期刊文献+
共找到978篇文章
< 1 2 49 >
每页显示 20 50 100
Multi-Head Attention Enhanced Parallel Dilated Convolution and Residual Learning for Network Traffic Anomaly Detection
1
作者 Guorong Qi Jian Mao +2 位作者 Kai Huang Zhengxian You Jinliang Lin 《Computers, Materials & Continua》 2025年第2期2159-2176,共18页
Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract loc... Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract local and global features, as well as the lack of effective mechanisms to capture complex interactions between features;Additionally, when increasing the receptive field to obtain deeper feature representations, the reliance on increasing network depth leads to a significant increase in computational resource consumption, affecting the efficiency and performance of detection. Based on these issues, firstly, this paper proposes a network traffic anomaly detection model based on parallel dilated convolution and residual learning (Res-PDC). To better explore the interactive relationships between features, the traffic samples are converted into two-dimensional matrix. A module combining parallel dilated convolutions and residual learning (res-pdc) was designed to extract local and global features of traffic at different scales. By utilizing res-pdc modules with different dilation rates, we can effectively capture spatial features at different scales and explore feature dependencies spanning wider regions without increasing computational resources. Secondly, to focus and integrate the information in different feature subspaces, further enhance and extract the interactions among the features, multi-head attention is added to Res-PDC, resulting in the final model: multi-head attention enhanced parallel dilated convolution and residual learning (MHA-Res-PDC) for network traffic anomaly detection. Finally, comparisons with other machine learning and deep learning algorithms are conducted on the NSL-KDD and CIC-IDS-2018 datasets. The experimental results demonstrate that the proposed method in this paper can effectively improve the detection performance. 展开更多
关键词 Network traffic anomaly detection multi-head attention parallel dilated convolution residual learning
在线阅读 下载PDF
基于DC-HED网络和骨架提取的岩心图像边缘检测
2
作者 潘少伟 杨怡婷 +2 位作者 尚娅敏 郭智 蔡文斌 《中国石油大学学报(自然科学版)》 北大核心 2025年第3期97-107,共11页
整体嵌套边缘检测(holistically-nested edge detection,HED)网络是目前图像边缘检测领域内一种应用广泛且性能良好的深度网络模型,但存在图像检测边缘缺失、冗余和模糊不清等不足。针对此问题,提出一种扩张卷积(dilated convolution,DC... 整体嵌套边缘检测(holistically-nested edge detection,HED)网络是目前图像边缘检测领域内一种应用广泛且性能良好的深度网络模型,但存在图像检测边缘缺失、冗余和模糊不清等不足。针对此问题,提出一种扩张卷积(dilated convolution,DC)结合HED网络的深度网络模型DC-HED。首先,去除原HED网络最后两层的池化层以进一步保留图像边缘信息;再加入扩张卷积来扩大感受野,更好地还原图像边缘细节,重新设计DC-HED网络。之后利用Zhang-Suen算法对其图像边缘检测结果进行骨架提取。把DC-HED网络和骨架提取应用于中国陕北地区S油田不同岩心铸体薄片图像(简称岩心图像)的边缘检测中,获得较好的试验效果。结果表明:相比已有文献中方法、传统Canny算子、传统Sobel算子和原HED网络,DC-HED网络检测获得的图像边缘更完整,连通性更好;DC-HED网络测试得到的均方误差、结构相似性和峰值信噪比分别为0.1106、0.7997和9.5611,与前面几种方法相比,均有较大幅度的改善。最后将图像骨架提取方法应用于已获得的图像边缘中,剔除了杂乱的图像边缘信息,可得到清晰连续的图像边缘中心轮廓线条。 展开更多
