The size effects were experimentally investigated and the underlying mechanism was analyzed.The results reveal that,as the specimen size increases,the interconnectivity of macropores slightly decreases.This in turn co...The size effects were experimentally investigated and the underlying mechanism was analyzed.The results reveal that,as the specimen size increases,the interconnectivity of macropores slightly decreases.This in turn constrains the diffusion of CO_(2) and moisture in the specimens,resulting in an increase in the discrepancy between the internal and external carbonation degrees.An increase in cement paste thickness simultaneously decreases the quantity,average size,and interconnectivity of macropores,lowering the diffusion efficacy of CO_(2) and moisture and exacerbating the overall heterogeneity in carbonation.Moreover,the gradual blockage of macropores leads to the emergence of localized ‘occluded zones’ with much lower carbonation degree.The reduction in aggregate size significantly alters the average diameter and connectivity of macropores,leading to notable change to overall non-uniformity.This study provides insight into improving the CO_(2) curing effect of pervious concrete products and developing uniform curing methods.展开更多
Low-dimensional physics provides profound insights into strongly correlated interactions,leading to enhancedquantum effects and the emergence of exotic quantum states.The Ln_(3)ScBi_(5)family stands out as a chemicall...Low-dimensional physics provides profound insights into strongly correlated interactions,leading to enhancedquantum effects and the emergence of exotic quantum states.The Ln_(3)ScBi_(5)family stands out as a chemicallyversatile kagome platform with mixed low-dimensional structural framework and tunable physical properties.Ourresearch initiates with a comprehensive evaluation of the currently known Ln_(3)ScBi_(5)(Ln=La-Nd,Sm)materials,providing a robust methodology for assessing their stability frontiers within this system.Focusing on Pr_(3)ScBi_(5),we investigate the influence of the zigzag chains of quasi-one-dimensional(Q1D)motifs and the distorted kagomelayers of quasi-two-dimensional(Q2D)networks in the mixed-dimensional structure on the intricate magneticground states and unique spin fluctuations.Our study reveals that the noncollinear antiferromagnetic(AFM)moments of Pr^(3+)ions are confined within the Q2D kagome planes,displaying minimal in-plane anisotropy.Incontrast,a strong AFM coupling is observed within the Q1D zigzag chains,significantly constraining spin motion.Notably,magnetic frustration is partially a consequence of coupling to conduction electrons via Ruderman-Kittel-Kasuya-Yosida interaction,highlighting a promising framework for future investigations into mixed-dimensional frustration in Ln_(3)ScBi_(5) systems.展开更多
This study introduces the individualism-collectivism dimension of the cultural dimension of cross-cultural communication initiated by Geert Hofstede.Different cultures must develop a way of correlating that strikes a ...This study introduces the individualism-collectivism dimension of the cultural dimension of cross-cultural communication initiated by Geert Hofstede.Different cultures must develop a way of correlating that strikes a balance between caring for themselves and showing concern for others.Individualist culture encourages uniqueness and independence while collectivist culture emphasizes conformity and mutual assistance.This article introduces how to use case analysis method to effectively carry out classroom teaching in this cultural dimension.展开更多
Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and requi...Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors.展开更多
The effect of finite number and dimensionality has been discussed in thispaper. The finite number effect has a negative correction to final temperature for 2D or 3D atomicFermi gases. The changing of final temperature...The effect of finite number and dimensionality has been discussed in thispaper. The finite number effect has a negative correction to final temperature for 2D or 3D atomicFermi gases. The changing of final temperature obtained by scanning from BEC region to BCS regionare 10% or so with N ≤ 10~3 and can be negligible when N 】 10~3. However, in ID atomic Fermi gas,the effect gives a positive correction which greatly changes the final temperature in Fermi gas.This behavior is completely opposed to the 2D and 3D cases and a proper explanation is still to befound. Dimensionality also has a positive correction, in which the more tightly trapping, the higherfinal temperature one gets with the same particle number. A discussion is also presented.展开更多
Three-dimensional(3D) crossbar array architecture is one of the leading candidates for future ultra-high density nonvolatile memory applications. To realize the technological potential, understanding the reliability...Three-dimensional(3D) crossbar array architecture is one of the leading candidates for future ultra-high density nonvolatile memory applications. To realize the technological potential, understanding the reliability mechanisms of the3 D RRAM array has become a field of intense research. In this work, the endurance performance of the 3D 1D1 R crossbar array under the thermal effect is investigated in terms of numerical simulation. It is revealed that the endurance performance of the 3D 1D1 R array would be seriously deteriorated under thermal effects as the feature size scales down to a relatively small value. A possible method to alleviate the thermal effects is provided and verified by numerical simulation.展开更多
