Design,realization,and test of a monolithic GaAs 3bit phase digitizing DAC for 3bit digital radio-frequency memory are detailedly described.The 0.5μm fully ion-implanted GaAs MESFET is used to fabricate the circuit ...Design,realization,and test of a monolithic GaAs 3bit phase digitizing DAC for 3bit digital radio-frequency memory are detailedly described.The 0.5μm fully ion-implanted GaAs MESFET is used to fabricate the circuit in Nanjing Electronic Devices Institute’s (NEDI’s) 75mm standard process line.The high-speed DAC is designed with on-wafer 50Ω I/O impedance matching.Test results show that its work bandwidth is more than 1.5GHz,and phase accuracy is better than 4%.Its code conversion rate can be higher than 12Gbps.展开更多
Purpose: This study is a user evaluation on the usability of the Mogao Cave Panorama Digital Library (DL), aiming to measure its effectiveness from the users' perspective and to propose suggestions for improvement...Purpose: This study is a user evaluation on the usability of the Mogao Cave Panorama Digital Library (DL), aiming to measure its effectiveness from the users' perspective and to propose suggestions for improvement. Design/methodology/approach: Usability tests were conducted based on a framework of evaluation criteria and a set of information seeking tasks designed for the Dunhuang cultural heritage, and interviews were conducted for soliciting in-depth opinions from participants. Findings: The results of the usability tests indicate that the DL was more efficient in supporting simple information seeking tasks than those of higher-complexity levels. Statistical tests reveal that there were correlations among dimensions of usability criteria and user effectiveness measures. Moreover, interview discourses exposed specific usability issues of the DL. Research limitations: This research is based on a relatively small sample size, resulting in a limited representativeness of user diversity. A larger sample size is needed for a systematic cross group comparison. Practical implications: This study evaluated the usability of the Mogao Cave Panorama DL and proposed suggestions for its improvement for better experience. The results also provide a reference to other cultural heritage DLs with panorama functions. Originality/value: This study is one of the first evaluating cultural heritage DLs from the perspective of user experience. It provides methodological references for relevant studies: the evaluation framework, the designed information seeking tasks, and the interview questions can be adopted or adapted in evaluating other visually centric DLs of cultural heritage.展开更多
1 Introduction Geological outcrops or sections are the basis of geological research.However,the traditional methods for presenting them are mainly photos which fall short of delivering a true visual sense (Deng et al....1 Introduction Geological outcrops or sections are the basis of geological research.However,the traditional methods for presenting them are mainly photos which fall short of delivering a true visual sense (Deng et al.,2009;Hou et al.,2014).With the continuous development of image acquisition technology using single-lens reflex camera (SLR camera),image synthesis,large file storage and acquisition,panoramic visualization and network technology.展开更多
Archaeological excavation involves disintegration, removal, and reassembly of the archaeological record;as such it is considered by many to be an unrepeatable, destructive activity. This perception has contributed to ...Archaeological excavation involves disintegration, removal, and reassembly of the archaeological record;as such it is considered by many to be an unrepeatable, destructive activity. This perception has contributed to an advancement in archaeological practice, namely, the development of computerized recording systems that digitally record archaeological excavations spatially and volumetrically during fieldwork. This paper is concerned with those archaeological sites where digital field recording has not been done. These sites, recorded by traditional methods, should not be excluded from attempts to restructure the spatial, volumetric, and stratigraphic archaeological data. A thorough methodology for the conversion of traditional records into digitized data is presented, including the detailed procedures required for three-dimensional plotting of recorded data—both the excavated material and the drawn site maps and cross-sections. Finally, the use of these methods is demonstrated on a complex Early to Middle Pleistocene site, illustrating the benefits of digitization and three-dimensional reconstruction in resolving stratigraphic and spatial questions.展开更多