关键词 岩心铸体薄片图像 边缘检测 岩心数字化 HED网络 扩张卷积 骨架提取
在线阅读 下载PDF
An improved deep dilated convolutional neural network for seismic facies interpretation 被引量:1
3
作者 Na-Xia Yang Guo-Fa Li +2 位作者 Ting-Hui Li Dong-Feng Zhao Wei-Wei Gu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1569-1583,共15页
With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural network... With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural networks.These intelligent and automated methods significantly reduce manual labor,particularly in the laborious task of manually labeling seismic facies.However,the extensive demand for training data imposes limitations on their wider application.To overcome this challenge,we adopt the UNet architecture as the foundational network structure for seismic facies classification,which has demonstrated effective segmentation results even with small-sample training data.Additionally,we integrate spatial pyramid pooling and dilated convolution modules into the network architecture to enhance the perception of spatial information across a broader range.The seismic facies classification test on the public data from the F3 block verifies the superior performance of our proposed improved network structure in delineating seismic facies boundaries.Comparative analysis against the traditional UNet model reveals that our method achieves more accurate predictive classification results,as evidenced by various evaluation metrics for image segmentation.Obviously,the classification accuracy reaches an impressive 96%.Furthermore,the results of seismic facies classification in the seismic slice dimension provide further confirmation of the superior performance of our proposed method,which accurately defines the range of different seismic facies.This approach holds significant potential for analyzing geological patterns and extracting valuable depositional information. 展开更多
关键词 Seismic facies interpretation dilated convolution Spatial pyramid pooling Internal feature maps Compound loss function
原文传递
基于DC-CNN-PE-SSA-Informer的电缆缆芯温度预测研究 被引量:2
4
作者 鲍克勤 赵欣妍 +2 位作者 刘擘 王仕博 郝海斌 《昆明理工大学学报(自然科学版)》 北大核心 2025年第2期116-125,共10页
针对电缆缆芯温度不易直接测量,且预测精确度不足的问题,本文提出了DC-CNN-PE-SSA-Informer混合预测模型,该模型利用扩展因果卷积网络(DC-CNN)增强对时间序列数据局部特征的捕捉能力,并将提取的特征传递至Informer模块以捕获长期依赖关... 针对电缆缆芯温度不易直接测量,且预测精确度不足的问题,本文提出了DC-CNN-PE-SSA-Informer混合预测模型,该模型利用扩展因果卷积网络(DC-CNN)增强对时间序列数据局部特征的捕捉能力,并将提取的特征传递至Informer模块以捕获长期依赖关系,通过引入相对位置编码(PE)加强Informer模型对时间序列中相对位置信息的捕捉能力,最后由麻雀搜索算法(SSA)进行参数优化。通过对电缆温度场进行有限元分析,求解出不同条件下的缆芯温度作为仿真实验的样本数据。仿真结果表明,DC-CNN-PE-SSA-Informer模型相比常见的预测模型在电缆缆芯温度预测方面具有更高的预测精度,为电力调度的运行方式提供了依据。 展开更多
关键词 电力电缆 温度预测 扩展因果卷积网络(dc-CNN) INFORMER 麻雀搜索算法(SSA) 位置编码(PE)
原文传递