Geological strength index(GSI)has been widely used as an input parameter in predicting the strength and deformation properties of rock masses.This study derived a series of equations to satisfy the original GSI lines ...Geological strength index(GSI)has been widely used as an input parameter in predicting the strength and deformation properties of rock masses.This study derived a series of equations to satisfy the original GSI lines on the basic GSI chart.Two axes ranging from 0 to 100 were employed for surface conditions of the discontinuities and the structure of rock mass,which are independent of the input parameters.The derived equations can analyze GSI values ranging from 0 to 100 within±5%error.The engineering dimensions(EDs)such as the slope height,tunnel width,and foundation width were used together with representative elementary volume(REV)in jointed rock mass to define scale factor(sf)from 0.2 to 1 in evaluating the rock mass structure including joint pattern.The transformation of GSI into a scaledependent parameter based on engineering scale addresses a crucial requirement in various engineering applications.The improvements proposed in this study were applied to a real slope which was close to the time of failure.The results of stability assessments show that the new proposals have sufficient capability to define rock mass quality considering EDs.展开更多
A three-dimensional (3-D) approach based on the state space method is proposed to study size-dependent mechanical properties of ultra-thin plate-like elastic structures considering surface effects. The structure is ...A three-dimensional (3-D) approach based on the state space method is proposed to study size-dependent mechanical properties of ultra-thin plate-like elastic structures considering surface effects. The structure is modeled as a laminate composed of a bulk bounded with upper and bottom surface layers, which are allowed to have different material properties from the bulk layer. State equations, including the surface properties of the structure, can be established on the basis of 3-D fundamental elasticity to analyze the size-dependent static characteristics of the thin plate-like structure. Compared with two-dimensional plate theories based size-dependent models for thin film structures in literature, the present 3-D approach is exact, which can provide benchmark results to assess the accuracy of 2-D plate theories and various numerical approaches. To show the feasibility of the proposed approach, a 3-D analytical solution for a simply supported plate-like thin structure including surface layers is derived. An algorithm is proposed for the calculation of the state equations obtained to ensure that the numerical results can reveal the surface effects clearly even for extremely thin surface layers. Numerical examples are carried out to exhibit the surface effects and some discussions are provided based on the results obtained.展开更多
In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanis...In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanisms, such as the acoustic and optical phonon scattering, the ionized impurity scattering, the impact ionization scattering and the surface roughness scattering are considered in our simulator. The effects of the substrate bias and the surface roughness scattering near the Si/SiO2 interface on the performance of bulk FinFET are mainly discussed in our work. Our results show that the on-current of bulk FinFET is sensitive to the surface roughness and that we can reduce the substrate leakage current by modulating the substrate bias voltage.展开更多
In the past few decades, the (1 + 1)-dimensional nonlinear Schr6dinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the de...In the past few decades, the (1 + 1)-dimensional nonlinear Schr6dinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the development of theory, we note that the (1+1)-dimensional model cannot reflect the evolution of envelope Rossby solitary waves in a plane. In this paper, by constructing a new (2+1)-dimensional multiscale transform, we derive the (2+1)-dimensional dissipation nonlinear Schrodinger equation (DNLS) to describe envelope Rossby solitary waves under the influence of dissipation which propagate in a plane. Especially, the previous researches about envelope Rossby solitary waves were established in the zonal area and could not be applied directly to the spherical earth, while we adopt the plane polar coordinate and overcome the problem. By theoretical analyses, the conservation laws of (2+ 1)-dimensional envelope Rossby solitary waves as well as their variation under the influence of dissipation are studied. Finally, the one-soliton and two-soliton solutions of the (2+ 1)-dimensional NLS equation are obtained with the Hirota method. Based on these solutions, by virtue of the chirp concept from fiber soliton communication, the chirp effect of envelope Rossby solitary waves is discussed, and the related impact factors of the chirp effect are given.展开更多
In this paper, we make an initial value investigation of the unsteady flow of incompressible viscous fluid between two rigid non-conducting rotating parallel plates bounded by a porous medium under the influence of a ...In this paper, we make an initial value investigation of the unsteady flow of incompressible viscous fluid between two rigid non-conducting rotating parallel plates bounded by a porous medium under the influence of a uniform magnetic field of strength H0 inclined at an angle of inclination α with normal to the boundaries taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate while the lower plate is at rest. The flow in the porous medium is governed by the Brinkman’s equations. The exact solution of the velocity in the porous medium consists of steady state and transient state. The time required for the transient state to decay is evaluated in detail and the ultimate quasi-steady state solution has been derived analytically. Its behaviour is computationally discussed with reference to the various governing parameters. The shear stresses on the boundaries are also obtained analytically and their behaviour is computationally discussed.展开更多
