期刊文献+
共找到245篇文章
< 1 2 13 >
每页显示 20 50 100
Model-based Predictive Control for Spatially-distributed Systems Using Dimensional Reduction Models 被引量:3
1
作者 Meng-Ling Wang Ning Li Shao-Yuan Li 《International Journal of Automation and computing》 EI 2011年第1期1-7,共7页
In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems ... In this paper, a low-dimensional multiple-input and multiple-output (MIMO) model predictive control (MPC) configuration is presented for partial differential equation (PDE) unknown spatially-distributed systems (SDSs). First, the dimension reduction with principal component analysis (PCA) is used to transform the high-dimensional spatio-temporal data into a low-dimensional time domain. The MPC strategy is proposed based on the online correction low-dimensional models, where the state of the system at a previous time is used to correct the output of low-dimensional models. Sufficient conditions for closed-loop stability are presented and proven. Simulations demonstrate the accuracy and efficiency of the proposed methodologies. 展开更多
关键词 Spatially-distributed system principal component analysis (PCA) time/space separation dimension reduction model predictive control (MPC).
在线阅读 下载PDF
A Dimensional Reduction Approach Based on Essential Constraints in Linear Programming
2
作者 Eirini I. Nikolopoulou George S. Androulakis 《American Journal of Operations Research》 2024年第1期1-31,共31页
This paper presents a new dimension reduction strategy for medium and large-scale linear programming problems. The proposed method uses a subset of the original constraints and combines two algorithms: the weighted av... This paper presents a new dimension reduction strategy for medium and large-scale linear programming problems. The proposed method uses a subset of the original constraints and combines two algorithms: the weighted average and the cosine simplex algorithm. The first approach identifies binding constraints by using the weighted average of each constraint, whereas the second algorithm is based on the cosine similarity between the vector of the objective function and the constraints. These two approaches are complementary, and when used together, they locate the essential subset of initial constraints required for solving medium and large-scale linear programming problems. After reducing the dimension of the linear programming problem using the subset of the essential constraints, the solution method can be chosen from any suitable method for linear programming. The proposed approach was applied to a set of well-known benchmarks as well as more than 2000 random medium and large-scale linear programming problems. The results are promising, indicating that the new approach contributes to the reduction of both the size of the problems and the total number of iterations required. A tree-based classification model also confirmed the need for combining the two approaches. A detailed numerical example, the general numerical results, and the statistical analysis for the decision tree procedure are presented. 展开更多
关键词 Linear Programming Binding Constraints Dimension reduction Cosine Similarity Decision Analysis Decision Trees
在线阅读 下载PDF
Dimensionality reduction method based on energy order distribution for multi-nonlinearity-coupled rotor-bearing system
3
作者 Runchao ZHAO Yinghou JIAO +5 位作者 Zhiqian ZHAO Zengtao CHEN Hongwei GUO Zongquan DENG Zhitong LI Rongqiang LIU 《Chinese Journal of Aeronautics》 2025年第11期158-179,共22页
Gas turbine rotors are complex dynamic systems with high-dimensional,discrete,and multi-source nonlinear coupling characteristics.Significant amounts of resources and time are spent during the process of solving dynam... Gas turbine rotors are complex dynamic systems with high-dimensional,discrete,and multi-source nonlinear coupling characteristics.Significant amounts of resources and time are spent during the process of solving dynamic characteristics.Therefore,it is necessary to design a lowdimensional model that can well reflect the dynamic characteristics of high-dimensional system.To build such a low-dimensional model,this study developed a dimensionality reduction method considering global order energy distribution by modifying the proper orthogonal decomposition theory.First,sensitivity analysis of key dimensionality reduction parameters to the energy distribution was conducted.Then a high-dimensional rotor-bearing system considering the nonlinear stiffness and oil film force was reduced,and the