This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-d...This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.展开更多
In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on...In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on the stream surface and 2-D Navier-Stokes equations on a two dimensional manifold. After introducing stream function on the stream surface,a nonlinear initial-boundary value problem satisfies by stream function is obtained,existence and uniqueness of its solution are proven.Based this theory we proposal a new method called"dimension split method"to solve 3D NSE.展开更多
By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is propose...By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability.展开更多
In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.1...In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.134:108344,2022).The convergence analysis of the proposed method is established,which can improve the existing results.Numerical examples show that the proposed method is efficient with the two-step technique.展开更多
Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media withi...Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks.展开更多
Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this pap...Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this paper. It is further shown that the method constructed in this way preserve the global symplectieity exactly. Numerical experiments for the plane wave solution and singular solution of the 2D-NLSE show the accuracy and effectiveness of the proposed method.展开更多
In this work, a new numerical technique is proposed for the resolution of a fluid model based on three Boltzmann moments. The main purpose of this technique is to calculate electric and physical properties in the non-...In this work, a new numerical technique is proposed for the resolution of a fluid model based on three Boltzmann moments. The main purpose of this technique is to calculate electric and physical properties in the non-equilibrium electric discharge at low pressure. The transport and Poisson's equations form a self-consistent model. This equation system is written in cylindrical coordinates following the geometric shape of a plasma reactor. Our transport equation system is discretized using the finite volume approach and resolved by the N-BEE explicit scheme coupled to the time splitting method. This programming structure reduces computation time considerably. The 2D code is carried out and tested by comparing our results with those found in literature.展开更多
In this paper, the boundary layer equations (abbreviation BLE) for exterior flow around an obstacle are established using semi-geodesic coordinate system (S-coordinate) based on the curved two dimensional surface of t...In this paper, the boundary layer equations (abbreviation BLE) for exterior flow around an obstacle are established using semi-geodesic coordinate system (S-coordinate) based on the curved two dimensional surface of the obstacle. BLE are nonlinear partial differential equations on unknown normal viscous stress tensor and pressure on the obstacle and the existence of solution of BLE is proved. In addition a dimensional split method for dimensional three Navier-Stokes equations is established by applying several 2D-3C partial differential equations on two dimensional manifolds to approach 3D Navier-Stokes equations. The examples for the exterior flow around spheroid and ellipsoid are presents here.展开更多
Fracture surface contour study is one of the important requirements for characterization and evaluation of the microstructure of rocks.Based on the improved cube covering method and the 3D contour digital reconstructi...Fracture surface contour study is one of the important requirements for characterization and evaluation of the microstructure of rocks.Based on the improved cube covering method and the 3D contour digital reconstruction model,this study proposes a quantitative microstructure characterization method combining the roughness evaluation index and the 3D fractal dimension to study the change rule of the fracture surface morphology after blasting.This method was applied and validated in the study of the fracture microstructure of the rock after blasting.The results show that the fracture morphology characteristics of the 3D contour digital reconstruction model have good correlation with the changes of the blasting action.The undulation rate of the three-dimensional surface profile of the rock is more prone to dramatic rise and dramatic fall morphology.In terms of tilting trend,the tilting direction also shows gradual disorder,with the tilting angle increasing correspondingly.All the roughness evaluation indexes of the rock fissure surface after blasting show a linear and gradually increasing trend as the distance to the bursting center increases;the difference between the two-dimensional roughness evaluation indexes and the three-dimensional ones of the same micro-area rock samples also becomes increasingly larger,among which the three-dimensional fissure roughness coefficient JRC and the surface roughness ratio Rs display better correlation.Compared with the linear fitting formula of the power function relationship,the three-dimensional fractal dimension of the postblast fissure surface is fitted with the values of JRC and Rs,which renders higher correlation coefficients,and the degree of linear fitting of JRC to the three-dimensional fractal dimension is higher.The fractal characteristics of the blast-affected region form a unity with the three-dimensional roughness evaluation of the fissure surface.展开更多