The effect of time and environment on the dimension precision and mass of LOM prototypes was experimentally investigated.It is to identify the stability of the dimension of LOM prototypes after forming.The results sho...The effect of time and environment on the dimension precision and mass of LOM prototypes was experimentally investigated.It is to identify the stability of the dimension of LOM prototypes after forming.The results show that the dimension and the mass tendency to grow,which is mainly caused by elastic recovery and moisture absorption and is characterized principally by the growth of Z dimension.Self restraint can be a significant factor to influence Z growth of LOM prototypes.展开更多
Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate ...Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.展开更多
Load transformation from the yielding part of the soil to the adjacent part is known as the soil arching effect,which plays an important role in the design of various geotechnical infrastructures.Terzaghi’s trapdoor ...Load transformation from the yielding part of the soil to the adjacent part is known as the soil arching effect,which plays an important role in the design of various geotechnical infrastructures.Terzaghi’s trapdoor test was an importantmilestone in the development of theories on soil arching.The research on earth pressure of the trapdoor problem is presented in this paper using the three-dimensional(3D)discrete element method(DEM).Five 3D trapdoor models with different heights are established by 3DDEMsoftware PFC 3D.The variation of earth pressure on the trapdoor with the downward movement of the trapdoor,the distribution of vertical earth pressure along the horizontal direction,the distribution of vertical earth pressure along the vertical direction,the distribution of lateral earth pressure coefficient along the depth direction,the magnitude and direction of contact force chain are studied,respectively.Related research results show that the earth pressure on the trapdoor decreases rapidly after the downward movement of the trapdoor,and then reaches the minimum earth pressure.After that,the earth’s pressure will rise slightly,and whether this phenomenon occurs depends on the depth ratio.For the bottom soil,due to the stress transfer caused by the soil arching effect,the ratio of earth pressure in the loose area decreases,while the ratio of earth pressure in the stable area increases.With the trapdoor moving down,the vertical earth pressure along the depth in the stable zone is basically consistent with the initial state,which shows an approximate linear distribution.After the trapdoor moves down,the distribution of earth pressure along with the depth in the loose area changes,which is far less than the theoretical value of vertical earth pressure of its self-weight.Because of the compression of the soil on both sides,the lateral earth pressure coefficient of most areas on the central axis of the loose zone is close to the passive earth pressure coefficient Kp.The existence of a‘soil arch’can be observed intuitively from the distribution diagram of the contact force chain in the loose zone.展开更多
Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certi...Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certified photovoltaic efficiencies have reached 22.1%. Compared to bulk halide perovskites, low-dimensional ones exhibited novel physical properties. The photoluminescence quantum yields of perovskite quantum dots are close to 100%. The external quantum efficiencies and current efficiencies of perovskite quantum dot light-emitting diodes have reached 8% and 43 cd A^(-1),respectively, and their nanowire lasers show ultralow-threshold room-temperature lasing with emission tunability and ease of synthesis. Perovskite nanowire photodetectors reached a responsivity of 10 A W^(-1)and a specific normalized detectivity of the order of 10^(12 )Jones. Different from most reported reviews focusing on photovoltaic applications, we summarize the rapid progress in the study of low-dimensional perovskite materials, as well as their promising applications in optoelectronic devices. In particular, we review the wide tunability of fabrication methods and the state-of-the-art research outputs of low-dimensional perovskite optoelectronic devices. Finally, the anticipated challenges and potential for this exciting research are proposed.展开更多
Thermoelectric generators have attracted a wide research interest owing to their ability to directly convert heat into electrical power.Moreover,the thermoelectric properties of traditional inorganic and organic mater...Thermoelectric generators have attracted a wide research interest owing to their ability to directly convert heat into electrical power.Moreover,the thermoelectric properties of traditional inorganic and organic materials have been significantly improved over the past few decades.Among these compounds,layered two-dimensional(2D)materials,such as graphene,black phosphorus,transition metal dichalcogenides,IVA–VIA compounds,and MXenes,have generated a large research attention as a group of potentially high-performance thermoelectric materials.Due to their unique electronic,mechanical,thermal,and optoelectronic properties,thermoelectric devices based on such materials can be applied in a variety of applications.Herein,a comprehensive review on the development of 2D materials for thermoelectric applications,as well as theoretical simulations and experimental preparation,is presented.In addition,nanodevice and new applications of 2D thermoelectric materials are also introduced.At last,current challenges are discussed and several prospects in this field are proposed.展开更多