A new fast waveform sampling digitizing circuit based on the domino ring sampler (DRS), a switched capacitor array (SCA) chip, is presented in this paper, which is different from the traditional waveform digitizin...A new fast waveform sampling digitizing circuit based on the domino ring sampler (DRS), a switched capacitor array (SCA) chip, is presented in this paper, which is different from the traditional waveform digitizing circuit constructed with an analog to digital converter (ADC) or time to digital converter. A DRS4 chip is used as a core device in our circuit, which has a fast sampling rate up to five gigabit samples per second (GSPS). Quite satisfactory results are acquired by the preliminary performance test for this circuit board. Eight channels can be provided by one board, which has a 1 V input dynamic range for each channel. The circuit linearity is better than 0.1%, the noise is less than 0.5 mV (root mean square, RMS), and its time resolution is about 50 ps. Several boards can be cascaded to construct a multi-board system. The advantages of high resolution, low cost, low power dissipation, high channel density and small size make the circuit board useful not only for physics experiments, but also for other applications.展开更多
The detection efficiency of phoswich detector starts to decrease when Compton scattering becomes significant. Events with energy deposit in both scintillators, if not rejected, are not useful for spectral analysis as ...The detection efficiency of phoswich detector starts to decrease when Compton scattering becomes significant. Events with energy deposit in both scintillators, if not rejected, are not useful for spectral analysis as the full energy of the incident photon cannot be reconstructed with conventional readout. We show that once the system response is carefully calibrated, the full energy of those double deposit events can be reconstructed using a waveform digitizer as the readout. Our experiment suggests that the efficiency of a photopeak at 662 keV can be increased by a factor of 2 using our LaBr3/NaI phoswich detector.展开更多
RENEWING THE FORBIDDEN CITY’S CENTURY-OLD LEGACY.Oriental Outlook.27 November 2025.At sunrise,the Forbidden City glows under a veil of gold;at night,it retreats into quiet dignity.But the palace never really sleeps.A...RENEWING THE FORBIDDEN CITY’S CENTURY-OLD LEGACY.Oriental Outlook.27 November 2025.At sunrise,the Forbidden City glows under a veil of gold;at night,it retreats into quiet dignity.But the palace never really sleeps.As visitors depart,the“digital relic vault”awakens online,where porcelain,calligraphy,jade and timepieces reveal their beauty in virtual form.History continues to breathe in the data stream.展开更多
A New Chapter of the Century-Old Palace Museum Oriental Outlook Issue 24,2025 The Palace Museum,the imperial palace of the Ming and Qing dynasties(1368-1911),opened to the public in 1925.Rather than a group of static ...A New Chapter of the Century-Old Palace Museum Oriental Outlook Issue 24,2025 The Palace Museum,the imperial palace of the Ming and Qing dynasties(1368-1911),opened to the public in 1925.Rather than a group of static ancient buildings,it stands today as a dynamic cultural organism filled with invaluable collections of cultural relics preserved by generations of artisans and now displayed to the world through digital technology in long-lasting exhibitions.展开更多
Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosupp...Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosuppressive therapy,AI has the potential to improve both operational efficiency and patient outcomes.Despite these advancements,the perspectives of transplant professionals-those at the forefront of critical decision-making-remain insufficiently explored.To address this gap,this study utilizes a multi-round electronic Delphi approach to gather and analyses insights from global experts involved in organ transplantation.Participants are invited to complete structured surveys capturing demographic data,professional roles,institutional practices,and prior exposure to AI technologies.The survey also explores perceptions of AI’s potential benefits.Quantitative responses are analyzed using descriptive statistics,while open-ended qualitative responses undergo thematic analysis.Preliminary findings indicate a generally positive outlook on AI’s role in enhancing transplantation processes,particularly in areas such as donor matching and post-operative care.These mixed views reflect both optimism and caution among professionals tasked with integrating new technologies into high-stakes clinical workflows.By capturing a wide range of expert opinions,the findings will inform future policy development,regulatory considerations,and institutional readiness frameworks for the integration of AI into organ transplantation.展开更多
Healthy behavior has long been linked to mental health outcomes.However,the role of artificial intelligence(AI)literacy in shaping healthy behaviors and its potential impact on mental health remains underexplored.This...Healthy behavior has long been linked to mental health outcomes.However,the role of artificial intelligence(AI)literacy in shaping healthy behaviors and its potential impact on mental health remains underexplored.This paper presents a scoping review offering a novel perspective on the intersection of healthy behaviors,mental health,and AI literacy.By examining how individuals’understanding of AI influences their choices regarding nutrition and their susceptibility to mental health issues,the current study explores emerging trends in health behavior decision-making.This emphasizes the need for integrating AI literacy into mental health and health behaviors education,as well as the development of AI-driven tools to support healthier behavior choices.It highlights that individuals with low AI literacy may misinterpret or overly depend on AI guidance,resulting in maladaptive health choices,while those with high AI literacy may be more likely to engage reflectively and sustain positive behaviors.The paper outlines the importance of inclusive education,user-centered design,and community-based support systems to enhance AI literacy for digitally marginalized groups.AI literacy may be positioned as a key determinant of health equity,better allowing for interdisciplinary strategies that empower individuals to make informed,autonomous decisions that promote both physical and mental health.展开更多