Noble metal-loaded layered hydroxides exhibit high efficiency in electrocatalyzing water splitting.However,their widespread use as bifunctional electrocatalysts is hindered by low metal loading,inefficient yield,and c...Noble metal-loaded layered hydroxides exhibit high efficiency in electrocatalyzing water splitting.However,their widespread use as bifunctional electrocatalysts is hindered by low metal loading,inefficient yield,and complex synthesis processes.In this work,platinum atoms were anchored onto nickel-iron layered double hydroxide/carbon nanotube(LDH/CNT)hybrid electrocatalysts by using a straightforward milling technique with K_(2)Pt Cl_(6)·6H_(2)O as the Pt source.By adjusting the Pt-to-Fe ratio to 1/2 and 1/10,excellent electrocatalysts—Pt_(1/6)-Ni_(2/3)Fe_(1/3)-LDH/CNT and Pt_(1/30)-Ni_(2/3)Fe_(1/3)-LDH/CNT—were achieved with superior performance in hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),outperforming the corresponding commercial Pt/C(20 wt%)and Ru O_(2)electrocatalysts.The enhanced electrochemical performance is attributed to the modification of Pt's electronic structure,which exhibits electron-rich states for HER and electrondeficient states for OER,significantly boosting Pt's electrochemical activity.Furthermore,the simple milling technology for controlling Pt loading offers a promising approach for scaling up the production of electrocatalysts.展开更多
This study successfully deals with the inhomogeneous dimension problem of load separation assumption, which is the theoretical basis of the normalization method. According to the dimensionless load separation principl...This study successfully deals with the inhomogeneous dimension problem of load separation assumption, which is the theoretical basis of the normalization method. According to the dimensionless load separation principle, the normalization method has been improved by intro- ducing a forcible blunting correction. With the improved normalization method, the J-resistance curves of five different metallic materials of CT and SEB specimens are estimated. The forcible blunting correction of initial crack size plays an important role in the J-resistance curve estima- tion, which is closely related to the strain hardening level of material. The higher level of strain hardening leads to a greater difference in JQ determined by different slopes of the blunting line. If the blunting line coefficient recommended by ASTM E1820-11 is used in the improved nor- realization method, it will lead to greater fracture resistance than that processed by the blunting line coefficient recommended by ISO 12135-2002. Therefore, the influence of the blunting line on the determination of JQ must be taken into full account in the fracture toughness assessment of metallic materials.展开更多
In the research of fractal cities, the fractal dimension is very important. It is used to describe the fractal character of the city. The authors have designed two approaches to calculate the fractal dimension by the ...In the research of fractal cities, the fractal dimension is very important. It is used to describe the fractal character of the city. The authors have designed two approaches to calculate the fractal dimension by the box-counting method through an example of Beijing, which are called the vector method and the grid method, respectively. The former calculates the fractal dimension through an intersecting analysis in ArcView; and the latter is carried out by programming in Matlab. They are compared from three aspects: the calculating process, the limits in use, and the results. As a result, the conclusion is made that there are merits and faults on both methods, and they should be chosen to use properly in practical situation.展开更多
In the reliability analysis of slope, the performance functions derived from the most available stability analysis procedures of slopes are usually implicit and cannot be solved by first-order second-moment approach. ...In the reliability analysis of slope, the performance functions derived from the most available stability analysis procedures of slopes are usually implicit and cannot be solved by first-order second-moment approach. A new reliability analysis approach was presented based on three-dimensional Morgenstem-Price method to investigate three-dimensional effect of landslide in stability analyses. To obtain the reliability index, Support Vector Machine (SVM) was applied to approximate the performance function. The time-consuming of this approach is only 0.028% of that using Monte-Carlo method at the same computation accuracy. Also, the influence of time effect of shearing strength parameters of slope soils on the long-term reliability of three-dimensional slopes was investigated by this new approach. It is found that the reliability index of the slope would decrease by 52.54% and the failure probability would increase from 0.000 705% to 1.966%. In the end, the impact of variation coefficients of c andfon reliability index of slopes was taken into discussion and the changing trend was observed.展开更多
The miscible displacement of one incompressible fluid by another in a porous medium is considered in this paper. The concentration is split in a first-order hyberbolic equation and a homogeneous parabolic equation wit...The miscible displacement of one incompressible fluid by another in a porous medium is considered in this paper. The concentration is split in a first-order hyberbolic equation and a homogeneous parabolic equation within each lime step. The pressure and Us velocity field is computed by a mixed finite element method. Optimal order estimates are derived for the no diffusion case and the diffusion case.展开更多
In this paper, an improved splitting method, based on the completely square-conservative explicit difference schemes, is established. Not only can the time-direction precision of this method be higher than that of the...In this paper, an improved splitting method, based on the completely square-conservative explicit difference schemes, is established. Not only can the time-direction precision of this method be higher than that of the traditional splitting methods but also can the physical feature of mutual dependence of the fast and the slow stages that are calculated separately and splittingly be kept as well. Moreover, the method owns an universality, it can be generalized to other square-conservative difference schemes, such as the implicit and complete ones and the explicit and instantaneous ones. Good time benefits can be acquired when it is applied in the numerical simulations of the monthly mean currents of the South China Sea.展开更多