An ultraviolet(UV) curable support material pre-polymer for three dimensional printing was prepared based on the synergistic effect between PEO-PPO-PEO tri-block copolymer(F127) and polyethylene glycol (400) di-...An ultraviolet(UV) curable support material pre-polymer for three dimensional printing was prepared based on the synergistic effect between PEO-PPO-PEO tri-block copolymer(F127) and polyethylene glycol (400) di-acrylate(SR344). The effects of jetting conditions, thermal stability, curing time, mechanical properties and shrinking rate on printing models were studied. The situation of removing support material from build model was investigated after building progress was completed. The experimental result shows that when F127 is 6.0wt%, SR344 is 20.0wt%, 4-Methoxy phenol is 0.15wt% and Irgacure 2959 is 1.5wt%, the support material pre-polymer could be jetted out from the nozzles smoothly during building up of three dimensional printing models at 50-55 ℃. In addition, the support material could be removed easily from building model without spoiling the model; furthermore, the forming precision of building model is improved.展开更多
A multi-dimensional conductive heterojunction structure,composited by TiO2,SnO2,and Ti3C2TX MXene,is facilely designed and applied as electron transport layer in efficient and stable planar perovskite solar cells.Base...A multi-dimensional conductive heterojunction structure,composited by TiO2,SnO2,and Ti3C2TX MXene,is facilely designed and applied as electron transport layer in efficient and stable planar perovskite solar cells.Based on an oxygen vacancy scramble effect,the zero-dimensional anatase TiO2 quantum dots,surrounding on two-dimensional conductive Ti3C2TX sheets,are in situ rooted on three-dimensional SnO2 nanoparticles,constructing nanoscale TiO2/SnO2 heterojunctions.The fabrication is implemented in a controlled lowtemperature anneal method in air and then in N2 atmospheres.With the optimal MXene content,the optical property,the crystallinity of perovskite layer,and internal interfaces are all facilitated,contributing more amount of carrier with effective and rapid transferring in device.The champion power conversion efficiency of resultant perovskite solar cells achieves 19.14%,yet that of counterpart is just 16.83%.In addition,it can also maintain almost 85%of its initial performance for more than 45 days in 30–40%humidity air;comparatively,the counterpart declines to just below 75%of its initial performance.展开更多
A three-dimensional electrochemical oxidation (3D-EC) reactor with introduction of activated carbon (AC) as particle micro-electrodes was apphed for the advanced treatment of secondary wastewater effluent of a wet...A three-dimensional electrochemical oxidation (3D-EC) reactor with introduction of activated carbon (AC) as particle micro-electrodes was apphed for the advanced treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under the optimized conditions (current density of 500 A/m2, circulation rate of 5 mL/min, AC dosage of 50 g, and chloride concentration of 1.0 g/L), the average removal efficiencies of chemical oxygen demand (CODer), NH3-N, total organic carbon (TOC), and ultraviolet absorption at 254 nm (UV2s4) of the 3D-EC reactor were 64.5%, 60.8%, 46.4%, and 64.8%, respectively; while the corresponding effluent concentrations of CODcr, NH3-N, TOC, and UV2s4 were 76.6, 20.1, and 42.5 mg/L, and 0.08 Abs/cm, respectively. The effluent concentration of CODer was less than 100 mg/L, which showed that the treated wastewater satisfied the demand of the integrated wastewater discharge standard (GB 8978-1996). The 3D-EC process remarkably improved the treatment efficiencies with synergistic effects for CODer, NH3-N, TOC, and UV2s4 during the stable stage of 44.5%, 38.8%, 27.2%, and 10.9%, respectively, as compared with the sum of the efficiencies of a two-dimensional electrochemical oxidation (2D-EC) reactor and an AC adsorption process, which was ascribed to the numerous micro-electrodes of AC in the 3D-EC reactor. Gas chromatography mass spectrometry (GC-MS) analysis revealed that electro- chemical treatment did not generate more toxic organics, and it was proved that the increase in acute biotoxicity was caused primarily by the production of free chlorine.展开更多
基金Funded by the National Natural Science Foundation of China (No.22203066)the 6th Young Elite Scientist Sponsorship Program by China Association for Science and Technology (No.2020QNRC001)。
文摘The size effects were experimentally investigated and the underlying mechanism was analyzed.The results reveal that,as the specimen size increases,the interconnectivity of macropores slightly decreases.This in turn constrains the diffusion of CO_(2) and moisture in the specimens,resulting in an increase in the discrepancy between the internal and external carbonation degrees.An increase in cement paste thickness simultaneously decreases the quantity,average size,and interconnectivity of macropores,lowering the diffusion efficacy of CO_(2) and moisture and exacerbating the overall heterogeneity in carbonation.Moreover,the gradual blockage of macropores leads to the emergence of localized ‘occluded zones’ with much lower carbonation degree.The reduction in aggregate size significantly alters the average diameter and connectivity of macropores,leading to notable change to overall non-uniformity.This study provides insight into improving the CO_(2) curing effect of pervious concrete products and developing uniform curing methods.
基金supported by the National Key R&D Program of China(Grant Nos.2024YFA1408400 and 2021YFA1400401)the National Natural Science Foundation of China(Grant Nos.U22A6005 and 52271238)+2 种基金the China Postdoctoral Science Foundation(Grant No.2025M770186)the Center for Materials Genome,and the Synergetic Extreme Condition User Facility(SECUF)supported by the AI-driven experiments,simulations and model training on the robotic AI-Scientist platform from Chinese Academy of Sciences and the Research Funds for the Central Universities(Grant No.N25ZLE007).