DcNet: Dilated Convolutional Neural Networks for Side-Scan Sonar Image Semantic Segmentation 被引量:2
5
作者 ZHAO Xiaohong QIN Rixia +3 位作者 ZHANG Qilei YU Fei WANG Qi HE Bo 《Journal of Ocean University of China》 SCIE CAS CSCD 2021年第5期1089-1096,共8页
In ocean explorations,side-scan sonar(SSS)plays a very important role and can quickly depict seabed topography.As-sembling the SSS to an autonomous underwater vehicle(AUV)and performing semantic segmentation of an SSS... In ocean explorations,side-scan sonar(SSS)plays a very important role and can quickly depict seabed topography.As-sembling the SSS to an autonomous underwater vehicle(AUV)and performing semantic segmentation of an SSS image in real time can realize online submarine geomorphology or target recognition,which is conducive to submarine detection.However,because of the complexity of the marine environment,various noises in the ocean pollute the sonar image,which also encounters the intensity inhomogeneity problem.In this paper,we propose a novel neural network architecture named dilated convolutional neural network(DcNet)that can run in real time while addressing the above-mentioned issues and providing accurate semantic segmentation.The proposed architecture presents an encoder-decoder network to gradually reduce the spatial dimension of the input image and recover the details of the target,respectively.The core of our network is a novel block connection named DCblock,which mainly uses dilated convolution and depthwise separable convolution between the encoder and decoder to attain more context while still retaining high accuracy.Furthermore,our proposed method performs a super-resolution reconstruction to enlarge the dataset with high-quality im-ages.We compared our network to other common semantic segmentation networks performed on an NVIDIA Jetson TX2 using our sonar image datasets.Experimental results show that while the inference speed of the proposed network significantly outperforms state-of-the-art architectures,the accuracy of our method is still comparable,which indicates its potential applications not only in AUVs equipped with SSS but also in marine exploration. 展开更多
关键词 side-scan sonar(SSS) semantic segmentation dilated convolutions SUPER-RESOLUTION
在线阅读 下载PDF
CADCNet:一种改进的视网膜血管分割算法
6
作者 岳昱超 王迎美 秦嘉川 《科学技术与工程》 北大核心 2025年第3期962-968,共7页
目前传统的视网膜血管分割方法存在的视盘混淆引起的误分割、分割结果缺乏连续性,以及细节区域分割不精准等问题。为解决这一难题,提出了一种基于UNet的视网膜血管分割算法。该算法利用两个水平和垂直一维卷积和二维方形卷积的融合替代... 目前传统的视网膜血管分割方法存在的视盘混淆引起的误分割、分割结果缺乏连续性,以及细节区域分割不精准等问题。为解决这一难题,提出了一种基于UNet的视网膜血管分割算法。该算法利用两个水平和垂直一维卷积和二维方形卷积的融合替代传统方形卷积,提高了眼球区域的表征能力;采用了多尺度分支增加特征空间的多样性,提升了网络的特征学习和表达能力。此外,为进一步改善分割效果,还将多层膨胀卷积引入自编码器的深层结构,替代了传统的简单池化操作,增大卷积核的大小,扩大了感受野范围,实现了多尺度浅层特征和深层特征信息的融合。本文算法在公开DRIVE和CHASE_DB1两个数据集上进行了评估,实验结果表明,本文算法的精确率和F_(1)上分别达到了0.9568、0.9598和0.8326、0.8304。与传统的UNet和近期部分UNet改进网络视网膜血管分割方法相比,本文算法在准确率、敏感度、特异性、F_(1)指标上表现出一定的优势,这一验证结果充分证明了本文所提出的模型在分割任务上具备较强的精确分割能力。 展开更多