Fractal dimensions of a terrain quantitatively describe the self-organizedstructure of the terrain geometry. However, the local topographic variation cannot be illustrated bythe conventional box-counting method. This ...Fractal dimensions of a terrain quantitatively describe the self-organizedstructure of the terrain geometry. However, the local topographic variation cannot be illustrated bythe conventional box-counting method. This paper proposes a successive shift box-counting method,in which the studied object is divided into small sub-objects that are composed of a series of gridsaccording to its characteristic scaling. The terrain fractal dimensions in the grids are calculatedwith the successive shift box-counting method and the scattered points with values of fractaldimensions are obtained. The present research shows that the planar variation of fractal dimensionsis well consistent with fault traces and geological boundaries.展开更多
In this paper, equations of atmospheric and oceanic dynamics are reduced to a kind of evolutionary equation in operator form, based on which a conclusion that the separability of motion stages is relative is made and ...In this paper, equations of atmospheric and oceanic dynamics are reduced to a kind of evolutionary equation in operator form, based on which a conclusion that the separability of motion stages is relative is made and an issue that the tractional splitting methods established on the physical separability of the fast stage and the slow stage neglect the interaction between the two stages to some extent is shown. Also, three splitting patterns are summed up from the splitting methods in common use so that a comparison between them is carried out. The comparison shows that only the improved splitting pattern (ISP) can be in second order and keep the interaction well. Finally, the applications of some splitting methods on numerical simulations of typhoon tracks made clear that ISP owns the best effect and can save more than 80% CPU time.展开更多
We describe how the Unit-Feature Spatial Classification Method(UFSCM) can be used operationally to classify cloud types in satellite imagery efficiently and conveniently.By using a combination of Interactive Data Lang...We describe how the Unit-Feature Spatial Classification Method(UFSCM) can be used operationally to classify cloud types in satellite imagery efficiently and conveniently.By using a combination of Interactive Data Language(IDL) and Visual C++(VC) code in combination to extend the technique in three dimensions(3-D),this paper provides an efficient method to implement interactive computer visualization of the 3-D discrimination matrix modification,so as to deal with the bi-spectral limitations of traditional two dimensional(2-D) UFSCM.The case study of cloud-type classification based on FY-2C satellite data (0600 UTC 18 and 0000 UTC 10 September 2007) is conducted by comparison with ground station data, and indicates that 3-D UFSCM makes more use of the pattern recognition information in multi-spectral imagery,resulting in more reasonable results and an improvement over the 2-D method.展开更多
Several preconditioners are proposed for improving the convergence rate of the iterative method derived from splitting. In this paper, the comparison theorem of preconditioned iterative method for regular splitting is...Several preconditioners are proposed for improving the convergence rate of the iterative method derived from splitting. In this paper, the comparison theorem of preconditioned iterative method for regular splitting is proved. And the convergence and comparison theorem for any preconditioner are indicated. This comparison theorem indicates the possibility of finding new preconditioner and splitting. The purpose of this paper is to show that the preconditioned iterative method yields a new splitting satisfying the regular or weak regular splitting. And new combination preconditioners are proposed. In order to denote the validity of the comparison theorem, some numerical examples are shown.展开更多
The splitting test is a competitive alternative method to study the tensile strength of sea ice owing to its suitability for sampling.However,the approach was questioned to the neglect of local plastic deformation dur...The splitting test is a competitive alternative method to study the tensile strength of sea ice owing to its suitability for sampling.However,the approach was questioned to the neglect of local plastic deformation during the tests.In this study,splitting tests were performed on sea ice,with 32 samples subjected to the regular procedure and 8 samples subjected to the digital image correlation method.The salinity,density,and temperature were measured to determine the total porosity.With the advantage of the digital image correlation method,the full-field deformation of the ice samples could be determined.In the loading direction,the samples mainly deformed at the ice-platen contact area.In the direction vertical to the loading,deformation appears along the central line where the splitting crack occurs.Based on the distribution of the sample deformation,a modified solution was derived to calculate the tensile strength with the maximum load.Based on the modified solution,the tensile strength was further calculated together with the splitting test results.The results show that the tensile strength has a negative correlation with the total porosity,which agrees with previous studies based on uniaxial tension tests.展开更多
基金supported by the National Natural Science Foundation of China (Grants 11571223, 51404160)Shanxi Province Science Foundation for Youths (Grant 2014021025-1)
文摘This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.