accuracy and the reusability of the low-dimensional model under different operating conditions were examined.Finally,the response results of a multi-disk rotor-bearing test bench were reduced using the proposed method,and spectrum results were then compared experimentally.Numerical and experimental results demonstrate that,during the dimensionality reduction process,the solution period of dynamic response results has the most significant influence on the accuracy of energy preservation.The transient signal in the transformation matrix mainly affects the high-order energy distribution of the rotor system.The larger the proportion of steady-state signals is,the closer the energy tends to accumulate towards lower orders.The low-dimensional rotor model accurately reflects the frequency response characteristics of the original high-dimensional system with an accuracy of up to 98%.The proposed dimensionality reduction method exhibits significant application potential in the dynamic analysis of highdimensional systems coupled with strong nonlinearities under variable operating conditions. 展开更多
关键词 dimensionality reduction method Energy distribution High-dimensional rotor system Response prediction Rotor dynamics
原文传递
Incremental dimensionality reduction for efficiently solving Bayesian inverse problems
4
作者 Qing-Qing Li Bo Yu +3 位作者 Jia-Liang Xu Ning Wang Shi-Chao Wang Hui Zhou 《Petroleum Science》 2025年第10期4102-4116,共15页
The inversion of large sparse matrices poses a major challenge in geophysics,particularly in Bayesian seismic inversion,significantly limiting computational efficiency and practical applicability to largescale dataset... The inversion of large sparse matrices poses a major challenge in geophysics,particularly in Bayesian seismic inversion,significantly limiting computational efficiency and practical applicability to largescale datasets.Existing dimensionality reduction methods have achieved partial success in addressing this issue.However,they remain limited in terms of the achievable degree of dimensionality reduction.An incremental deep dimensionality reduction approach is proposed herein to significantly reduce matrix size and is applied to Bayesian linearized inversion(BLI),a stochastic seismic inversion approach that heavily depends on large sparse matrices inversion.The proposed method first employs a linear transformation based on the discrete cosine transform(DCT)to extract the matrix's essential information and eliminate redundant components,forming the foundation of the dimensionality reduction framework.Subsequently,an innovative iterative DCT-based dimensionality reduction process is applied,where the reduction magnitude is carefully calibrated at each iteration to incrementally reduce dimensionality,thereby effectively eliminating matrix redundancy in depth.This process is referred to as the incremental discrete cosine transform(IDCT).Ultimately,a linear IDCT-based reduction operator is constructed and applied to the kernel matrix inversion in BLI,resulting in a more efficient BLI framework.The proposed method was evaluated through synthetic and field data tests and compared with conventional dimensionality reduction methods.The IDCT approach significantly improves the dimensionality reduction efficiency of the core inversion matrix while preserving inversion accuracy,demonstrating prominent advantages in solving Bayesian inverse problems more efficiently. 展开更多
关键词 Dimension reduction Seismic inversion Discrete cosine transform
原文传递
Speech emotion recognition via discriminant-cascading dimensionality reduction 被引量:1
5
作者 王如刚 徐新洲 +3 位作者 黄程韦 吴尘 张昕然 赵力 《Journal of Southeast University(English Edition)》 EI CAS 2016年第2期151-157,共7页
In order to accurately identify speech emotion information, the discriminant-cascading effect in dimensionality reduction of speech emotion recognition is investigated. Based on the existing locality preserving projec... In order to accurately identify speech emotion information, the discriminant-cascading effect in dimensionality reduction of speech emotion recognition is investigated. Based on the existing locality preserving projections and graph embedding framework, a novel discriminant-cascading dimensionality reduction method is proposed, which is named discriminant-cascading locality preserving projections (DCLPP). The proposed method specifically utilizes supervised embedding graphs and it keeps the original space for the inner products of samples to maintain enough information for speech emotion recognition. Then, the kernel DCLPP (KDCLPP) is also proposed to extend the mapping form. Validated by the experiments on the corpus of EMO-DB and eNTERFACE'05, the proposed method can clearly outperform the existing common dimensionality reduction methods, such as principal component analysis (PCA), linear discriminant analysis (LDA), locality preserving projections (LPP), local discriminant embedding (LDE), graph-based Fisher analysis (GbFA) and so on, with different categories of classifiers. 展开更多