The increasing global prevalence of mild cognitive impairment(MCI)necessitates a paradigm shift in early detection strategies.Conventional neuropsychological assessment methods,predominantly paper-and-pencil tests suc...The increasing global prevalence of mild cognitive impairment(MCI)necessitates a paradigm shift in early detection strategies.Conventional neuropsychological assessment methods,predominantly paper-and-pencil tests such as the Mini-Mental State Examination and the Montreal Cognitive Assessment,exhibit inherent limitations with respect to accessibility,administration burden,and sensitivity to subtle cognitive decline,particularly among diverse populations.This commentary critically examines a recent study that champions a novel approach:The integration of gait and handwriting kinematic parameters analyzed via machine learning for MCI screening.The present study positions itself within the broader landscape of MCI detection,with a view to comparing its advantages against established neuropsychological batteries,advanced neuroimaging(e.g.,positron emission tomography,magnetic resonance imaging),and emerging fluid biomarkers(e.g.,cerebrospinal fluid,blood-based assays).While the study demonstrates promising accuracy(74.44%area under the curve 0.74 with gait and graphic handwriting)and addresses key unmet needs in accessibility and objectivity,we highlight its cross-sectional nature,limited sample diversity,and lack of dual-task assessment as areas for future refinement.This commentary posits that kinematic biomarkers offer a distinctive,scalable,and ecologically valid approach to widespread MCI screening,thereby complementing existing methods by providing real-world functional insights.Future research should prioritize longitudinal validation,expansion to diverse cohorts,integration with multimodal data including dual-tasking,and the development of highly portable,artificial intelligence-driven solutions to achieve the democratization of early MCI detection and enable timely interventions.展开更多
Metabolic dysfunction-associated steatotic liver disease(MASLD)is an increasingly prevalent condition associated with hepatic complications and cardiovascular and renal events.Given its significant clinical impact,the...Metabolic dysfunction-associated steatotic liver disease(MASLD)is an increasingly prevalent condition associated with hepatic complications and cardiovascular and renal events.Given its significant clinical impact,the development of new strategies for early diagnosis and treatment is essential to improve patient outcomes.Over the past decade,the integration of artificial intelligence(AI)into gastroenterology has led to transformative advancements in medical practice.AI represents a major step towards personalized medicine,offering the potential to enhance diagnostic accuracy,refine prognostic assessments,and optimize treatment strategies.Its applications are rapidly expanding.This article explores the emerging role of AI in the management of MASLD,emphasizing its ability to improve clinical prediction,enhance the diagnostic performance of imaging modalities,and support histopathological confirmation.Additionally,it examines the development of AI-guided personalized treatments,where lifestyle modifications and close monitoring play a pivotal role in achieving therapeutic success.展开更多
A new simple digital positron lifetime spectrometer has been developed. It includes a DRS4 waveform digitizing board and two scintillation detectors based on the XP2020Q photomultiplier tubes and LaBr3 scintillators. ...A new simple digital positron lifetime spectrometer has been developed. It includes a DRS4 waveform digitizing board and two scintillation detectors based on the XP2020Q photomultiplier tubes and LaBr3 scintillators. The DRS4 waveform digitizing can handle small pulses, down to few tens of millivolts, and its time scale linearity and stability are very good. The new system has reached a 206 ps time resolution, which is better than the conventional analog apparatus using the same detectors. These improvements make this spectrometer more simple and convenient in comparison with other spectrometers, and it can be applied to the other scintillation timing measurements with picosecond accuracy.展开更多