文摘Low-dimensional physics provides profound insights into strongly correlated interactions,leading to enhancedquantum effects and the emergence of exotic quantum states.The Ln_(3)ScBi_(5)family stands out as a chemicallyversatile kagome platform with mixed low-dimensional structural framework and tunable physical properties.Ourresearch initiates with a comprehensive evaluation of the currently known Ln_(3)ScBi_(5)(Ln=La-Nd,Sm)materials,providing a robust methodology for assessing their stability frontiers within this system.Focusing on Pr_(3)ScBi_(5),we investigate the influence of the zigzag chains of quasi-one-dimensional(Q1D)motifs and the distorted kagomelayers of quasi-two-dimensional(Q2D)networks in the mixed-dimensional structure on the intricate magneticground states and unique spin fluctuations.Our study reveals that the noncollinear antiferromagnetic(AFM)moments of Pr^(3+)ions are confined within the Q2D kagome planes,displaying minimal in-plane anisotropy.Incontrast,a strong AFM coupling is observed within the Q1D zigzag chains,significantly constraining spin motion.Notably,magnetic frustration is partially a consequence of coupling to conduction electrons via Ruderman-Kittel-Kasuya-Yosida interaction,highlighting a promising framework for future investigations into mixed-dimensional frustration in Ln_(3)ScBi_(5) systems.
文摘This study introduces the individualism-collectivism dimension of the cultural dimension of cross-cultural communication initiated by Geert Hofstede.Different cultures must develop a way of correlating that strikes a balance between caring for themselves and showing concern for others.Individualist culture encourages uniqueness and independence while collectivist culture emphasizes conformity and mutual assistance.This article introduces how to use case analysis method to effectively carry out classroom teaching in this cultural dimension.
基金supported by the National Basic Research Program of China (Grant No. 2013CBA01600)the National Natural Science Foundation of China (Grant Nos. 61261160499 and 11274154)+2 种基金the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011ZX02707)the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2012302)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120091110028)
文摘Field-effect transistors (FETs) for logic applications, graphene and MoS2, are discussed. These materials have based on two representative two-dimensional (2D) materials, drastically different properties and require different consider- ations. The unique band structure of graphene necessitates engineering of the Dirac point, including the opening of the bandgap, the doping and the interface, before the graphene can be used in logic applications. On the other hand, MoS2 is a semiconductor, and its electron transport depends heavily on the surface properties, the number of layers, and the carrier density. Finally, we discuss the prospects for the future developments in 2D material transistors.
文摘The effect of finite number and dimensionality has been discussed in thispaper. The finite number effect has a negative correction to final temperature for 2D or 3D atomicFermi gases. The changing of final temperature obtained by scanning from BEC region to BCS regionare 10% or so with N ≤ 10~3 and can be negligible when N 】 10~3. However, in ID atomic Fermi gas,the effect gives a positive correction which greatly changes the final temperature in Fermi gas.This behavior is completely opposed to the 2D and 3D cases and a proper explanation is still to befound. Dimensionality also has a positive correction, in which the more tightly trapping, the higherfinal temperature one gets with the same particle number. A discussion is also presented.
基金Project supported by the Opening Project of Key Laboratory of Microelectronics Devices&Integrated Technology,Institute of Microelectronics of Chinese Academy of Sciences,the National High Technology Research and Development Program of China(Grant No.2014AA032901)the National Natural Science Foundation of China(Grant Nos.61574166,61334007,61306117,61322408,61221004,and 61274091)+1 种基金Beijing Training Project for the Leading Talents in S&T,China(Grant No.Z151100000315008)the CAEP Microsystem and THz Science and Technology Foundation,China(Grant No.CAEPMT201504)
文摘Three-dimensional(3D) crossbar array architecture is one of the leading candidates for future ultra-high density nonvolatile memory applications. To realize the technological potential, understanding the reliability mechanisms of the3 D RRAM array has become a field of intense research. In this work, the endurance performance of the 3D 1D1 R crossbar array under the thermal effect is investigated in terms of numerical simulation. It is revealed that the endurance performance of the 3D 1D1 R array would be seriously deteriorated under thermal effects as the feature size scales down to a relatively small value. A possible method to alleviate the thermal effects is provided and verified by numerical simulation.