关键词 speech emotion recognition discriminant-cascading locality preserving projections DISCRIMINANTANALYSIS dimensionality reduction
在线阅读 下载PDF
DIMENSIONALITY REDUCTION BASED ON SVM AND LDA,AND ITS APPLICATION TO CLASSIFICATION TECHNIQUE 被引量:1
6
作者 杨波 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2009年第4期306-312,共7页
Some dimensionality reduction (DR) approaches based on support vector machine (SVM) are proposed. But the acquirement of the projection matrix in these approaches only considers the between-class margin based on S... Some dimensionality reduction (DR) approaches based on support vector machine (SVM) are proposed. But the acquirement of the projection matrix in these approaches only considers the between-class margin based on SVM while ignoring the within-class information in data. This paper presents a new DR approach, call- ed the dimensionality reduction based on SVM and LDA (DRSL). DRSL considers the between-class margins from SVM and LDA, and the within-class compactness from LDA to obtain the projection matrix. As a result, DRSL can realize the combination of the between-class and within-class information and fit the between-class and within-class structures in data. Hence, the obtained projection matrix increases the generalization ability of subsequent classification techniques. Experiments applied to classification techniques show the effectiveness of the proposed method. 展开更多
关键词 classification information pattern recognition dimensionality reduction (DR) support vectormachine (SVM) linear discriminant analysis (LDA)
在线阅读 下载PDF
Dimensional Reduction of Eu-Based Metal-Organic Framework as Catalysts for Oxidation Catalysis of C(sp^(3))-H Bond
7
作者 Yin Zhang Wei-Dong Yu +1 位作者 Cai-Feng Zhao Jun Yan 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2022年第4期480-486,共7页
Comprehensive Summary Developing new catalysts for highly selectivity and conversion of saturated C(sp^(3))-H bonds is of great significance.In order to obtain catalysts with high catalytic performance,six Eu-based MO... Comprehensive Summary Developing new catalysts for highly selectivity and conversion of saturated C(sp^(3))-H bonds is of great significance.In order to obtain catalysts with high catalytic performance,six Eu-based MOFs with different structural characteristics were obtained by using europium ions and different organic acid ligands,namely Eu-1~Eu-6.Eu-1,Eu-2 and Eu-3 featured three-dimensional structures,while Eu-4 and Eu-5 featured two-dimensional structures. 展开更多
关键词 Metal-organic frameworks Heterogeneous catalysis Rare earths dimensional reduction Selectively oxidize C(sp^(3))-H
原文传递
Principal Manifolds and Nonlinear Dimensionality Reduction via Tangent Space Alignment 被引量:81
8
作者 张振跃 查宏远 《Journal of Shanghai University(English Edition)》 CAS 2004年第4期406-424,共19页
We present a new algorithm for manifold learning and nonlinear dimensionality reduction. Based on a set of unorganized data points sampled with noise from a parameterized manifold, the local geometry of the manifold i... We present a new algorithm for manifold learning and nonlinear dimensionality reduction. Based on a set of unorganized data points sampled with noise from a parameterized manifold, the local geometry of the manifold is learned by constructing an approximation for the tangent space at each point, and those tangent spaces are then aligned to give the global coordinates of the data points with respect to the underlying manifold. We also present an error analysis of our algorithm showing that reconstruction errors can be quite small in some cases. We illustrate our algorithm using curves and surfaces both in 2D/3D Euclidean spaces and higher dimensional Euclidean spaces. We also address several theoretical and algorithmic issues for further research and improvements. 展开更多
关键词 nonlinear dimensionality reduction principal manifold tangent space subspace alignment singular value decomposition.