In robotics and human-robot interaction,a robot’s capacity to express and react correctly to human emotions is essential.A significant aspect of the capability involves controlling the robotic facial skin actuators i...In robotics and human-robot interaction,a robot’s capacity to express and react correctly to human emotions is essential.A significant aspect of the capability involves controlling the robotic facial skin actuators in a way that resonates with human emotions.This research focuses on human anthropometric theories to design and control robotic facial actuators,addressing the limitations of existing approaches in expressing emotions naturally and accurately.The facial landmarks are extracted to determine the anthropometric indicators for designing the robot head and is employed to the displacement of these points to calculate emotional values using Fuzzy C-Mean(FCM).The rotating angles of skin actuators are required to account for the smaller emotions,which enhance the robot’s ability to perform emotions in reality.In addition,this study contributes a novel approach based on facial anthropometric indicators to tailor emotional expressions to diverse human characteristics,ensuring more personalized and intuitive interactions.The results demonstrated howfuzzy logic can be employed to improve a robot’s ability to express emotions,which are digitized into fuzzy values.This is also the contribution of the research,which laid the groundwork for robots that can interact with humans more intuitively and empathetically.The performed experiments demonstrated that the suitability of proposed models to conduct tasks related to human emotions with the accuracy of emotional value determination and motor angles is 0.96 and 0.97,respectively.展开更多
With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenu...With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE.展开更多
Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression an...Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone.A digital core of tight sandstone was built using Computed Tomography(CT)scanning,which was divided into matrix and pore phases by a pore equivalent diameter threshold.A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale.The results showed that increasing the confining pressure decreased porosity,permeability,and flow velocity,with the pore phase becoming the dominant seepage channel.Cracks and large pores closed first under increasing pressure,resulted in a steep drop in permeability.However,permeability slightly decreased under high confining pressure,which followed a first-order exponential function.Flow velocity increased with seepage pressure.And the damage mainly occurred in stress-concentration regions under low seepage pressure.Seepage behavior followed linear Darcy flow,the damage emerged at seepage entrances under high pressure,which decreased rock elastic modulus and significantly increased permeability.展开更多
文摘Design,realization,and test of a monolithic GaAs 3bit phase digitizing DAC for 3bit digital radio-frequency memory are detailedly described.The 0.5μm fully ion-implanted GaAs MESFET is used to fabricate the circuit in Nanjing Electronic Devices Institute’s (NEDI’s) 75mm standard process line.The high-speed DAC is designed with on-wafer 50Ω I/O impedance matching.Test results show that its work bandwidth is more than 1.5GHz,and phase accuracy is better than 4%.Its code conversion rate can be higher than 12Gbps.
基金partially supported by Key Technologies Research and Development Program of China,for the project titled "Metadata Standard for Cultural Relics Digital Preservation" (project No.: 2014BAK07B02)
文摘Purpose: This study is a user evaluation on the usability of the Mogao Cave Panorama Digital Library (DL), aiming to measure its effectiveness from the users' perspective and to propose suggestions for improvement. Design/methodology/approach: Usability tests were conducted based on a framework of evaluation criteria and a set of information seeking tasks designed for the Dunhuang cultural heritage, and interviews were conducted for soliciting in-depth opinions from participants. Findings: The results of the usability tests indicate that the DL was more efficient in supporting simple information seeking tasks than those of higher-complexity levels. Statistical tests reveal that there were correlations among dimensions of usability criteria and user effectiveness measures. Moreover, interview discourses exposed specific usability issues of the DL. Research limitations: This research is based on a relatively small sample size, resulting in a limited representativeness of user diversity. A larger sample size is needed for a systematic cross group comparison. Practical implications: This study evaluated the usability of the Mogao Cave Panorama DL and proposed suggestions for its improvement for better experience. The results also provide a reference to other cultural heritage DLs with panorama functions. Originality/value: This study is one of the first evaluating cultural heritage DLs from the perspective of user experience. It provides methodological references for relevant studies: the evaluation framework, the designed information seeking tasks, and the interview questions can be adopted or adapted in evaluating other visually centric DLs of cultural heritage.