文摘In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on the stream surface and 2-D Navier-Stokes equations on a two dimensional manifold. After introducing stream function on the stream surface,a nonlinear initial-boundary value problem satisfies by stream function is obtained,existence and uniqueness of its solution are proven.Based this theory we proposal a new method called"dimension split method"to solve 3D NSE.
基金supported by the Natural Science Foundation of Zhejiang Province,China(Grant Nos.LY20A010021,LY19A010002,LY20G030025)the Natural Science Founda-tion of Ningbo City,China(Grant Nos.2021J147,2021J235).
文摘By introducing the dimensional splitting(DS)method into the multiscale interpolating element-free Galerkin(VMIEFG)method,a dimension-splitting multiscale interpolating element-free Galerkin(DS-VMIEFG)method is proposed for three-dimensional(3D)singular perturbed convection-diffusion(SPCD)problems.In the DSVMIEFG method,the 3D problem is decomposed into a series of 2D problems by the DS method,and the discrete equations on the 2D splitting surface are obtained by the VMIEFG method.The improved interpolation-type moving least squares(IIMLS)method is used to construct shape functions in the weak form and to combine 2D discrete equations into a global system of discrete equations for the three-dimensional SPCD problems.The solved numerical example verifies the effectiveness of the method in this paper for the 3D SPCD problems.The numerical solution will gradually converge to the analytical solution with the increase in the number of nodes.For extremely small singular diffusion coefficients,the numerical solution will avoid numerical oscillation and has high computational stability.
基金supported by the Scientific Computing Research Innovation Team of Guangdong Province(no.2021KCXTD052)the Science and Technology Development Fund,Macao SAR(no.0096/2022/A,0151/2022/A)+3 种基金University of Macao(no.MYRG2020-00035-FST,MYRG2022-00076-FST)the Guangdong Key Construction Discipline Research Capacity Enhancement Project(no.2022ZDJS049)Technology Planning Project of Shaoguan(no.210716094530390)the ScienceFoundation of Shaoguan University(no.SZ2020KJ01).
文摘In this paper,a two-step iteration method is established which can be viewed as a generalization of the existing modulus-based methods for vertical linear complementarity problems given by He and Vong(Appl.Math.Lett.134:108344,2022).The convergence analysis of the proposed method is established,which can improve the existing results.Numerical examples show that the proposed method is efficient with the two-step technique.
基金supported by the National Natural Science Foundation of China (Nos.52374078 and 52074043)the Fundamental Research Funds for the Central Universities (No.2023CDJKYJH021)。
文摘Fractal theory offers a powerful tool for the precise description and quantification of the complex pore structures in reservoir rocks,crucial for understanding the storage and migration characteristics of media within these rocks.Faced with the challenge of calculating the three-dimensional fractal dimensions of rock porosity,this study proposes an innovative computational process that directly calculates the three-dimensional fractal dimensions from a geometric perspective.By employing a composite denoising approach that integrates Fourier transform(FT)and wavelet transform(WT),coupled with multimodal pore extraction techniques such as threshold segmentation,top-hat transformation,and membrane enhancement,we successfully crafted accurate digital rock models.The improved box-counting method was then applied to analyze the voxel data of these digital rocks,accurately calculating the fractal dimensions of the rock pore distribution.Further numerical simulations of permeability experiments were conducted to explore the physical correlations between the rock pore fractal dimensions,porosity,and absolute permeability.The results reveal that rocks with higher fractal dimensions exhibit more complex pore connectivity pathways and a wider,more uneven pore distribution,suggesting that the ideal rock samples should possess lower fractal dimensions and higher effective porosity rates to achieve optimal fluid transmission properties.The methodology and conclusions of this study provide new tools and insights for the quantitative analysis of complex pores in rocks and contribute to the exploration of the fractal transport properties of media within rocks.