在线阅读 下载PDF
Global aerodynamic design optimization based on data dimensionality reduction 被引量:14
9
作者 Yasong QIU Junqiang BAI +1 位作者 Nan LIU Chen WANG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2018年第4期643-659,共17页
In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number... In aerodynamic optimization, global optimization methods such as genetic algorithms are preferred in many cases because of their advantage on reaching global optimum. However,for complex problems in which large number of design variables are needed, the computational cost becomes prohibitive, and thus original global optimization strategies are required. To address this need, data dimensionality reduction method is combined with global optimization methods, thus forming a new global optimization system, aiming to improve the efficiency of conventional global optimization. The new optimization system involves applying Proper Orthogonal Decomposition(POD) in dimensionality reduction of design space while maintaining the generality of original design space. Besides, an acceleration approach for samples calculation in surrogate modeling is applied to reduce the computational time while providing sufficient accuracy. The optimizations of a transonic airfoil RAE2822 and the transonic wing ONERA M6 are performed to demonstrate the effectiveness of the proposed new optimization system. In both cases, we manage to reduce the number of design variables from 20 to 10 and from 42 to 20 respectively. The new design optimization system converges faster and it takes 1/3 of the total time of traditional optimization to converge to a better design, thus significantly reducing the overall optimization time and improving the efficiency of conventional global design optimization method. 展开更多
关键词 Aerodynamic shape design optimization Data dimensionality reduction Genetic algorithm Kriging surrogate model Proper orthogonal decomposition
原文传递
Multi-label dimensionality reduction and classification with extreme learning machines 被引量:9
10
作者 Lin Feng Jing Wang +1 位作者 Shenglan Liu Yao Xiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2014年第3期502-513,共12页
In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the researc... In the need of some real applications, such as text categorization and image classification, the multi-label learning gradually becomes a hot research point in recent years. Much attention has been paid to the research of multi-label classification algorithms. Considering the fact that the high dimensionality of the multi-label datasets may cause the curse of dimensionality and wil hamper the classification process, a dimensionality reduction algorithm, named multi-label kernel discriminant analysis (MLKDA), is proposed to reduce the dimensionality of multi-label datasets. MLKDA, with the kernel trick, processes the multi-label integrally and realizes the nonlinear dimensionality reduction with the idea similar with linear discriminant analysis (LDA). In the classification process of multi-label data, the extreme learning machine (ELM) is an efficient algorithm in the premise of good accuracy. MLKDA, combined with ELM, shows a good performance in multi-label learning experiments with several datasets. The experiments on both static data and data stream show that MLKDA outperforms multi-label dimensionality reduction via dependence maximization (MDDM) and multi-label linear discriminant analysis (MLDA) in cases of balanced datasets and stronger correlation between tags, and ELM is also a good choice for multi-label classification. 展开更多
关键词 MULTI-LABEL dimensionality reduction kernel trick classification.
在线阅读 下载PDF
Review on graph learning for dimensionality reduction of hyperspectral image 被引量:7
11
作者 Liangpei Zhang Fulin Luo 《Geo-Spatial Information Science》 SCIE CSCD 2020年第1期98-106,共9页
Graph learning is an effective manner to analyze the intrinsic properties of data.It has been widely used in the fields of dimensionality reduction and classification for data.In this paper,we focus on the graph learn... Graph learning is an effective manner to analyze the intrinsic properties of data.It has been widely used in the fields of dimensionality reduction and classification for data.In this paper,we focus on the graph learning-based dimensionality reduction for a hyperspectral image.Firstly,we review the development of graph learning and its application in a hyperspectral image.Then,we mainly discuss several representative graph methods including two manifold learning methods,two sparse graph learning methods,and two hypergraph learning methods.For manifold learning,we analyze neighborhood preserving embedding and locality preserving projections which are two classic manifold learning methods and can be transformed into the form of a graph.For sparse graph,we introduce sparsity preserving graph embedding and sparse graph-based discriminant analysis which can adaptively reveal data structure to construct a graph.For hypergraph learning,we review binary hypergraph and discriminant hyper-Laplacian projection which can represent the high-order relationship of data. 展开更多