文摘Geological strength index(GSI)has been widely used as an input parameter in predicting the strength and deformation properties of rock masses.This study derived a series of equations to satisfy the original GSI lines on the basic GSI chart.Two axes ranging from 0 to 100 were employed for surface conditions of the discontinuities and the structure of rock mass,which are independent of the input parameters.The derived equations can analyze GSI values ranging from 0 to 100 within±5%error.The engineering dimensions(EDs)such as the slope height,tunnel width,and foundation width were used together with representative elementary volume(REV)in jointed rock mass to define scale factor(sf)from 0.2 to 1 in evaluating the rock mass structure including joint pattern.The transformation of GSI into a scaledependent parameter based on engineering scale addresses a crucial requirement in various engineering applications.The improvements proposed in this study were applied to a real slope which was close to the time of failure.The results of stability assessments show that the new proposals have sufficient capability to define rock mass quality considering EDs.
基金supported by the Natural Science Foundation of Anhui Province(No.070414190).
文摘A three-dimensional (3-D) approach based on the state space method is proposed to study size-dependent mechanical properties of ultra-thin plate-like elastic structures considering surface effects. The structure is modeled as a laminate composed of a bulk bounded with upper and bottom surface layers, which are allowed to have different material properties from the bulk layer. State equations, including the surface properties of the structure, can be established on the basis of 3-D fundamental elasticity to analyze the size-dependent static characteristics of the thin plate-like structure. Compared with two-dimensional plate theories based size-dependent models for thin film structures in literature, the present 3-D approach is exact, which can provide benchmark results to assess the accuracy of 2-D plate theories and various numerical approaches. To show the feasibility of the proposed approach, a 3-D analytical solution for a simply supported plate-like thin structure including surface layers is derived. An algorithm is proposed for the calculation of the state equations obtained to ensure that the numerical results can reveal the surface effects clearly even for extremely thin surface layers. Numerical examples are carried out to exhibit the surface effects and some discussions are provided based on the results obtained.
基金Project supported by the National Basic Research Program of China (Grant No. 2011CBA00604)
文摘In this paper, we investigate the performance of the bulk fin field effect transistor (FinFET) through a three- dimensional (3D) full band Monte Carlo simulator with quantum correction. Several scattering mechanisms, such as the acoustic and optical phonon scattering, the ionized impurity scattering, the impact ionization scattering and the surface roughness scattering are considered in our simulator. The effects of the substrate bias and the surface roughness scattering near the Si/SiO2 interface on the performance of bulk FinFET are mainly discussed in our work. Our results show that the on-current of bulk FinFET is sensitive to the surface roughness and that we can reduce the substrate leakage current by modulating the substrate bias voltage.
基金supported by the National Natural Science Foundation of China(Grant No.41406018)
文摘In the past few decades, the (1 + 1)-dimensional nonlinear Schr6dinger (NLS) equation had been derived for envelope Rossby solitary waves in a line by employing the perturbation expansion method. But, with the development of theory, we note that the (1+1)-dimensional model cannot reflect the evolution of envelope Rossby solitary waves in a plane. In this paper, by constructing a new (2+1)-dimensional multiscale transform, we derive the (2+1)-dimensional dissipation nonlinear Schrodinger equation (DNLS) to describe envelope Rossby solitary waves under the influence of dissipation which propagate in a plane. Especially, the previous researches about envelope Rossby solitary waves were established in the zonal area and could not be applied directly to the spherical earth, while we adopt the plane polar coordinate and overcome the problem. By theoretical analyses, the conservation laws of (2+ 1)-dimensional envelope Rossby solitary waves as well as their variation under the influence of dissipation are studied. Finally, the one-soliton and two-soliton solutions of the (2+ 1)-dimensional NLS equation are obtained with the Hirota method. Based on these solutions, by virtue of the chirp concept from fiber soliton communication, the chirp effect of envelope Rossby solitary waves is discussed, and the related impact factors of the chirp effect are given.
文摘In this paper, we make an initial value investigation of the unsteady flow of incompressible viscous fluid between two rigid non-conducting rotating parallel plates bounded by a porous medium under the influence of a uniform magnetic field of strength H0 inclined at an angle of inclination α with normal to the boundaries taking hall current into account. The perturbations are created by a constant pressure gradient along the plates in addition to the non-torsional oscillations of the upper plate while the lower plate is at rest. The flow in the porous medium is governed by the Brinkman’s equations. The exact solution of the velocity in the porous medium consists of steady state and transient state. The time required for the transient state to decay is evaluated in detail and the ultimate quasi-steady state solution has been derived analytically. Its behaviour is computationally discussed with reference to the various governing parameters. The shear stresses on the boundaries are also obtained analytically and their behaviour is computationally discussed.
文摘The effect of time and environment on the dimension precision and mass of LOM prototypes was experimentally investigated.It is to identify the stability of the dimension of LOM prototypes after forming.The results show that the dimension and the mass tendency to grow,which is mainly caused by elastic recovery and moisture absorption and is characterized principally by the growth of Z dimension.Self restraint can be a significant factor to influence Z growth of LOM prototypes.