关键词 视网膜血管分割 连续膨胀卷积 深度学习 不对称卷积 UNet模型
暂未订购
基于MSDCNN-BiGRU-SVM的滚动轴承故障诊断
7
作者 洪乐 文传博(指导) 《上海电机学院学报》 2025年第1期1-6,共6页
针对传统故障诊断方法特征提取不充分,复杂场景下诊断准确率低的问题,提出了一种结合神经网络特征提取能力与支持向量机(SVM)分类性能的故障诊断方法。首先,通过宽卷积核提取特征中的低频信息,并利用多尺度空洞卷积神经网络(MSDCNN)进... 针对传统故障诊断方法特征提取不充分,复杂场景下诊断准确率低的问题,提出了一种结合神经网络特征提取能力与支持向量机(SVM)分类性能的故障诊断方法。首先,通过宽卷积核提取特征中的低频信息,并利用多尺度空洞卷积神经网络(MSDCNN)进行自适应特征提取;其次,通过坐标注意力机制(CA)自适应确定不同通道的特征权值,并利用双向门控循环单元(Bi GRU)进一步提取振动信号中的时序特征;最后,将所提取的特征信息归一化后输入SVM分类器,并输出故障诊断结果。实验结果表明:该方法与其他智能诊断方法相比,在噪声干扰和变负载条件下有更好的故障诊断性能。 展开更多
关键词 轴承故障诊断 支持向量机 多尺度空洞卷积神经网络 坐标注意力机制 双向门控循环单元
在线阅读 下载PDF
Magnetic Resonance Imaging Reconstruction Based on Butterfly Dilated Geometric Distillation
8
作者 DUO Lin XU Boyu +1 位作者 REN Yong YANG Xin 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期590-599,共10页
In order to improve the reconstruction accuracy of magnetic resonance imaging(MRI),an accurate natural image compressed sensing(CS)reconstruction network is proposed,which combines the advantages of model-based and de... In order to improve the reconstruction accuracy of magnetic resonance imaging(MRI),an accurate natural image compressed sensing(CS)reconstruction network is proposed,which combines the advantages of model-based and deep learning-based CS-MRI methods.In theory,enhancing geometric texture details in linear reconstruction is possible.First,the optimization problem is decomposed into two problems:linear approximation and geometric compensation.Aimed at the problem of image linear approximation,the data consistency module is used to deal with it.Since the processing process will lose texture details,a neural network layer that explicitly combines image and frequency feature representation is proposed,which is named butterfly dilated geometric distillation network.The network introduces the idea of butterfly operation,skillfully integrates the features of image domain and frequency domain,and avoids the loss of texture details when extracting features in a single domain.Finally,a channel feature fusion module is designed by combining channel attention mechanism and dilated convolution.The attention of the channel makes the final output feature map focus on the more important part,thus improving the feature representation ability.The dilated convolution enlarges the receptive field,thereby obtaining more dense image feature data.The experimental results show that the peak signal-to-noise ratio of the network is 5.43 dB,5.24 dB and 3.89 dB higher than that of ISTA-Net+,FISTA and DGDN networks on the brain data set with a Cartesian sampling mask CS ratio of 10%. 展开更多
关键词 butterfly geometric distillation dilation convolution channel attention image reconstruction
原文传递
基于SA-CDC-GRU-AE模型的锂离子电池健康状态估计方法
9
作者 胡钰航 廖宇 +1 位作者 崔琨 李景聪 《湖北民族大学学报(自然科学版)》 2025年第2期266-271,共6页