关键词 Hyperspectral image dimensionality reduction CLASSIFICATION graph learning
原文传递
Nonlinear Dimensionality Reduction and Data Visualization:A Review 被引量:4
12
作者 Hujun Yin 《International Journal of Automation and computing》 EI 2007年第3期294-303,共10页
Dimensionality reduction and data visualization are useful and important processes in pattern recognition. Many techniques have been developed in the recent years. The self-organizing map (SOM) can be an efficient m... Dimensionality reduction and data visualization are useful and important processes in pattern recognition. Many techniques have been developed in the recent years. The self-organizing map (SOM) can be an efficient method for this purpose. This paper reviews recent advances in this area and related approaches such as multidimensional scaling (MDS), nonlinear PC A, principal manifolds, as well as the connections of the SOM and its recent variant, the visualization induced SOM (ViSOM), with these approaches. The SOM is shown to produce a quantized, qualitative scaling and while the ViSOM a quantitative or metric scaling and approximates principal curve/surface. The SOM can also be regarded as a generalized MDS to relate two metric spaces by forming a topological mapping between them. The relationships among various recently proposed techniques such as ViSOM, Isomap, LLE, and eigenmap are discussed and compared. 展开更多
关键词 dimensionality reduction nonlinear data projection multidimensional scaling self-organizing maps nonlinear PCA principal manifold
在线阅读 下载PDF
Image feature optimization based on nonlinear dimensionality reduction 被引量:3
13
作者 Rong ZHU Min YAO 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第12期1720-1737,共18页
Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping... Image feature optimization is an important means to deal with high-dimensional image data in image semantic understanding and its applications. We formulate image feature optimization as the establishment of a mapping between highand low-dimensional space via a five-tuple model. Nonlinear dimensionality reduction based on manifold learning provides a feasible way for solving such a problem. We propose a novel globular neighborhood based locally linear embedding (GNLLE) algorithm using neighborhood update and an incremental neighbor search scheme, which not only can handle sparse datasets but also has strong anti-noise capability and good topological stability. Given that the distance measure adopted in nonlinear dimensionality reduction is usually based on pairwise similarity calculation, we also present a globular neighborhood and path clustering based locally linear embedding (GNPCLLE) algorithm based on path-based clustering. Due to its full consideration of correlations between image data, GNPCLLE can eliminate the distortion of the overall topological structure within the dataset on the manifold. Experimental results on two image sets show the effectiveness and efficiency of the proposed algorithms. 展开更多
关键词 Image feature optimization Nonlinear dimensionality reduction Manifold learning Locally linear embedding (LLE)
原文传递
Feature Extraction and Dimensionality Reduction of Arc Sound under Typical Penetration Status in Metal Inert Gas Welding 被引量:2
14
作者 LIU Lijun LAN Hu +1 位作者 ZHENG Hongyan JIAN Xiaoxia 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2012年第2期293-298,共6页
Arc sound is well known as the potential and available resource for monitoring and controlling of the weld penetration status,which is very important to the welding process quality control,so any attentions have been ... Arc sound is well known as the potential and available resource for monitoring and controlling of the weld penetration status,which is very important to the welding process quality control,so any attentions have been paid to the relationships between the arc sound and welding parameters.Some non-linear mapping models correlating the arc sound to welding parameters have been established with the help of neural networks.However,the research of utilizing arc sound to monitor and diagnose welding process is still in its infancy.A self-made real-time sensing system is applied to make a study of arc sound under typical penetration status,including partial penetration,unstable penetration,full penetration and excessive penetration,in metal inert-gas(MIG) flat tailored welding with spray transfer.Arc sound is pretreated by using wavelet de-noising and short-time windowing technologies,and its characteristics,characterizing weld penetration status,of time-domain,frequency-domain,cepstrum-domain and geometric-domain are extracted.Subsequently,high-dimensional eigenvector is constructed and feature-level parameters are successfully fused utilizing the concept of primary principal component analysis(PCA).Ultimately,60-demensional eigenvector is replaced by the synthesis of 8-demensional vector,which achieves compression for feature space and provides technical supports for pattern classification of typical penetration status with the help of arc sound in MIG welding in the future. 展开更多