基金supported by the National Natural Science Foundation of China (10872096)the Open Fund of State Key Laboratory of Explosion Science and Technology, Beijing University of Science and Technology (KFJJ09-13)
文摘Gaseous detonation propagating in a toroidal chamber was numerically studied for hydrogen/oxygen/nitrogen mixtures. The numerical method used is based on the three-dimensional Euler equations with detailed finiterate chemistry. The results show that the calculated streak picture is in qualitative agreement with the picture recorded by a high speed streak camera from published literature. The three-dimensional flow field induced by a continuously rotating detonation was visualized and distinctive features of the rotating detonations were clearly depicted. Owing to the unconfined character of detonation wavelet, a deficit of detonation parameters was observed. Due to the effects of wall geometries, the strength of the outside detonation front is stronger than that of the inside portion. The detonation thus propagates with a constant circular velocity. Numerical simulation also shows three-dimensional rotating detonation structures, which display specific feature of the detonation- shock combined wave. Discrete burning gas pockets are formed due to instability of the discontinuity. It is believed that the present study could give an insight into the interest- ing properties of the continuously rotating detonation, and is thus beneficial to the design of continuous detonation propulsion systems.
基金supports from National Natural Science Foundation of China (NSFC Grant No.52008373)Natural Science Foundation of Zhejiang Province of China (No.Q22E080445)are greatly acknowledged.
文摘Load transformation from the yielding part of the soil to the adjacent part is known as the soil arching effect,which plays an important role in the design of various geotechnical infrastructures.Terzaghi’s trapdoor test was an importantmilestone in the development of theories on soil arching.The research on earth pressure of the trapdoor problem is presented in this paper using the three-dimensional(3D)discrete element method(DEM).Five 3D trapdoor models with different heights are established by 3DDEMsoftware PFC 3D.The variation of earth pressure on the trapdoor with the downward movement of the trapdoor,the distribution of vertical earth pressure along the horizontal direction,the distribution of vertical earth pressure along the vertical direction,the distribution of lateral earth pressure coefficient along the depth direction,the magnitude and direction of contact force chain are studied,respectively.Related research results show that the earth pressure on the trapdoor decreases rapidly after the downward movement of the trapdoor,and then reaches the minimum earth pressure.After that,the earth’s pressure will rise slightly,and whether this phenomenon occurs depends on the depth ratio.For the bottom soil,due to the stress transfer caused by the soil arching effect,the ratio of earth pressure in the loose area decreases,while the ratio of earth pressure in the stable area increases.With the trapdoor moving down,the vertical earth pressure along the depth in the stable zone is basically consistent with the initial state,which shows an approximate linear distribution.After the trapdoor moves down,the distribution of earth pressure along with the depth in the loose area changes,which is far less than the theoretical value of vertical earth pressure of its self-weight.Because of the compression of the soil on both sides,the lateral earth pressure coefficient of most areas on the central axis of the loose zone is close to the passive earth pressure coefficient Kp.The existence of a‘soil arch’can be observed intuitively from the distribution diagram of the contact force chain in the loose zone.
基金supported by the Doctoral Program of Higher Education(20130142120075)the Fundamental Research Funds for the Central Universities(HUST:2016YXMS032)National Key Research and Development Program of China(Grant No.2016YFB0700702)
文摘Metal halide perovskites are crystalline materials originally developed out of scientific curiosity. They have shown great potential as active materials in optoelectronic applications. In the last 6 years, their certified photovoltaic efficiencies have reached 22.1%. Compared to bulk halide perovskites, low-dimensional ones exhibited novel physical properties. The photoluminescence quantum yields of perovskite quantum dots are close to 100%. The external quantum efficiencies and current efficiencies of perovskite quantum dot light-emitting diodes have reached 8% and 43 cd A^(-1),respectively, and their nanowire lasers show ultralow-threshold room-temperature lasing with emission tunability and ease of synthesis. Perovskite nanowire photodetectors reached a responsivity of 10 A W^(-1)and a specific normalized detectivity of the order of 10^(12 )Jones. Different from most reported reviews focusing on photovoltaic applications, we summarize the rapid progress in the study of low-dimensional perovskite materials, as well as their promising applications in optoelectronic devices. In particular, we review the wide tunability of fabrication methods and the state-of-the-art research outputs of low-dimensional perovskite optoelectronic devices. Finally, the anticipated challenges and potential for this exciting research are proposed.
