Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract loc...Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract local and global features, as well as the lack of effective mechanisms to capture complex interactions between features;Additionally, when increasing the receptive field to obtain deeper feature representations, the reliance on increasing network depth leads to a significant increase in computational resource consumption, affecting the efficiency and performance of detection. Based on these issues, firstly, this paper proposes a network traffic anomaly detection model based on parallel dilated convolution and residual learning (Res-PDC). To better explore the interactive relationships between features, the traffic samples are converted into two-dimensional matrix. A module combining parallel dilated convolutions and residual learning (res-pdc) was designed to extract local and global features of traffic at different scales. By utilizing res-pdc modules with different dilation rates, we can effectively capture spatial features at different scales and explore feature dependencies spanning wider regions without increasing computational resources. Secondly, to focus and integrate the information in different feature subspaces, further enhance and extract the interactions among the features, multi-head attention is added to Res-PDC, resulting in the final model: multi-head attention enhanced parallel dilated convolution and residual learning (MHA-Res-PDC) for network traffic anomaly detection. Finally, comparisons with other machine learning and deep learning algorithms are conducted on the NSL-KDD and CIC-IDS-2018 datasets. The experimental results demonstrate that the proposed method in this paper can effectively improve the detection performance.展开更多
With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural network...With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural networks.These intelligent and automated methods significantly reduce manual labor,particularly in the laborious task of manually labeling seismic facies.However,the extensive demand for training data imposes limitations on their wider application.To overcome this challenge,we adopt the UNet architecture as the foundational network structure for seismic facies classification,which has demonstrated effective segmentation results even with small-sample training data.Additionally,we integrate spatial pyramid pooling and dilated convolution modules into the network architecture to enhance the perception of spatial information across a broader range.The seismic facies classification test on the public data from the F3 block verifies the superior performance of our proposed improved network structure in delineating seismic facies boundaries.Comparative analysis against the traditional UNet model reveals that our method achieves more accurate predictive classification results,as evidenced by various evaluation metrics for image segmentation.Obviously,the classification accuracy reaches an impressive 96%.Furthermore,the results of seismic facies classification in the seismic slice dimension provide further confirmation of the superior performance of our proposed method,which accurately defines the range of different seismic facies.This approach holds significant potential for analyzing geological patterns and extracting valuable depositional information.展开更多
In ocean explorations,side-scan sonar(SSS)plays a very important role and can quickly depict seabed topography.As-sembling the SSS to an autonomous underwater vehicle(AUV)and performing semantic segmentation of an SSS...In ocean explorations,side-scan sonar(SSS)plays a very important role and can quickly depict seabed topography.As-sembling the SSS to an autonomous underwater vehicle(AUV)and performing semantic segmentation of an SSS image in real time can realize online submarine geomorphology or target recognition,which is conducive to submarine detection.However,because of the complexity of the marine environment,various noises in the ocean pollute the sonar image,which also encounters the intensity inhomogeneity problem.In this paper,we propose a novel neural network architecture named dilated convolutional neural network(DcNet)that can run in real time while addressing the above-mentioned issues and providing accurate semantic segmentation.The proposed architecture presents an encoder-decoder network to gradually reduce the spatial dimension of the input image and recover the details of the target,respectively.The core of our network is a novel block connection named DCblock,which mainly uses dilated convolution and depthwise separable convolution between the encoder and decoder to attain more context while still retaining high accuracy.Furthermore,our proposed method performs a super-resolution reconstruction to enlarge the dataset with high-quality im-ages.We compared our network to other common semantic segmentation networks performed on an NVIDIA Jetson TX2 using our sonar image datasets.Experimental results show that while the inference speed of the proposed network significantly outperforms state-of-the-art architectures,the accuracy of our method is still comparable,which indicates its potential applications not only in AUVs equipped with SSS but also in marine exploration.展开更多
