition modeling(FDM),has emerged as a transformative technology in modern manufacturing processes.The dimensional accuracy of FDM-printed parts is crucial for ensuring their functional integrity and performance.To achieve sustainable manufacturing in FDM,it is necessary to optimize the print quality and time efficiency concurrently.However,owing to the complex interactions of printing parameters,achieving a balanced optimization of both remains challenging.This study examines four key factors affecting dimensional accuracy and print time:printing speed,layer thickness,nozzle temperature,and bed temperature.Fifty parameter sets were generated using enhanced Latin hypercube sampling.A whale optimization algorithm(WOA)-enhanced support vector regression(SVR)model was developed to predict dimen-sional errors and print time effectively,with non-dominated sorting genetic algorithm Ⅲ(NSGA-Ⅲ)utilized for multi-objective optimization.The technique for Order Preference by Similarity to Ideal Solution(TOPSIS)was applied to select a balanced solution from the Pareto front.In experimental validation,the parts printed using the optimized parameters exhibited excellent dimensional accuracy and printing efficiency.This study comprehensively considered optimizing the printing time and size to meet quality requirements while achieving higher printing efficiency and aiding in the realization of sustainable manufacturing in the field of AM.In addition,the printing of a specific prosthetic component was used as a case study,highlighting the high demands on both dimensional precision and printing efficiency.The optimized process parameters required significantly less printing time,while satisfying the dimensional accuracy requirements.This study provides valuable insights for achieving sustainable AM using FDM.
基金supported by funding from the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)under Germany's Excellence Strategy-EXC 2089/1-390776260(e-conversion)via the International Research Training Group 2022 Alberta/Technical University of Munich International Graduate School for Environmentally Responsible Functional Hybrid Materials(ATUMS).
文摘With the exponential growth of the internet of things,artificial intelligence,and energy-efficient high-volume data digital communications,there is an urgent demand to develop new information technologies with high storage capacity.This needs to address the looming challenge of conventional Von Neumann architecture and Moore's law bottleneck for future data-intensive computing applications.A promising remedy lies in memristors,which offer distinct advantages of scalability,rapid access times,stable data retention,low power consumption,multistate storage capability and fast operation.Among the various materials used for active layers in memristors,low dimensional perovskite semiconductors with structural diversity and superior stability exhibit great potential for next generation memristor applications,leveraging hysteresis characteristics caused by ion migration and defects.In this review the progress of low-dimensional perovskite memory devices is comprehensively summarized.The working mechanism and fundamental processes,including ion migration dynamics,charge carrier transport and electronic resistance that underlies the switching behavior of memristors are discussed.Additionally,the device parameters are analyzed with special focus on the effective methods to improve electrical performance and operational stability.Finally,the challenges and perspective on major hurdles of low-dimensional perovskite memristors in the expansive application domains are provided.
基金supported by grants from Jilin Scientific and Technological Development Program(20200403090SF)The Health Special Foundation of Jilin Province of China(2020sczt029).
文摘The anatomy of the human liver is complex,and the vascular system is highly variable.Moreover,the use of traditional com-puted tomography(CT)two-dimensional(2D)images to recon-struct the tissue and organs requires experienced doctors and lim-its the sharing and discussion of therapeutic plans[1].
文摘In this paper,the physics informed neural network(PINN)deep learning method is applied to solve two-dimensional nonlocal equations,including the partial reverse space y-nonlocal Mel'nikov equation,the partial reverse space-time nonlocal Mel'nikov equation and the nonlocal twodimensional nonlinear Schr?dinger(NLS)equation.By the PINN method,we successfully derive a data-driven two soliton solution,lump solution and rogue wave solution.Numerical simulation results indicate that the error range between the data-driven solution and the exact solution is relatively small,which verifies the effectiveness of the PINN deep learning method for solving high dimensional nonlocal equations.Moreover,the parameter discovery of the partial reverse space-time nonlocal Mel'nikov equation is analysed in terms of its soliton solution for the first time.
基金Sponsored by the National Natural Science Foundation of China(Grant No.52005003)the Science and Technology Planning Project of Wuhu City(Grant No.2022jc41)。
文摘To address the challenges of insufficient visualization in the industrial robot assembly operation system and the limitation of visualizing only geometric attributes of physical properties,a method is proposed for constructing an industrial robot assembly system based on virtual reality technology.Focusing on the shaft hole assembly,the mechanical characteristics of the industrial robot shaft hole assembly process are analyzed and a dynamic model is established for shaft hole assembly operations.The key elements of virtual assembly operations for industrial robots are summarized and a five-dimensional model is proposed for industrial robot virtual operations.Utilizing the Unity3D engine based on the 5-D model for industrial robot virtual operations,an industrial robot shaft hole assembly system is developed.This system enables virtual assembly operations,displays physical attributes,and provides valuable references for the research of virtual systems.
基金supported by the National Nature Science Foundation of China(No.12172211)the National Key Research and Development Program of China(No.2019YFC1509800)。
文摘1 Introduction In highway construction,flled embankments are trapezoidal,and the ground is always improved by sand wells or columns.During embankment construction,because the width and height of the embankment are changing,a non-uniform load that varies with time and lateral location is applied to the underlying ground.The consolidation phenomenon under two-dimensional(2D)conditions will keep pace with the construction of the embankment.In addition,because of evaporation and rainfall,the soils are mostly unsaturated.Therefore,it is meaningful to research the consolidation properties of unsaturated ground under non-uniform loading.