基金granted by National Natural Science Foundation of China (Grant No.41725007)Chinese Academy of Sciences (Grant Nos.XDB10010100 and XXH13506)State Key Laboratory of Palaeobiology and Stratigraphy,NIGPAS (Grant No.20183127).
文摘1 Introduction Geological outcrops or sections are the basis of geological research.However,the traditional methods for presenting them are mainly photos which fall short of delivering a true visual sense (Deng et al.,2009;Hou et al.,2014).With the continuous development of image acquisition technology using single-lens reflex camera (SLR camera),image synthesis,large file storage and acquisition,panoramic visualization and network technology.
文摘Archaeological excavation involves disintegration, removal, and reassembly of the archaeological record;as such it is considered by many to be an unrepeatable, destructive activity. This perception has contributed to an advancement in archaeological practice, namely, the development of computerized recording systems that digitally record archaeological excavations spatially and volumetrically during fieldwork. This paper is concerned with those archaeological sites where digital field recording has not been done. These sites, recorded by traditional methods, should not be excluded from attempts to restructure the spatial, volumetric, and stratigraphic archaeological data. A thorough methodology for the conversion of traditional records into digitized data is presented, including the detailed procedures required for three-dimensional plotting of recorded data—both the excavated material and the drawn site maps and cross-sections. Finally, the use of these methods is demonstrated on a complex Early to Middle Pleistocene site, illustrating the benefits of digitization and three-dimensional reconstruction in resolving stratigraphic and spatial questions.
基金Supported by National Natural Science Foundation of China(11305233)Specific Fund Research Based on Large-scale Science In strument Facilities of China(2011YQ12009604)
文摘A new fast waveform sampling digitizing circuit based on the domino ring sampler (DRS), a switched capacitor array (SCA) chip, is presented in this paper, which is different from the traditional waveform digitizing circuit constructed with an analog to digital converter (ADC) or time to digital converter. A DRS4 chip is used as a core device in our circuit, which has a fast sampling rate up to five gigabit samples per second (GSPS). Quite satisfactory results are acquired by the preliminary performance test for this circuit board. Eight channels can be provided by one board, which has a 1 V input dynamic range for each channel. The circuit linearity is better than 0.1%, the noise is less than 0.5 mV (root mean square, RMS), and its time resolution is about 50 ps. Several boards can be cascaded to construct a multi-board system. The advantages of high resolution, low cost, low power dissipation, high channel density and small size make the circuit board useful not only for physics experiments, but also for other applications.
文摘The detection efficiency of phoswich detector starts to decrease when Compton scattering becomes significant. Events with energy deposit in both scintillators, if not rejected, are not useful for spectral analysis as the full energy of the incident photon cannot be reconstructed with conventional readout. We show that once the system response is carefully calibrated, the full energy of those double deposit events can be reconstructed using a waveform digitizer as the readout. Our experiment suggests that the efficiency of a photopeak at 662 keV can be increased by a factor of 2 using our LaBr3/NaI phoswich detector.
文摘RENEWING THE FORBIDDEN CITY’S CENTURY-OLD LEGACY.Oriental Outlook.27 November 2025.At sunrise,the Forbidden City glows under a veil of gold;at night,it retreats into quiet dignity.But the palace never really sleeps.As visitors depart,the“digital relic vault”awakens online,where porcelain,calligraphy,jade and timepieces reveal their beauty in virtual form.History continues to breathe in the data stream.
文摘A New Chapter of the Century-Old Palace Museum Oriental Outlook Issue 24,2025 The Palace Museum,the imperial palace of the Ming and Qing dynasties(1368-1911),opened to the public in 1925.Rather than a group of static ancient buildings,it stands today as a dynamic cultural organism filled with invaluable collections of cultural relics preserved by generations of artisans and now displayed to the world through digital technology in long-lasting exhibitions.