关键词 metal inert gas welding PENETRATION arc sound feature extraction dimensionality reduction
在线阅读 下载PDF
DIMENSIONALITY REDUCTION FOR HYPERSPECTRAL IMAGERY BASED ON FASTICA 被引量:4
15
作者 Xin Qin Nian Yongjian +2 位作者 Li Xiu Wan Jianwei Su Linghua 《Journal of Electronics(China)》 2009年第6期831-835,共5页
The high dimensions of hyperspectral imagery have caused burden for further processing. A new Fast Independent Component Analysis (FastICA) approach to dimensionality reduction for hyperspectral imagery is presented. ... The high dimensions of hyperspectral imagery have caused burden for further processing. A new Fast Independent Component Analysis (FastICA) approach to dimensionality reduction for hyperspectral imagery is presented. The virtual dimensionality is introduced to determine the number of dimensions needed to be preserved. Since there is no prioritization among independent components generated by the FastICA,the mixing matrix of FastICA is initialized by endmembers,which were extracted by using unsupervised maximum distance method. Minimum Noise Fraction (MNF) is used for preprocessing of original data,which can reduce the computational complexity of FastICA significantly. Finally,FastICA is performed on the selected principal components acquired by MNF to generate the expected independent components in accordance with the order of endmembers. Experimental results demonstrate that the proposed method outperforms second-order statistics-based transforms such as principle components analysis. 展开更多
关键词 Hyperspectral imagery dimensionality reduction Independent Component Analysis(ICA)
在线阅读 下载PDF
Dimensionality Reduction by Mutual Information for Text Classification 被引量:2
16
作者 刘丽珍 宋瀚涛 陆玉昌 《Journal of Beijing Institute of Technology》 EI CAS 2005年第1期32-36,共5页
The frame of text classification system was presented. The high dimensionality in feature space for text classification was studied. The mutual information is a widely used information theoretic measure, in a descript... The frame of text classification system was presented. The high dimensionality in feature space for text classification was studied. The mutual information is a widely used information theoretic measure, in a descriptive way, to measure the stochastic dependency of discrete random variables. The measure method was used as a criterion to reduce high dimensionality of feature vectors in text classification on Web. Feature selections or conversions were performed by using maximum mutual information including linear and non-linear feature conversions. Entropy was used and extended to find right features commendably in pattern recognition systems. Favorable foundation would be established for text classification mining. 展开更多
关键词 text classification mutual information dimensionality reduction
在线阅读 下载PDF
Graph-Based Dimensionality Reduction for Hyperspectral Imagery: A Review 被引量:1
17
作者 Zhen Ye Shihao Shi +4 位作者 Zhan Cao Lin Bai Cuiling Li Tao Sun Yongqiang Xi 《Journal of Beijing Institute of Technology》 EI CAS 2021年第2期91-112,共22页
Hyperspectral image(HSI)contains a wealth of spectral information,which makes fine classification of ground objects possible.In the meanwhile,overly redundant information in HSI brings many challenges.Specifically,the... Hyperspectral image(HSI)contains a wealth of spectral information,which makes fine classification of ground objects possible.In the meanwhile,overly redundant information in HSI brings many challenges.Specifically,the lack of training samples and the high computational cost are the inevitable obstacles in the design of classifier.In order to solve these problems,dimensionality reduction is usually adopted.Recently,graph-based dimensionality reduction has become a hot topic.In this paper,the graph-based methods for HSI dimensionality reduction are summarized from the following aspects.1)The traditional graph-based methods employ Euclidean distance to explore the local information of samples in spectral feature space.2)The dimensionality-reduction methods based on sparse or collaborative representation regard the sparse or collaborative coefficients as graph weights to effectively reduce reconstruction errors and represent most important information of HSI in the dictionary.3)Improved methods based on sparse or collaborative graph have made great progress by considering global low-rank information,local intra-class information and spatial information.In order to compare typical techniques,three real HSI datasets were used to carry out relevant experiments,and then the experimental results were analysed and discussed.Finally,the future development of this research field is prospected. 展开更多
关键词 hyperspectral image dimensionality reduction graph embedding sparse representation collaborative representation
在线阅读 下载PDF
Spatial weight matrix in dimensionality reduction reconstruction for microelectromechanical system-based photoacoustic microscopy 被引量:1
18
作者 Yuanzheng Ma Chang Lu +2 位作者 Kedi Xiong Wuyu Zhang Sihua Yang 《Visual Computing for Industry,Biomedicine,and Art》 2020年第1期247-256,共10页