In order to improve the reconstruction accuracy of magnetic resonance imaging(MRI),an accurate natural image compressed sensing(CS)reconstruction network is proposed,which combines the advantages of model-based and de...In order to improve the reconstruction accuracy of magnetic resonance imaging(MRI),an accurate natural image compressed sensing(CS)reconstruction network is proposed,which combines the advantages of model-based and deep learning-based CS-MRI methods.In theory,enhancing geometric texture details in linear reconstruction is possible.First,the optimization problem is decomposed into two problems:linear approximation and geometric compensation.Aimed at the problem of image linear approximation,the data consistency module is used to deal with it.Since the processing process will lose texture details,a neural network layer that explicitly combines image and frequency feature representation is proposed,which is named butterfly dilated geometric distillation network.The network introduces the idea of butterfly operation,skillfully integrates the features of image domain and frequency domain,and avoids the loss of texture details when extracting features in a single domain.Finally,a channel feature fusion module is designed by combining channel attention mechanism and dilated convolution.The attention of the channel makes the final output feature map focus on the more important part,thus improving the feature representation ability.The dilated convolution enlarges the receptive field,thereby obtaining more dense image feature data.The experimental results show that the peak signal-to-noise ratio of the network is 5.43 dB,5.24 dB and 3.89 dB higher than that of ISTA-Net+,FISTA and DGDN networks on the brain data set with a Cartesian sampling mask CS ratio of 10%.展开更多
Text format information is full of most of the resources of Internet,which puts forward higher and higher requirements for the accuracy of text classification.Therefore,in this manuscript,firstly,we design a hybrid mo...Text format information is full of most of the resources of Internet,which puts forward higher and higher requirements for the accuracy of text classification.Therefore,in this manuscript,firstly,we design a hybrid model of bidirectional encoder representation from transformers-hierarchical attention networks-dilated convolutions networks(BERT_HAN_DCN)which based on BERT pre-trained model with superior ability of extracting characteristic.The advantages of HAN model and DCN model are taken into account which can help gain abundant semantic information,fusing context semantic features and hierarchical characteristics.Secondly,the traditional softmax algorithm increases the learning difficulty of the same kind of samples,making it more difficult to distinguish similar features.Based on this,AM-softmax is introduced to replace the traditional softmax.Finally,the fused model is validated,which shows superior performance in the accuracy rate and F1-score of this hybrid model on two datasets and the experimental analysis shows the general single models such as HAN,DCN,based on BERT pre-trained model.Besides,the improved AM-softmax network model is superior to the general softmax network model.展开更多
This study addresses the limitations of Transformer models in image feature extraction,particularly their lack of inductive bias for visual structures.Compared to Convolutional Neural Networks(CNNs),the Transformers a...This study addresses the limitations of Transformer models in image feature extraction,particularly their lack of inductive bias for visual structures.Compared to Convolutional Neural Networks(CNNs),the Transformers are more sensitive to different hyperparameters of optimizers,which leads to a lack of stability and slow convergence.To tackle these challenges,we propose the Convolution-based Efficient Transformer Image Feature Extraction Network(CEFormer)as an enhancement of the Transformer architecture.Our model incorporates E-Attention,depthwise separable convolution,and dilated convolution to introduce crucial inductive biases,such as translation invariance,locality,and scale invariance,into the Transformer framework.Additionally,we implement a lightweight convolution module to process the input images,resulting in faster convergence and improved stability.This results in an efficient convolution combined Transformer image feature extraction network.Experimental results on the ImageNet1k Top-1 dataset demonstrate that the proposed network achieves better accuracy while maintaining high computational speed.It achieves up to 85.0%accuracy across various model sizes on image classification,outperforming various baseline models.When integrated into the Mask Region-ConvolutionalNeuralNetwork(R-CNN)framework as a backbone network,CEFormer outperforms other models and achieves the highest mean Average Precision(mAP)scores.This research presents a significant advancement in Transformer-based image feature extraction,balancing performance and computational efficiency.展开更多
Aiming at the problem of image information loss,dilated convolution is introduced and a novel multi⁃scale dilated convolutional neural network(MDCNN)is proposed.Dilated convolution can polymerize image multi⁃scale inf...Aiming at the problem of image information loss,dilated convolution is introduced and a novel multi⁃scale dilated convolutional neural network(MDCNN)is proposed.Dilated convolution can polymerize image multi⁃scale information without reducing the resolution.The first layer of the network used spectral convolutional step to reduce dimensionality.Then the multi⁃scale aggregation extracted multi⁃scale features through applying dilated convolution and shortcut connection.The extracted features which represent properties of data were fed through Softmax to predict the samples.MDCNN achieved the overall accuracy of 99.58% and 99.92% on two public datasets,Indian Pines and Pavia University.Compared with four other existing models,the results illustrate that MDCNN can extract better discriminative features and achieve higher classification performance.展开更多
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso...Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.展开更多
Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in t...Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN.展开更多
Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low a...Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters.展开更多
基金supported by the Xiamen Science and Technology Subsidy Project(No.2023CXY0318).