为解决电动汽车锂离子电池健康状态(state of health, SOH)预测精度不足及传统模型泛化能力差的问题,提出了基于自注意力-因果膨胀卷积-门控循环单元-自动编码器(self attention-causal dilated convolution-gated recurrent unit-autoe... 为解决电动汽车锂离子电池健康状态(state of health, SOH)预测精度不足及传统模型泛化能力差的问题,提出了基于自注意力-因果膨胀卷积-门控循环单元-自动编码器(self attention-causal dilated convolution-gated recurrent unit-autoencoder, SA-CDC-GRU-AE)模型的锂离子电池SOH估计方法。在卷积模块中引入CDC模块,并结合SA机制,保证预测中的因果性,抑制了锂离子电池容量再生现象对预测结果的干扰。此外,引入AE模块优化GRU模型,使其兼具隐藏特征提取和长期依赖捕捉的能力。在2个公开数据集上进行验证,结果表明,SA-CDC-GRU-AE模型在2个数据集上的均方根误差(root mean square error, RMSE)平均值分别为1.009%、0.488%,平均绝对误差(mean absolute error, MAE)平均值分别为0.780%、0.432%。SA-CDC-GRU-AE模型能准确估计锂离子电池SOH,对电池管理系统具有重要的工程应用价值。 展开更多
关键词 锂离子电池 健康状态估计 容量再生 因果卷积 膨胀卷积 自动编码器
在线阅读 下载PDF
基于CNN的OCR技术在核电厂DCS系统测试中的应用和实现
10
作者 何进松 蒋磊 《核科学与工程》 CAS CSCD 北大核心 2024年第3期543-550,共8页
核电厂分布式控制系统(DCS)的输入/输出模块在运行期间,随着电子器件性能下降以及时漂的影响,需要定期进行进度复测和校准。针对传统的DCS输入/输出通道测试覆盖率不足,测试效率低及人因问题,本文提出一种基于卷积神经网络(CNN)的光学... 核电厂分布式控制系统(DCS)的输入/输出模块在运行期间,随着电子器件性能下降以及时漂的影响,需要定期进行进度复测和校准。针对传统的DCS输入/输出通道测试覆盖率不足,测试效率低及人因问题,本文提出一种基于卷积神经网络(CNN)的光学字符识别(OCR)技术应用在DCS系统的在线测试方法。通过模拟设备和视频采集设备完成画面的自动切换,并读取画面信息,截取特定画面后对其图像预处理,再使用OCR识别模型识别画面内容,将得到的识别结果与期望值进行比较判断,从而实现自动化测试。测试结果表明,通过CNN训练后,显控设备画面字符识别率能达到100%,该方法可以突破设备厂家的专有通信协议的壁垒,可有效降低操作员的人因失误,提升测试效率和核电厂的经济性。 展开更多
关键词 分布式控制系统 卷积神经网络 光学字符识别 自动化测试
在线阅读 下载PDF
Long Text Classification Algorithm Using a Hybrid Model of Bidirectional Encoder Representation from Transformers-Hierarchical Attention Networks-Dilated Convolutions Network 被引量:1
11
作者 ZHAO Yuanyuan GAO Shining +1 位作者 LIU Yang GONG Xiaohui 《Journal of Donghua University(English Edition)》 CAS 2021年第4期341-350,共10页
Text format information is full of most of the resources of Internet,which puts forward higher and higher requirements for the accuracy of text classification.Therefore,in this manuscript,firstly,we design a hybrid mo... Text format information is full of most of the resources of Internet,which puts forward higher and higher requirements for the accuracy of text classification.Therefore,in this manuscript,firstly,we design a hybrid model of bidirectional encoder representation from transformers-hierarchical attention networks-dilated convolutions networks(BERT_HAN_DCN)which based on BERT pre-trained model with superior ability of extracting characteristic.The advantages of HAN model and DCN model are taken into account which can help gain abundant semantic information,fusing context semantic features and hierarchical characteristics.Secondly,the traditional softmax algorithm increases the learning difficulty of the same kind of samples,making it more difficult to distinguish similar features.Based on this,AM-softmax is introduced to replace the traditional softmax.Finally,the fused model is validated,which shows superior performance in the accuracy rate and F1-score of this hybrid model on two datasets and the experimental analysis shows the general single models such as HAN,DCN,based on BERT pre-trained model.Besides,the improved AM-softmax network model is superior to the general softmax network model. 展开更多