A micro-electromechanical system(MEMS)scanning mirror accelerates the raster scanning of optical-resolution photoacoustic microscopy(OR-PAM).However,the nonlinear tilt angular-voltage characteristic of a MEMS mirror i... A micro-electromechanical system(MEMS)scanning mirror accelerates the raster scanning of optical-resolution photoacoustic microscopy(OR-PAM).However,the nonlinear tilt angular-voltage characteristic of a MEMS mirror introduces distortion into the maximum back-projection image.Moreover,the size of the airy disk,ultrasonic sensor properties,and thermal effects decrease the resolution.Thus,in this study,we proposed a spatial weight matrix(SWM)with a dimensionality reduction for image reconstruction.The three-layer SWM contains the invariable information of the system,which includes a spatial dependent distortion correction and 3D deconvolution.We employed an ordinal-valued Markov random field and the Harris Stephen algorithm,as well as a modified delay-and-sum method during a time reversal.The results from the experiments and a quantitative analysis demonstrate that images can be effectively reconstructed using an SWM;this is also true for severely distorted images.The index of the mutual information between the reference images and registered images was 70.33 times higher than the initial index,on average.Moreover,the peak signal-to-noise ratio was increased by 17.08%after 3D deconvolution.This accomplishment offers a practical approach to image reconstruction and a promising method to achieve a real-time distortion correction for MEMS-based OR-PAM. 展开更多
关键词 Photoacoustic microscopy Spatial weight matrix dimensionality reduction Distortion correction Mutual information
在线阅读 下载PDF
Multi-label dimensionality reduction based on semi-supervised discriminant analysis
19
作者 李宏 李平 +1 位作者 郭跃健 吴敏 《Journal of Central South University》 SCIE EI CAS 2010年第6期1310-1319,共10页
Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimension... Multi-label data with high dimensionality often occurs,which will produce large time and energy overheads when directly used in classification tasks.To solve this problem,a novel algorithm called multi-label dimensionality reduction via semi-supervised discriminant analysis(MSDA) was proposed.It was expected to derive an objective discriminant function as smooth as possible on the data manifold by multi-label learning and semi-supervised learning.By virtue of the latent imformation,which was provided by the graph weighted matrix of sample attributes and the similarity correlation matrix of partial sample labels,MSDA readily made the separability between different classes achieve maximization and estimated the intrinsic geometric structure in the lower manifold space by employing unlabeled data.Extensive experimental results on several real multi-label datasets show that after dimensionality reduction using MSDA,the average classification accuracy is about 9.71% higher than that of other algorithms,and several evaluation metrices like Hamming-loss are also superior to those of other dimensionality reduction methods. 展开更多
关键词 manifold learning semi-supervised learning (SSL) linear diseriminant analysis (LDA) multi-label classification dimensionality reduction
在线阅读 下载PDF
Rough Sets Hybridization with Mayfly Optimization for Dimensionality Reduction
20
作者 Ahmad Taher Azar Mustafa Samy Elgendy +1 位作者 Mustafa Abdul Salam Khaled M.Fouad 《Computers, Materials & Continua》 SCIE EI 2022年第10期1087-1108,共22页
Big data is a vast amount of structured and unstructured data that must be dealt with on a regular basis.Dimensionality reduction is the process of converting a huge set of data into data with tiny dimensions so that ... Big data is a vast amount of structured and unstructured data that must be dealt with on a regular basis.Dimensionality reduction is the process of converting a huge set of data into data with tiny dimensions so that equal information may be expressed easily.These tactics are frequently utilized to improve classification or regression challenges while dealing with machine learning issues.To achieve dimensionality reduction for huge data sets,this paper offers a hybrid particle swarm optimization-rough set PSO-RS and Mayfly algorithm-rough set MA-RS.A novel hybrid strategy based on the Mayfly algorithm(MA)and the rough set(RS)is proposed in particular.The performance of the novel hybrid algorithm MA-RS is evaluated by solving six different data sets from the literature.The simulation results and comparison with common reduction methods demonstrate the proposed MARS algorithm’s capacity to handle a wide range of data sets.Finally,the rough set approach,as well as the hybrid optimization techniques PSO-RS and MARS,were applied to deal with the massive data problem.MA-hybrid RS’s method beats other classic dimensionality reduction techniques,according to the experimental results and statistical testing studies. 展开更多
关键词 dimensionality reduction metaheuristics optimization algorithm MAYFLY particle swarm optimizer feature selection
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部