文摘Abnormal network traffic, as a frequent security risk, requires a series of techniques to categorize and detect it. Existing network traffic anomaly detection still faces challenges: the inability to fully extract local and global features, as well as the lack of effective mechanisms to capture complex interactions between features;Additionally, when increasing the receptive field to obtain deeper feature representations, the reliance on increasing network depth leads to a significant increase in computational resource consumption, affecting the efficiency and performance of detection. Based on these issues, firstly, this paper proposes a network traffic anomaly detection model based on parallel dilated convolution and residual learning (Res-PDC). To better explore the interactive relationships between features, the traffic samples are converted into two-dimensional matrix. A module combining parallel dilated convolutions and residual learning (res-pdc) was designed to extract local and global features of traffic at different scales. By utilizing res-pdc modules with different dilation rates, we can effectively capture spatial features at different scales and explore feature dependencies spanning wider regions without increasing computational resources. Secondly, to focus and integrate the information in different feature subspaces, further enhance and extract the interactions among the features, multi-head attention is added to Res-PDC, resulting in the final model: multi-head attention enhanced parallel dilated convolution and residual learning (MHA-Res-PDC) for network traffic anomaly detection. Finally, comparisons with other machine learning and deep learning algorithms are conducted on the NSL-KDD and CIC-IDS-2018 datasets. The experimental results demonstrate that the proposed method in this paper can effectively improve the detection performance.
基金funded by the Fundamental Research Project of CNPC Geophysical Key Lab(2022DQ0604-4)the Strategic Cooperation Technology Projects of China National Petroleum Corporation and China University of Petroleum-Beijing(ZLZX 202003)。
文摘With the successful application and breakthrough of deep learning technology in image segmentation,there has been continuous development in the field of seismic facies interpretation using convolutional neural networks.These intelligent and automated methods significantly reduce manual labor,particularly in the laborious task of manually labeling seismic facies.However,the extensive demand for training data imposes limitations on their wider application.To overcome this challenge,we adopt the UNet architecture as the foundational network structure for seismic facies classification,which has demonstrated effective segmentation results even with small-sample training data.Additionally,we integrate spatial pyramid pooling and dilated convolution modules into the network architecture to enhance the perception of spatial information across a broader range.The seismic facies classification test on the public data from the F3 block verifies the superior performance of our proposed improved network structure in delineating seismic facies boundaries.Comparative analysis against the traditional UNet model reveals that our method achieves more accurate predictive classification results,as evidenced by various evaluation metrics for image segmentation.Obviously,the classification accuracy reaches an impressive 96%.Furthermore,the results of seismic facies classification in the seismic slice dimension provide further confirmation of the superior performance of our proposed method,which accurately defines the range of different seismic facies.This approach holds significant potential for analyzing geological patterns and extracting valuable depositional information.
基金This work is partially supported by the Natural Key Research and Development Program of China(No.2016YF C0301400).
文摘In ocean explorations,side-scan sonar(SSS)plays a very important role and can quickly depict seabed topography.As-sembling the SSS to an autonomous underwater vehicle(AUV)and performing semantic segmentation of an SSS image in real time can realize online submarine geomorphology or target recognition,which is conducive to submarine detection.However,because of the complexity of the marine environment,various noises in the ocean pollute the sonar image,which also encounters the intensity inhomogeneity problem.In this paper,we propose a novel neural network architecture named dilated convolutional neural network(DcNet)that can run in real time while addressing the above-mentioned issues and providing accurate semantic segmentation.The proposed architecture presents an encoder-decoder network to gradually reduce the spatial dimension of the input image and recover the details of the target,respectively.The core of our network is a novel block connection named DCblock,which mainly uses dilated convolution and depthwise separable convolution between the encoder and decoder to attain more context while still retaining high accuracy.Furthermore,our proposed method performs a super-resolution reconstruction to enlarge the dataset with high-quality im-ages.We compared our network to other common semantic segmentation networks performed on an NVIDIA Jetson TX2 using our sonar image datasets.Experimental results show that while the inference speed of the proposed network significantly outperforms state-of-the-art architectures,the accuracy of our method is still comparable,which indicates its potential applications not only in AUVs equipped with SSS but also in marine exploration.