关键词 long text classification dilated convolution BERT fusing context semantic features hierarchical characteristics BERT_HAN_dcN AM-softmax
在线阅读 下载PDF
基于YOLOv5−SEDC模型的煤矸分割识别方法 被引量:3
12
作者 杨洋 李海雄 +2 位作者 胡淼龙 郭秀才 张会鹏 《工矿自动化》 CSCD 北大核心 2024年第8期120-126,共7页
现有煤矸分割识别技术参数量大、分类速度慢和识别准确度不高;YOLOv5−seg模型在上下采样操作中易造成图像表面的纹理细节和灰度特征信息丢失,降低煤矸识别效率,且在训练过程中过分侧重全局特征,而忽略了对煤矸识别至关重要的局部显著区... 现有煤矸分割识别技术参数量大、分类速度慢和识别准确度不高;YOLOv5−seg模型在上下采样操作中易造成图像表面的纹理细节和灰度特征信息丢失,降低煤矸识别效率,且在训练过程中过分侧重全局特征,而忽略了对煤矸识别至关重要的局部显著区域和特征。针对上述问题,提出了一种基于YOLOv5−SEDC模型的煤矸分割识别方法。首先接收包含煤矸形状信息的图像,并利用主干网络进行特征提取,生成特征图;其次在YOLOv5−seg模型中集成SENet模块,以保留煤与矸石表面的纹理细节和灰度特征,避免下采样带来的信息丢失;然后采用不同,膨胀率的空洞卷积策略替代传统卷积核,不仅扩大了模型的感受野,还有效减少了模型参数量;最后分割检测头对融合后的特征进行精细处理,实现对煤矸的精确分割和识别。在大柳塔煤矿实际煤矸分选现场搭建煤矸图像采集实验平台,消融实验结果表明,YOLOv5−SEDC模型的煤和矸石识别的精确率较YOLOv5−seg模型平均提高1.3%,参数量减少0.7×10^(6)个,检测速度提高了1.4帧/s。对比实验结果表明:①YOLOv5−SEDC模型的精确率较YOLOv3−tiny,YOLOv5−seg,Mask−RCNN模型分别提高了10.7%,2.7%,1.9%,达到95.8%。②YOLOv5−SEDC模型的召回率较YOLOv3−tiny,YOLOv5−seg,Mask−RCNN模型分别提高了3.0%,2.1%,0.9%,达到89.1%。③YOLOv5−SEDC模型的平均精度均值较YOLOv3−tiny,YOLOv5−seg,Mask−RCNN模型分别提高了6.4%,6.3%,1.8%,达到95.5%。④YOLOv5−SEDC模型的F1较YOLOv3−tiny,YOLOv5−seg,Mask−RCNN模型分别提高了5.2%,4.2%,2.1%,达到92.2%。⑤YOLOv5−SEDC模型的检测速度较YOLOv3−tiny,YOLOv5−seg,Mask−RCNN模型分别降低了1.9,1.4,2.7帧/s。可视化结果表明,YOLOv5−SEDC模型对煤和矸石的检测准确度较YOLOv5−seg和Mask−RCNN模型更高,说明了YOLOv5−SEDC模型在煤矸分割识别上具有较好性能。 展开更多
关键词 煤矸分割 煤矸识别 压缩激励网络 YOLOv5−SEdc YOLOv5−seg 注意力网络 空洞卷积
在线阅读 下载PDF
Convolution-Transformer for Image Feature Extraction 被引量:2
13
作者 Lirong Yin Lei Wang +10 位作者 Siyu Lu Ruiyang Wang Youshuai Yang Bo Yang Shan Liu Ahmed AlSanad Salman A.AlQahtani Zhengtong Yin Xiaolu Li Xiaobing Chen Wenfeng Zheng 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期87-106,共20页
This study addresses the limitations of Transformer models in image feature extraction,particularly their lack of inductive bias for visual structures.Compared to Convolutional Neural Networks(CNNs),the Transformers a... This study addresses the limitations of Transformer models in image feature extraction,particularly their lack of inductive bias for visual structures.Compared to Convolutional Neural Networks(CNNs),the Transformers are more sensitive to different hyperparameters of optimizers,which leads to a lack of stability and slow convergence.To tackle these challenges,we propose the Convolution-based Efficient Transformer Image Feature Extraction Network(CEFormer)as an enhancement of the Transformer architecture.Our model incorporates E-Attention,depthwise separable convolution,and dilated convolution to introduce crucial inductive biases,such as translation invariance,locality,and scale invariance,into the Transformer framework.Additionally,we