文摘Artificial intelligence(AI)is increasingly recognized as a transformative force in the field of solid organ transplantation.From enhancing donor-recipient matching to predicting clinical risks and tailoring immunosuppressive therapy,AI has the potential to improve both operational efficiency and patient outcomes.Despite these advancements,the perspectives of transplant professionals-those at the forefront of critical decision-making-remain insufficiently explored.To address this gap,this study utilizes a multi-round electronic Delphi approach to gather and analyses insights from global experts involved in organ transplantation.Participants are invited to complete structured surveys capturing demographic data,professional roles,institutional practices,and prior exposure to AI technologies.The survey also explores perceptions of AI’s potential benefits.Quantitative responses are analyzed using descriptive statistics,while open-ended qualitative responses undergo thematic analysis.Preliminary findings indicate a generally positive outlook on AI’s role in enhancing transplantation processes,particularly in areas such as donor matching and post-operative care.These mixed views reflect both optimism and caution among professionals tasked with integrating new technologies into high-stakes clinical workflows.By capturing a wide range of expert opinions,the findings will inform future policy development,regulatory considerations,and institutional readiness frameworks for the integration of AI into organ transplantation.
文摘Healthy behavior has long been linked to mental health outcomes.However,the role of artificial intelligence(AI)literacy in shaping healthy behaviors and its potential impact on mental health remains underexplored.This paper presents a scoping review offering a novel perspective on the intersection of healthy behaviors,mental health,and AI literacy.By examining how individuals’understanding of AI influences their choices regarding nutrition and their susceptibility to mental health issues,the current study explores emerging trends in health behavior decision-making.This emphasizes the need for integrating AI literacy into mental health and health behaviors education,as well as the development of AI-driven tools to support healthier behavior choices.It highlights that individuals with low AI literacy may misinterpret or overly depend on AI guidance,resulting in maladaptive health choices,while those with high AI literacy may be more likely to engage reflectively and sustain positive behaviors.The paper outlines the importance of inclusive education,user-centered design,and community-based support systems to enhance AI literacy for digitally marginalized groups.AI literacy may be positioned as a key determinant of health equity,better allowing for interdisciplinary strategies that empower individuals to make informed,autonomous decisions that promote both physical and mental health.
文摘The increasing global prevalence of mild cognitive impairment(MCI)necessitates a paradigm shift in early detection strategies.Conventional neuropsychological assessment methods,predominantly paper-and-pencil tests such as the Mini-Mental State Examination and the Montreal Cognitive Assessment,exhibit inherent limitations with respect to accessibility,administration burden,and sensitivity to subtle cognitive decline,particularly among diverse populations.This commentary critically examines a recent study that champions a novel approach:The integration of gait and handwriting kinematic parameters analyzed via machine learning for MCI screening.The present study positions itself within the broader landscape of MCI detection,with a view to comparing its advantages against established neuropsychological batteries,advanced neuroimaging(e.g.,positron emission tomography,magnetic resonance imaging),and emerging fluid biomarkers(e.g.,cerebrospinal fluid,blood-based assays).While the study demonstrates promising accuracy(74.44%area under the curve 0.74 with gait and graphic handwriting)and addresses key unmet needs in accessibility and objectivity,we highlight its cross-sectional nature,limited sample diversity,and lack of dual-task assessment as areas for future refinement.This commentary posits that kinematic biomarkers offer a distinctive,scalable,and ecologically valid approach to widespread MCI screening,thereby complementing existing methods by providing real-world functional insights.Future research should prioritize longitudinal validation,expansion to diverse cohorts,integration with multimodal data including dual-tasking,and the development of highly portable,artificial intelligence-driven solutions to achieve the democratization of early MCI detection and enable timely interventions.