基金the National Natural Science Foundation of China(No.61962032)。
文摘In order to improve the reconstruction accuracy of magnetic resonance imaging(MRI),an accurate natural image compressed sensing(CS)reconstruction network is proposed,which combines the advantages of model-based and deep learning-based CS-MRI methods.In theory,enhancing geometric texture details in linear reconstruction is possible.First,the optimization problem is decomposed into two problems:linear approximation and geometric compensation.Aimed at the problem of image linear approximation,the data consistency module is used to deal with it.Since the processing process will lose texture details,a neural network layer that explicitly combines image and frequency feature representation is proposed,which is named butterfly dilated geometric distillation network.The network introduces the idea of butterfly operation,skillfully integrates the features of image domain and frequency domain,and avoids the loss of texture details when extracting features in a single domain.Finally,a channel feature fusion module is designed by combining channel attention mechanism and dilated convolution.The attention of the channel makes the final output feature map focus on the more important part,thus improving the feature representation ability.The dilated convolution enlarges the receptive field,thereby obtaining more dense image feature data.The experimental results show that the peak signal-to-noise ratio of the network is 5.43 dB,5.24 dB and 3.89 dB higher than that of ISTA-Net+,FISTA and DGDN networks on the brain data set with a Cartesian sampling mask CS ratio of 10%.
基金Fundamental Research Funds for the Central University,China(No.2232018D3-17)。
文摘Text format information is full of most of the resources of Internet,which puts forward higher and higher requirements for the accuracy of text classification.Therefore,in this manuscript,firstly,we design a hybrid model of bidirectional encoder representation from transformers-hierarchical attention networks-dilated convolutions networks(BERT_HAN_DCN)which based on BERT pre-trained model with superior ability of extracting characteristic.The advantages of HAN model and DCN model are taken into account which can help gain abundant semantic information,fusing context semantic features and hierarchical characteristics.Secondly,the traditional softmax algorithm increases the learning difficulty of the same kind of samples,making it more difficult to distinguish similar features.Based on this,AM-softmax is introduced to replace the traditional softmax.Finally,the fused model is validated,which shows superior performance in the accuracy rate and F1-score of this hybrid model on two datasets and the experimental analysis shows the general single models such as HAN,DCN,based on BERT pre-trained model.Besides,the improved AM-softmax network model is superior to the general softmax network model.
基金Support by Sichuan Science and Technology Program(2021YFQ0003,2023YFSY 0026,2023YFH0004).
文摘This study addresses the limitations of Transformer models in image feature extraction,particularly their lack of inductive bias for visual structures.Compared to Convolutional Neural Networks(CNNs),the Transformers are more sensitive to different hyperparameters of optimizers,which leads to a lack of stability and slow convergence.To tackle these challenges,we propose the Convolution-based Efficient Transformer Image Feature Extraction Network(CEFormer)as an enhancement of the Transformer architecture.Our model incorporates E-Attention,depthwise separable convolution,and dilated convolution to introduce crucial inductive biases,such as translation invariance,locality,and scale invariance,into the Transformer framework.Additionally,we implement a lightweight convolution module to process the input images,resulting in faster convergence and improved stability.This results in an efficient convolution combined Transformer image feature extraction network.Experimental results on the ImageNet1k Top-1 dataset demonstrate that the proposed network achieves better accuracy while maintaining high computational speed.It achieves up to 85.0%accuracy across various model sizes on image classification,outperforming various baseline models.When integrated into the Mask Region-ConvolutionalNeuralNetwork(R-CNN)framework as a backbone network,CEFormer outperforms other models and achieves the highest mean Average Precision(mAP)scores.This research presents a significant advancement in Transformer-based image feature extraction,balancing performance and computational efficiency.
基金Sponsored by the Project of Multi Modal Monitoring Information Learning Fusion and Health Warning Diagnosis of Wind Power Transmission System(Grant No.61803329)the Research on Product Quality Inspection Method Based on Time Series Analysis(Grant No.201703A020)the Research on the Theory and Reliability of Group Coordinated Control of Hydraulic System for Large Engineering Transportation Vehicles(Grant No.51675461).