implement a lightweight convolution module to process the input images,resulting in faster convergence and improved stability.This results in an efficient convolution combined Transformer image feature extraction network.Experimental results on the ImageNet1k Top-1 dataset demonstrate that the proposed network achieves better accuracy while maintaining high computational speed.It achieves up to 85.0%accuracy across various model sizes on image classification,outperforming various baseline models.When integrated into the Mask Region-ConvolutionalNeuralNetwork(R-CNN)framework as a backbone network,CEFormer outperforms other models and achieves the highest mean Average Precision(mAP)scores.This research presents a significant advancement in Transformer-based image feature extraction,balancing performance and computational efficiency. 展开更多
关键词 TRANSFORMER E-Attention depth convolution dilated convolution CEFormer
在线阅读 下载PDF
基于VMD和RDC-Informer的短期供热负荷预测模型 被引量:3
14
作者 谭全伟 薛贵军 谢文举 《广西师范大学学报(自然科学版)》 CAS 北大核心 2024年第5期39-51,共13页
精准的供热负荷预测不仅可以有效降低能源消耗,而且可以提高供热系统效率和用户舒适度。为了提升供热负荷预测的准确性,本文将变分模态分解算法和改进的Informer模型结合应用于供热负荷预测中。首先使用VMD算法分解供热负荷数据,降低数... 精准的供热负荷预测不仅可以有效降低能源消耗,而且可以提高供热系统效率和用户舒适度。为了提升供热负荷预测的准确性,本文将变分模态分解算法和改进的Informer模型结合应用于供热负荷预测中。首先使用VMD算法分解供热负荷数据,降低数据的非平稳性;然后在Informer模型中引入相对位置编码代替绝对位置编码,以更好地捕捉序列数据中的依赖关系和避免信息泄漏;接着采用膨胀因果卷积代替正则卷积,增加感受野,提升局部信息的提取能力;最后在多个数据集上与主流预测模型(GRU、LSTM、Transformer和Informer)进行对比实验。结果表明,RDC-Informer模型的评价指标R2达到了98.3%,与对比模型相比,分别提高了11.6%、6.3%、4.7%和2.6%。此外,通过增加卷积核以评估膨胀因果卷积的效果,验证了RDC-Informer模型的适用性和准确性,为进一步提高智慧供热的时效性提供了一定参考。 展开更多
关键词 供热负荷预测 INFORMER 膨胀因果卷积 相对位置编码 VMD
在线阅读 下载PDF
Multi⁃Scale Dilated Convolutional Neural Network for Hyperspectral Image Classification
15
作者 Shanshan Zheng Wen Liu +3 位作者 Rui Shan Jingyi Zhao Guoqian Jiang Zhi Zhang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2021年第4期25-32,共8页
Aiming at the problem of image information loss,dilated convolution is introduced and a novel multi⁃scale dilated convolutional neural network(MDCNN)is proposed.Dilated convolution can polymerize image multi⁃scale inf... Aiming at the problem of image information loss,dilated convolution is introduced and a novel multi⁃scale dilated convolutional neural network(MDCNN)is proposed.Dilated convolution can polymerize image multi⁃scale information without reducing the resolution.The first layer of the network used spectral convolutional step to reduce dimensionality.Then the multi⁃scale aggregation extracted multi⁃scale features through applying dilated convolution and shortcut connection.The extracted features which represent properties of data were fed through Softmax to predict the samples.MDCNN achieved the overall accuracy of 99.58% and 99.92% on two public datasets,Indian Pines and Pavia University.Compared with four other existing models,the results illustrate that MDCNN can extract better discriminative features and achieve higher classification performance. 展开更多