基金Supported by the Natural Science Foundation of China under Grant No.0971226the 973 Project of China under Grant No.2009CB723802+1 种基金the Research Innovation Fund of Hunan Province under Grant No.CX2011B011the Innovation Fund of NUDT under Grant No.B110205
文摘Using the idea of splitting numerical methods and the multi-symplectic methods, we propose a multisymplectic splitting (MSS) method to solve the two-dimensional nonlinear Schrodinger equation (2D-NLSE) in this paper. It is further shown that the method constructed in this way preserve the global symplectieity exactly. Numerical experiments for the plane wave solution and singular solution of the 2D-NLSE show the accuracy and effectiveness of the proposed method.
文摘In this work, a new numerical technique is proposed for the resolution of a fluid model based on three Boltzmann moments. The main purpose of this technique is to calculate electric and physical properties in the non-equilibrium electric discharge at low pressure. The transport and Poisson's equations form a self-consistent model. This equation system is written in cylindrical coordinates following the geometric shape of a plasma reactor. Our transport equation system is discretized using the finite volume approach and resolved by the N-BEE explicit scheme coupled to the time splitting method. This programming structure reduces computation time considerably. The 2D code is carried out and tested by comparing our results with those found in literature.
文摘In this paper, the boundary layer equations (abbreviation BLE) for exterior flow around an obstacle are established using semi-geodesic coordinate system (S-coordinate) based on the curved two dimensional surface of the obstacle. BLE are nonlinear partial differential equations on unknown normal viscous stress tensor and pressure on the obstacle and the existence of solution of BLE is proved. In addition a dimensional split method for dimensional three Navier-Stokes equations is established by applying several 2D-3C partial differential equations on two dimensional manifolds to approach 3D Navier-Stokes equations. The examples for the exterior flow around spheroid and ellipsoid are presents here.
基金National Key Research and Development Program of China,Grant/Award Number:2021YFC2902103National Natural Science Foundation of China,Grant/Award Number:51934001Fundamental Research Funds for the Central Universities,Grant/Award Number:2023JCCXLJ02。
文摘Fracture surface contour study is one of the important requirements for characterization and evaluation of the microstructure of rocks.Based on the improved cube covering method and the 3D contour digital reconstruction model,this study proposes a quantitative microstructure characterization method combining the roughness evaluation index and the 3D fractal dimension to study the change rule of the fracture surface morphology after blasting.This method was applied and validated in the study of the fracture microstructure of the rock after blasting.The results show that the fracture morphology characteristics of the 3D contour digital reconstruction model have good correlation with the changes of the blasting action.The undulation rate of the three-dimensional surface profile of the rock is more prone to dramatic rise and dramatic fall morphology.In terms of tilting trend,the tilting direction also shows gradual disorder,with the tilting angle increasing correspondingly.All the roughness evaluation indexes of the rock fissure surface after blasting show a linear and gradually increasing trend as the distance to the bursting center increases;the difference between the two-dimensional roughness evaluation indexes and the three-dimensional ones of the same micro-area rock samples also becomes increasingly larger,among which the three-dimensional fissure roughness coefficient JRC and the surface roughness ratio Rs display better correlation.Compared with the linear fitting formula of the power function relationship,the three-dimensional fractal dimension of the postblast fissure surface is fitted with the values of JRC and Rs,which renders higher correlation coefficients,and the degree of linear fitting of JRC to the three-dimensional fractal dimension is higher.The fractal characteristics of the blast-affected region form a unity with the three-dimensional roughness evaluation of the fissure surface.