文摘Aiming at the problem of image information loss,dilated convolution is introduced and a novel multi⁃scale dilated convolutional neural network(MDCNN)is proposed.Dilated convolution can polymerize image multi⁃scale information without reducing the resolution.The first layer of the network used spectral convolutional step to reduce dimensionality.Then the multi⁃scale aggregation extracted multi⁃scale features through applying dilated convolution and shortcut connection.The extracted features which represent properties of data were fed through Softmax to predict the samples.MDCNN achieved the overall accuracy of 99.58% and 99.92% on two public datasets,Indian Pines and Pavia University.Compared with four other existing models,the results illustrate that MDCNN can extract better discriminative features and achieve higher classification performance.
文摘Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline.
文摘由于宫颈细胞样本的液基薄层细胞学检测(thin prep cytologic test,TCT)图像内容复杂,背景颜色丰富多样,而且不同女性的宫颈细胞具有一定程度的天然差异,这给宫颈异常细胞的检测带来了很大的困难。为解决这一难题,提出了一种名为基于特征压缩与激发和可变形卷积(SE-ResNet-deformable convolution you only look once,SER-DC YOLO)的目标检测网络。该网络在YOLOv5的Backbone中融合注意力机制,添加了SE-ResNet模块,然后改进了SPP层的网络结构,并且使用可变形卷积来替换普通卷积,最后修改了边界框的损失计算函数,将广义交并比(generalized intersection over union,GIoU)改为α-IOU Loss。实验表明,该网络与YOLOv5网络相比,在宫颈图片数据集上召回率提高了19.94%,精度提高了3.52%,平均精度均值提高了7.19%。相关代码链接:https://github.com/sleepLion99/SER-DC_YOLO。
基金supported by the National Key Research and Development Program of China(No.2018YFB2101300)the National Natural Science Foundation of China(Grant No.61871186)the Dean’s Fund of Engineering Research Center of Software/Hardware Co-Design Technology and Application,Ministry of Education(East China Normal University).
文摘Time series forecasting plays an important role in various fields, such as energy, finance, transport, and weather. Temporal convolutional networks (TCNs) based on dilated causal convolution have been widely used in time series forecasting. However, two problems weaken the performance of TCNs. One is that in dilated casual convolution, causal convolution leads to the receptive fields of outputs being concentrated in the earlier part of the input sequence, whereas the recent input information will be severely lost. The other is that the distribution shift problem in time series has not been adequately solved. To address the first problem, we propose a subsequence-based dilated convolution method (SDC). By using multiple convolutional filters to convolve elements of neighboring subsequences, the method extracts temporal features from a growing receptive field via a growing subsequence rather than a single element. Ultimately, the receptive field of each output element can cover the whole input sequence. To address the second problem, we propose a difference and compensation method (DCM). The method reduces the discrepancies between and within the input sequences by difference operations and then compensates the outputs for the information lost due to difference operations. Based on SDC and DCM, we further construct a temporal subsequence-based convolutional network with difference (TSCND) for time series forecasting. The experimental results show that TSCND can reduce prediction mean squared error by 7.3% and save runtime, compared with state-of-the-art models and vanilla TCN.
基金funded by the National Natural Foundation of China under Grant No.61172167the Science Fund Project of Heilongjiang Province(LH2020F035).
文摘Nuclearmagnetic resonance imaging of breasts often presents complex backgrounds.Breast tumors exhibit varying sizes,uneven intensity,and indistinct boundaries.These characteristics can lead to challenges such as low accuracy and incorrect segmentation during tumor segmentation.Thus,we propose a two-stage breast tumor segmentation method leveraging multi-scale features and boundary attention mechanisms.Initially,the breast region of interest is extracted to isolate the breast area from surrounding tissues and organs.Subsequently,we devise a fusion network incorporatingmulti-scale features and boundary attentionmechanisms for breast tumor segmentation.We incorporate multi-scale parallel dilated convolution modules into the network,enhancing its capability to segment tumors of various sizes through multi-scale convolution and novel fusion techniques.Additionally,attention and boundary detection modules are included to augment the network’s capacity to locate tumors by capturing nonlocal dependencies in both spatial and channel domains.Furthermore,a hybrid loss function with boundary weight is employed to address sample class imbalance issues and enhance the network’s boundary maintenance capability through additional loss.Themethod was evaluated using breast data from 207 patients at RuijinHospital,resulting in a 6.64%increase in Dice similarity coefficient compared to the benchmarkU-Net.Experimental results demonstrate the superiority of the method over other segmentation techniques,with fewer model parameters.