文摘Metabolic dysfunction-associated steatotic liver disease(MASLD)is an increasingly prevalent condition associated with hepatic complications and cardiovascular and renal events.Given its significant clinical impact,the development of new strategies for early diagnosis and treatment is essential to improve patient outcomes.Over the past decade,the integration of artificial intelligence(AI)into gastroenterology has led to transformative advancements in medical practice.AI represents a major step towards personalized medicine,offering the potential to enhance diagnostic accuracy,refine prognostic assessments,and optimize treatment strategies.Its applications are rapidly expanding.This article explores the emerging role of AI in the management of MASLD,emphasizing its ability to improve clinical prediction,enhance the diagnostic performance of imaging modalities,and support histopathological confirmation.Additionally,it examines the development of AI-guided personalized treatments,where lifestyle modifications and close monitoring play a pivotal role in achieving therapeutic success.
基金Supported by National Natural Science Foundation of China(11175171,10835006,11105139,10975133)
文摘A new simple digital positron lifetime spectrometer has been developed. It includes a DRS4 waveform digitizing board and two scintillation detectors based on the XP2020Q photomultiplier tubes and LaBr3 scintillators. The DRS4 waveform digitizing can handle small pulses, down to few tens of millivolts, and its time scale linearity and stability are very good. The new system has reached a 206 ps time resolution, which is better than the conventional analog apparatus using the same detectors. These improvements make this spectrometer more simple and convenient in comparison with other spectrometers, and it can be applied to the other scintillation timing measurements with picosecond accuracy.
基金funded by the University of Economics Ho Chi Minh City-UEH,Vietnam.
文摘In robotics and human-robot interaction,a robot’s capacity to express and react correctly to human emotions is essential.A significant aspect of the capability involves controlling the robotic facial skin actuators in a way that resonates with human emotions.This research focuses on human anthropometric theories to design and control robotic facial actuators,addressing the limitations of existing approaches in expressing emotions naturally and accurately.The facial landmarks are extracted to determine the anthropometric indicators for designing the robot head and is employed to the displacement of these points to calculate emotional values using Fuzzy C-Mean(FCM).The rotating angles of skin actuators are required to account for the smaller emotions,which enhance the robot’s ability to perform emotions in reality.In addition,this study contributes a novel approach based on facial anthropometric indicators to tailor emotional expressions to diverse human characteristics,ensuring more personalized and intuitive interactions.The results demonstrated howfuzzy logic can be employed to improve a robot’s ability to express emotions,which are digitized into fuzzy values.This is also the contribution of the research,which laid the groundwork for robots that can interact with humans more intuitively and empathetically.The performed experiments demonstrated that the suitability of proposed models to conduct tasks related to human emotions with the accuracy of emotional value determination and motor angles is 0.96 and 0.97,respectively.
基金Supported by Beijing Municipal Natural Science Foundation of China(Grant No.24JL002)China Postdoctoral Science Foundation(Grant No.2024M754054)+2 种基金National Natural Science Foundation of China(Grant No.52120105008)Beijing Municipal Outstanding Young Scientis Program of Chinathe New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE.
基金financially supported by the National Natural Science Foundation of China(Nos.42272153 and 42472195)the Research Fund of PetroChina Tarim Oilfield Company(No.671023060003)the Research Fund of China National Petroleum Corporation Limited(No.2023ZZ16YJ04).
文摘Deep tight reservoirs exhibit complex stress and seepage fields due to varying pore structures,thus the seepage characteristics are significant for enhancing oil production.This study conducted triaxial compression and permeability tests to investigate the mechanical and seepage properties of tight sandstone.A digital core of tight sandstone was built using Computed Tomography(CT)scanning,which was divided into matrix and pore phases by a pore equivalent diameter threshold.A fluid-solid coupling model was established to investigate the seepage characteristics at micro-scale.The results showed that increasing the confining pressure decreased porosity,permeability,and flow velocity,with the pore phase becoming the dominant seepage channel.Cracks and large pores closed first under increasing pressure,resulted in a steep drop in permeability.However,permeability slightly decreased under high confining pressure,which followed a first-order exponential function.Flow velocity increased with seepage pressure.And the damage mainly occurred in stress-concentration regions under low seepage pressure.Seepage behavior followed linear Darcy flow,the damage emerged at seepage entrances under high pressure,which decreased rock elastic modulus and significantly increased permeability.