基金supported by the Natural Science Foundation of Henan(242300421230)the Young Teacher Fundamental Research Cultivation Program of Zhengzhou University(JC23557030)the National Natural Science Foundation of China(U21A20281 and 22208322)。
文摘Noble metal-loaded layered hydroxides exhibit high efficiency in electrocatalyzing water splitting.However,their widespread use as bifunctional electrocatalysts is hindered by low metal loading,inefficient yield,and complex synthesis processes.In this work,platinum atoms were anchored onto nickel-iron layered double hydroxide/carbon nanotube(LDH/CNT)hybrid electrocatalysts by using a straightforward milling technique with K_(2)Pt Cl_(6)·6H_(2)O as the Pt source.By adjusting the Pt-to-Fe ratio to 1/2 and 1/10,excellent electrocatalysts—Pt_(1/6)-Ni_(2/3)Fe_(1/3)-LDH/CNT and Pt_(1/30)-Ni_(2/3)Fe_(1/3)-LDH/CNT—were achieved with superior performance in hydrogen evolution reaction(HER)and oxygen evolution reaction(OER),outperforming the corresponding commercial Pt/C(20 wt%)and Ru O_(2)electrocatalysts.The enhanced electrochemical performance is attributed to the modification of Pt's electronic structure,which exhibits electron-rich states for HER and electrondeficient states for OER,significantly boosting Pt's electrochemical activity.Furthermore,the simple milling technology for controlling Pt loading offers a promising approach for scaling up the production of electrocatalysts.
基金supported by the National Natural Science Foundation of China(Nos.11472228 and 11202174)the Sichuan Provincial Youth Science and Technology Innovation Team(No.2013TD0004)
文摘This study successfully deals with the inhomogeneous dimension problem of load separation assumption, which is the theoretical basis of the normalization method. According to the dimensionless load separation principle, the normalization method has been improved by intro- ducing a forcible blunting correction. With the improved normalization method, the J-resistance curves of five different metallic materials of CT and SEB specimens are estimated. The forcible blunting correction of initial crack size plays an important role in the J-resistance curve estima- tion, which is closely related to the strain hardening level of material. The higher level of strain hardening leads to a greater difference in JQ determined by different slopes of the blunting line. If the blunting line coefficient recommended by ASTM E1820-11 is used in the improved nor- realization method, it will lead to greater fracture resistance than that processed by the blunting line coefficient recommended by ISO 12135-2002. Therefore, the influence of the blunting line on the determination of JQ must be taken into full account in the fracture toughness assessment of metallic materials.
文摘In the research of fractal cities, the fractal dimension is very important. It is used to describe the fractal character of the city. The authors have designed two approaches to calculate the fractal dimension by the box-counting method through an example of Beijing, which are called the vector method and the grid method, respectively. The former calculates the fractal dimension through an intersecting analysis in ArcView; and the latter is carried out by programming in Matlab. They are compared from three aspects: the calculating process, the limits in use, and the results. As a result, the conclusion is made that there are merits and faults on both methods, and they should be chosen to use properly in practical situation.
基金Project(50878082) supported by the National Natural Science Foundation of ChinaProject(200631880237) supported by the Science and Technology Program of West Transportation of the Ministry of Transportation of ChinaKey Project(09JJ3104) supported by the Natural Science Foundation of Hunan Province, China
文摘In the reliability analysis of slope, the performance functions derived from the most available stability analysis procedures of slopes are usually implicit and cannot be solved by first-order second-moment approach. A new reliability analysis approach was presented based on three-dimensional Morgenstem-Price method to investigate three-dimensional effect of landslide in stability analyses. To obtain the reliability index, Support Vector Machine (SVM) was applied to approximate the performance function. The time-consuming of this approach is only 0.028% of that using Monte-Carlo method at the same computation accuracy. Also, the influence of time effect of shearing strength parameters of slope soils on the long-term reliability of three-dimensional slopes was investigated by this new approach. It is found that the reliability index of the slope would decrease by 52.54% and the failure probability would increase from 0.000 705% to 1.966%. In the end, the impact of variation coefficients of c andfon reliability index of slopes was taken into discussion and the changing trend was observed.
基金This work was supported by China State Major Key Project for Basic Researches.
文摘The miscible displacement of one incompressible fluid by another in a porous medium is considered in this paper. The concentration is split in a first-order hyberbolic equation and a homogeneous parabolic equation within each lime step. The pressure and Us velocity field is computed by a mixed finite element method. Optimal order estimates are derived for the no diffusion case and the diffusion case.