基金supported by National Science Foundation for Young Scientists of China (No.61905161 and 51702219)the National Natural Science Foundation of China (No.61975134,61875138 and 61775147)+1 种基金the Science and Technology Innovation Commission of Shenzhen (No. JCYJ20180206121837007)the Shenzhen Nanshan District Pilotage Team Program (LHTD20170006)
文摘Thermoelectric generators have attracted a wide research interest owing to their ability to directly convert heat into electrical power.Moreover,the thermoelectric properties of traditional inorganic and organic materials have been significantly improved over the past few decades.Among these compounds,layered two-dimensional(2D)materials,such as graphene,black phosphorus,transition metal dichalcogenides,IVA–VIA compounds,and MXenes,have generated a large research attention as a group of potentially high-performance thermoelectric materials.Due to their unique electronic,mechanical,thermal,and optoelectronic properties,thermoelectric devices based on such materials can be applied in a variety of applications.Herein,a comprehensive review on the development of 2D materials for thermoelectric applications,as well as theoretical simulations and experimental preparation,is presented.In addition,nanodevice and new applications of 2D thermoelectric materials are also introduced.At last,current challenges are discussed and several prospects in this field are proposed.
基金Funded by National High-tech Research and Development Projects of China(No. 2002AA6Z3083)
文摘An ultraviolet(UV) curable support material pre-polymer for three dimensional printing was prepared based on the synergistic effect between PEO-PPO-PEO tri-block copolymer(F127) and polyethylene glycol (400) di-acrylate(SR344). The effects of jetting conditions, thermal stability, curing time, mechanical properties and shrinking rate on printing models were studied. The situation of removing support material from build model was investigated after building progress was completed. The experimental result shows that when F127 is 6.0wt%, SR344 is 20.0wt%, 4-Methoxy phenol is 0.15wt% and Irgacure 2959 is 1.5wt%, the support material pre-polymer could be jetted out from the nozzles smoothly during building up of three dimensional printing models at 50-55 ℃. In addition, the support material could be removed easily from building model without spoiling the model; furthermore, the forming precision of building model is improved.
基金supported by the Science & Technology Project of Anhui Province (16030701091)the Natural Science Research Project of Anhui Provincial Education Department (KJ2019A0030)+2 种基金the Support Project of Outstanding Young Talents in Anhui Provincial Universities (gxyqZD2018006)the National Natural Science Foundation of China(11704002, 31701323)the Anhui Provincial Natural Science Foundation (1908085QF251,1808085MF185)
文摘A multi-dimensional conductive heterojunction structure,composited by TiO2,SnO2,and Ti3C2TX MXene,is facilely designed and applied as electron transport layer in efficient and stable planar perovskite solar cells.Based on an oxygen vacancy scramble effect,the zero-dimensional anatase TiO2 quantum dots,surrounding on two-dimensional conductive Ti3C2TX sheets,are in situ rooted on three-dimensional SnO2 nanoparticles,constructing nanoscale TiO2/SnO2 heterojunctions.The fabrication is implemented in a controlled lowtemperature anneal method in air and then in N2 atmospheres.With the optimal MXene content,the optical property,the crystallinity of perovskite layer,and internal interfaces are all facilitated,contributing more amount of carrier with effective and rapid transferring in device.The champion power conversion efficiency of resultant perovskite solar cells achieves 19.14%,yet that of counterpart is just 16.83%.In addition,it can also maintain almost 85%of its initial performance for more than 45 days in 30–40%humidity air;comparatively,the counterpart declines to just below 75%of its initial performance.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2012ZX07201002-6)
文摘A three-dimensional electrochemical oxidation (3D-EC) reactor with introduction of activated carbon (AC) as particle micro-electrodes was apphed for the advanced treatment of secondary wastewater effluent of a wet-spun acrylic fiber manufacturing plant. Under the optimized conditions (current density of 500 A/m2, circulation rate of 5 mL/min, AC dosage of 50 g, and chloride concentration of 1.0 g/L), the average removal efficiencies of chemical oxygen demand (CODer), NH3-N, total organic carbon (TOC), and ultraviolet absorption at 254 nm (UV2s4) of the 3D-EC reactor were 64.5%, 60.8%, 46.4%, and 64.8%, respectively; while the corresponding effluent concentrations of CODcr, NH3-N, TOC, and UV2s4 were 76.6, 20.1, and 42.5 mg/L, and 0.08 Abs/cm, respectively. The effluent concentration of CODer was less than 100 mg/L, which showed that the treated wastewater satisfied the demand of the integrated wastewater discharge standard (GB 8978-1996). The 3D-EC process remarkably improved the treatment efficiencies with synergistic effects for CODer, NH3-N, TOC, and UV2s4 during the stable stage of 44.5%, 38.8%, 27.2%, and 10.9%, respectively, as compared with the sum of the efficiencies of a two-dimensional electrochemical oxidation (2D-EC) reactor and an AC adsorption process, which was ascribed to the numerous micro-electrodes of AC in the 3D-EC reactor. Gas chromatography mass spectrometry (GC-MS) analysis revealed that electro- chemical treatment did not generate more toxic organics, and it was proved that the increase in acute biotoxicity was caused primarily by the production of free chlorine.