关键词 multi⁃scale aggregation dilated convolution hyperspectral image classification(HSIC) shortcut connection
在线阅读 下载PDF
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification 被引量:2
16
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight convolutional Neural Network Depthwise dilated Separable convolution Hierarchical Multi-Scale Feature Fusion
在线阅读 下载PDF
针对宫颈异常细胞检测的 SER-DC YOLO
17
作者 李超炜 杨晓娜 +1 位作者 赵司琦 何勇军 《哈尔滨理工大学学报》 CAS 北大核心 2024年第1期115-123,共9页
由于宫颈细胞样本的液基薄层细胞学检测(thin prep cytologic test,TCT)图像内容复杂,背景颜色丰富多样,而且不同女性的宫颈细胞具有一定程度的天然差异,这给宫颈异常细胞的检测带来了很大的困难。为解决这一难题,提出了一种名为基于特... 由于宫颈细胞样本的液基薄层细胞学检测(thin prep cytologic test,TCT)图像内容复杂,背景颜色丰富多样,而且不同女性的宫颈细胞具有一定程度的天然差异,这给宫颈异常细胞的检测带来了很大的困难。为解决这一难题,提出了一种名为基于特征压缩与激发和可变形卷积(SE-ResNet-deformable convolution you only look once,SER-DC YOLO)的目标检测网络。该网络在YOLOv5的Backbone中融合注意力机制,添加了SE-ResNet模块,然后改进了SPP层的网络结构,并且使用可变形卷积来替换普通卷积,最后修改了边界框的损失计算函数,将广义交并比(generalized intersection over union,GIoU)改为α-IOU Loss。实验表明,该网络与YOLOv5网络相比,在宫颈图片数据集上召回率提高了19.94%,精度提高了3.52%,平均精度均值提高了7.19%。相关代码链接:https://github.com/sleepLion99/SER-DC_YOLO。 展开更多
关键词 SER-dc YOLO YOLOv5 目标检测 注意力机制 可变形卷积
在线阅读 下载PDF
基于Att-DConv的遥感舰船检测方法研究 被引量:2
18
作者 何民华 张润达 赵胜利 《地理空间信息》 2024年第3期24-28,共5页
针对遥感影像的舰船目标检测问题,提出了一种基于深度学习的舰船检测模型。首先利用空洞卷积组与通道注意力模块构成骨干网络,然后对所有特征提取层输出的不同尺度特征图进行拼接,再以融合后特征层分别进行上、下采样的方式构建了4个检... 针对遥感影像的舰船目标检测问题,提出了一种基于深度学习的舰船检测模型。首先利用空洞卷积组与通道注意力模块构成骨干网络,然后对所有特征提取层输出的不同尺度特征图进行拼接,再以融合后特征层分别进行上、下采样的方式构建了4个检测尺度的特征增强网络,最后采用改进的NMS算法优化最终的检测框输出。利用开源数据集UCMerced_LandUse与FAIR1M混合数据集对模型进行训练和测试,利用多种图像增强算法优化训练集质量,采用马赛克处理获取正样本更多的训练影像,并在未经处理的原始影像上进行测试。结果表明,该模型的精度均值可达0.91,检测速度可达34 f/s,对于不同复杂程度背景和尺度的舰船样本具有稳定的检测能力。 展开更多
关键词 遥感影像 舰船检测 空洞卷积 通道注意力 融合特征增强
在线阅读 下载PDF
TSCND:Temporal Subsequence-Based Convolutional Network with Difference for Time Series Forecasting
19
作者 Haoran Huang Weiting Chen Zheming Fan 《Computers, Materials & Continua》 SCIE EI 2024年第3期3665-3681,共17页
Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in t... Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN. 展开更多
关键词 DIFFERENCE data prediction time series temporal convolutional network dilated convolution
在线阅读 下载PDF
Two Stages Segmentation Algorithm of Breast Tumor in DCE-MRI Based on Multi-Scale Feature and Boundary Attention Mechanism
20
作者 Bing Li Liangyu Wang +3 位作者 Xia Liu Hongbin Fan Bo Wang Shoudi Tong 《Computers, Materials & Continua》 SCIE EI 2024年第7期1543-1561,共19页
Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low a... Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters. 展开更多
关键词 Dynamic contrast-enhanced magnetic resonance imaging(dcE-MRI) breast tumor segmentation multi-scale dilated convolution boundary attention the hybrid loss function with boundary weight
在线阅读 下载PDF
上一页 1 2 49 下一页 到第
使用帮助 返回顶部