基金Partly supported by the State Major Key Project for Basic Researches
文摘In this paper, an improved splitting method, based on the completely square-conservative explicit difference schemes, is established. Not only can the time-direction precision of this method be higher than that of the traditional splitting methods but also can the physical feature of mutual dependence of the fast and the slow stages that are calculated separately and splittingly be kept as well. Moreover, the method owns an universality, it can be generalized to other square-conservative difference schemes, such as the implicit and complete ones and the explicit and instantaneous ones. Good time benefits can be acquired when it is applied in the numerical simulations of the monthly mean currents of the South China Sea.
文摘Fractal dimensions of a terrain quantitatively describe the self-organizedstructure of the terrain geometry. However, the local topographic variation cannot be illustrated bythe conventional box-counting method. This paper proposes a successive shift box-counting method,in which the studied object is divided into small sub-objects that are composed of a series of gridsaccording to its characteristic scaling. The terrain fractal dimensions in the grids are calculatedwith the successive shift box-counting method and the scattered points with values of fractaldimensions are obtained. The present research shows that the planar variation of fractal dimensionsis well consistent with fault traces and geological boundaries.
基金Partly supported by the State Major Key Project for Researches and Project 85-906-04.
文摘In this paper, equations of atmospheric and oceanic dynamics are reduced to a kind of evolutionary equation in operator form, based on which a conclusion that the separability of motion stages is relative is made and an issue that the tractional splitting methods established on the physical separability of the fast stage and the slow stage neglect the interaction between the two stages to some extent is shown. Also, three splitting patterns are summed up from the splitting methods in common use so that a comparison between them is carried out. The comparison shows that only the improved splitting pattern (ISP) can be in second order and keep the interaction well. Finally, the applications of some splitting methods on numerical simulations of typhoon tracks made clear that ISP owns the best effect and can save more than 80% CPU time.
基金supported by the National Natural Science Foundation of China(Grant No.40875012)the National Basic Research Program of China(Grant No.2009CB421502)the Meteorology Open Fund of Huaihe River Basin(HRM200704).
文摘We describe how the Unit-Feature Spatial Classification Method(UFSCM) can be used operationally to classify cloud types in satellite imagery efficiently and conveniently.By using a combination of Interactive Data Language(IDL) and Visual C++(VC) code in combination to extend the technique in three dimensions(3-D),this paper provides an efficient method to implement interactive computer visualization of the 3-D discrimination matrix modification,so as to deal with the bi-spectral limitations of traditional two dimensional(2-D) UFSCM.The case study of cloud-type classification based on FY-2C satellite data (0600 UTC 18 and 0000 UTC 10 September 2007) is conducted by comparison with ground station data, and indicates that 3-D UFSCM makes more use of the pattern recognition information in multi-spectral imagery,resulting in more reasonable results and an improvement over the 2-D method.
文摘Several preconditioners are proposed for improving the convergence rate of the iterative method derived from splitting. In this paper, the comparison theorem of preconditioned iterative method for regular splitting is proved. And the convergence and comparison theorem for any preconditioner are indicated. This comparison theorem indicates the possibility of finding new preconditioner and splitting. The purpose of this paper is to show that the preconditioned iterative method yields a new splitting satisfying the regular or weak regular splitting. And new combination preconditioners are proposed. In order to denote the validity of the comparison theorem, some numerical examples are shown.
基金This study was supported financially by the National Key Research and Development Program of China(Grant no.2018YFA0605902)the National Natural Science Foundation of China(Grant no.52101300)+1 种基金the Fundamental Research Funds for the Central Universities(Grant no.DUT21LK03)Joint Scientific Research Fund Project of DBJI(Grant no.ICR2102).
文摘The splitting test is a competitive alternative method to study the tensile strength of sea ice owing to its suitability for sampling.However,the approach was questioned to the neglect of local plastic deformation during the tests.In this study,splitting tests were performed on sea ice,with 32 samples subjected to the regular procedure and 8 samples subjected to the digital image correlation method.The salinity,density,and temperature were measured to determine the total porosity.With the advantage of the digital image correlation method,the full-field deformation of the ice samples could be determined.In the loading direction,the samples mainly deformed at the ice-platen contact area.In the direction vertical to the loading,deformation appears along the central line where the splitting crack occurs.Based on the distribution of the sample deformation,a modified solution was derived to calculate the tensile strength with the maximum load.Based on the modified solution,the tensile strength was further calculated together with the splitting test results.The results show that the tensile strength has a negative correlation with the total porosity,which agrees with previous studies based on uniaxial tension tests.