基金supported by the Natural Science Foundation of Wenzhou Institute,University of Chinese Academy of Sciences(UCAS)(Grant No.WIUCASQD2023004)the National Natural Science Foundation of China(Grant Nos.12304006,12404265,and 12435001)+2 种基金the Natural Science Foundation of Shanghai,China(Grant No.23JC1401400)the Natural Science Foundation of Wenzhou(Grant No.L2023005)the Fundamental Research Funds for the Central Universities of East China University of Science and Technology。
文摘Two-dimensional(2D)fully compensated collinear magnetic materials ofer signifcant advantages for spintronic applications,including robustness against magnetic feld perturbations,no stray felds,and ultrafast dynamics.Among these materials,fully compensated ferrimagnets are particularly promising due to their unique characteristics such as the magneto-optical efect,completely spin-polarized currents,and the anomalous Hall efect.We performed a structural search on 2D unconventional stoichiometric Cr-I crystals using a global optimization algorithm.The most stable CrI-P21/m monolayer is a fully compensated ferrimagnetic semiconductor with a band gap of 1.57 eV and a high magnetic transition temperature of 592 K.The spontaneous spin splitting in CrI-P21/m originates from the inequivalent local coordination environments of Cr^(1)and Cr^(2)ions,yielding a mismatch in their 3d orbitals splitting.Notably,carrier doping at a concentration of 0.01 electrons or holes per atom enables reversible spin polarization,generating a fully spin-polarized current in CrI-P21/m.This performance makes it a highly promising candidate for spintronic devices.Our fndings not only provide a structural paradigm for discovering fully compensated ferrimagnets but also open a new avenue for designing zero-moment magnetic materials with intrinsic spin splitting.
基金supported by the Key Program of the National Natural Science Foundation of China(Grant No.62031013)Guangdong Province Key Construction Discipline Scientific Research Capacity Improvement Project(Grant No.2022ZDJS117).
文摘Nonlinear transforms have significantly advanced learned image compression(LIC),particularly using residual blocks.This transform enhances the nonlinear expression ability and obtain compact feature representation by enlarging the receptive field,which indicates how the convolution process extracts features in a high dimensional feature space.However,its functionality is restricted to the spatial dimension and network depth,limiting further improvements in network performance due to insufficient information interaction and representation.Crucially,the potential of high dimensional feature space in the channel dimension and the exploration of network width/resolution remain largely untapped.In this paper,we consider nonlinear transforms from the perspective of feature space,defining high-dimensional feature spaces in different dimensions and investigating the specific effects.Firstly,we introduce the dimension increasing and decreasing transforms in both channel and spatial dimensions to obtain high dimensional feature space and achieve better feature extraction.Secondly,we design a channel-spatial fusion residual transform(CSR),which incorporates multi-dimensional transforms for a more effective representation.Furthermore,we simplify the proposed fusion transform to obtain a slim architecture(CSR-sm),balancing network complexity and compression performance.Finally,we build the overall network with stacked CSR transforms to achieve better compression and reconstruction.Experimental results demonstrate that the proposed method can achieve superior ratedistortion performance compared to the existing LIC methods and traditional codecs.Specifically,our proposed method achieves 9.38%BD-rate reduction over VVC on Kodak dataset.
文摘This paper proposes the Leg Dimensional Synergistic Optimization Strategy(LDSOS)for humanoid robotic legs based on mechanism decoupling and performance assignment.The proposed method addresses the interdependent effects of dimensional parameters on the local and whole mechanisms in the design of hybrid humanoid robotic legs.It sequentially optimizes the dimensional parameters of the local and whole mechanism,thereby balancing the motion performance requirements of both.Additionally,it considers the assignment of efficient performance resources between the Local Functional Workspace(LFW)and the Whole Available Workspace(WAW).To facilitate the modeling and optimization process,a local/whole Equivalent Configuration Framework(ECF)is introduced.By decoupling the hybrid mechanism into a whole mechanism and multiple local mechanisms,the ECF enhances the efficiency of design,modeling,and performance evaluation.Prototype experiments are conducted to validate the effectiveness of LDSOS.This research provides an effective configuration framework for humanoid robotic leg design,establishing a theoretical and practical foundation for future optimized designs of humanoid robotic legs and pioneering novel approaches to the design of complex hybrid humanoid robotic legs.
基金the Deanship of Research and Graduate Studies at King Khalid University for funding this work through Large Research Project under Grant No.RGP2/539/45。
文摘We assume exponential corrections to the entropy of 5D charged Ad S black hole solutions,which are derived within the framework of Einstein-Gauss-Bonnet gravity and nonlinear electrodynamics.Additionally,we consider two distinct versions of 5D charged Ad S black holes by setting the parameters q→0 and k→0(where q represents the charge,and k is the non-linear parameter).We investigate these black holes in the extended phase space,where the cosmological constant is interpreted as pressure,demonstrating the first law of black hole thermodynamics.The focus extends to understanding the thermal stability or instability,as well as identifying first and second-order phase transitions.This exploration is carried out through the analysis of various thermodynamic quantities,including heat capacity at constant pressure,Gibbs free energy(GFE),Helmholtz free energy(HFE),and the trace of the Hessian matrix.In order to visualize phase transitions,identify critical points,analyze stability and provide comprehensive analysis,we have made the contour plot of the mentioned thermodynamic quantities and observed that our results are very consistent.These investigations are conducted within the context of exponentially corrected entropies,providing valuable insights into the intricate thermodynamic behavior of these 5D charged Ad S black holes under different parameter limits.