By stating the problems faced by the experiment of digital logic design course in traditional laboratory, the necessity of hardware experiment virtualization is analyzed, and then two virtual experiment methods are in...By stating the problems faced by the experiment of digital logic design course in traditional laboratory, the necessity of hardware experiment virtualization is analyzed, and then two virtual experiment methods are introduced. The pilot implementation of remote virtual experimental platform and virtual component library shows that the virtualization of hardware experiment can effectively break the time and space limitation of traditional hardware experiment, and improves the learning enthusiasm and autonomy of students, which is worth further promoted.展开更多
With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenu...With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE.展开更多
Objectives:Childhood and adolescent obesity are an increasing global health concern.This study aimed to evaluate the effectiveness of digital components and interaction types in counseling interventions for prevention...Objectives:Childhood and adolescent obesity are an increasing global health concern.This study aimed to evaluate the effectiveness of digital components and interaction types in counseling interventions for prevention and treatment.Methods:All studies were searched in online databases and grey literature,including PubMed(Medline),Web of Science,CINAHL,Scopus,IEEE Xplore Digital Library,Journal of Medical Internet Research(JMIR),MedNar,EBSco Open Dissertations.The search period is from inception to June 2023,and the languages are Finnish,English and Swedish.The research quality was evaluated using the web-based data management system Covidence for prevalence studies.The study protocol was registered with PROSPERO(registration number:CRD42021247595).Results:In this review,4,407 studies were screened,and 22 were included.These involved 3,433 participants and 264 child-parent pairs.The digital approaches included multicomponent elements like internet platforms,text messaging,video conferencing,online communities,wearable technology,and mobile apps,allowing one-way,two-way,and face-to-face interactions.Two studies showed statistically significant effects of treatment on BMI and waist-to-hip ratio.Most interventions reported positive outcomes,with no significant differences between groups,and none showed null effects during followup.Conclusions:Digital multicomponents like mobile apps and wearables can help obese children and adolescents adopt healthier lifestyles.While these interventions show promise for obesity management,further research is needed to assess their effectiveness,particularly regarding nurses'perspectives.展开更多
In the context of the digital transformation of vocational education,a quality evaluation index system has been constructed.Based on a questionnaire survey conducted among higher vocational colleges and enterprises in...In the context of the digital transformation of vocational education,a quality evaluation index system has been constructed.Based on a questionnaire survey conducted among higher vocational colleges and enterprises in Hainan Province,it has been found that the quality of vocational education generally depends on the talent training program and professional construction at the macro level.At the meso level,the teacher level and teaching environment are critical,while at the micro level,the evaluation of talent training quality cannot be underestimated.Strategies for quality improvement in vocational education are proposed from the perspectives of talent training programs,major construction,teacher development,teaching environment,and talent training quality,all under the lens of digital transformation.展开更多
To the Editor:As a student actively involved in advocacy for heart disease prevention,I was particularly intrigued by the policymaking implications of digital interventions in the article "Digital components and ...To the Editor:As a student actively involved in advocacy for heart disease prevention,I was particularly intrigued by the policymaking implications of digital interventions in the article "Digital components and interaction types in counseling interventions for childhood and adolescent obesity:A systematic review" [1].Through my work as the Founder and President of the nonprofit Guardians of Heart,I have developed and promoted early educational programs,digital tools,and community outreach initiatives designed to instill heart-healthy habits in youth,intending to mitigate risk factors such as obesity that significantly contribute to cardiovascular disease later in life.展开更多
This study examines the digital transformation of traditional Chinese medicine(TCM)education within the context of global standardization,along with the challenges and opportunities of its cross-cultural dissemination...This study examines the digital transformation of traditional Chinese medicine(TCM)education within the context of global standardization,along with the challenges and opportunities of its cross-cultural dissemination.With the rapid advancement of technologies such as artificial intelligence,virtual reality,and blockchain,TCM education is experiencing a significant disruption and innovation of its traditional models.The research develops a“Standard-Technology-Culture”tri-spiral model to analyze how TCM education can achieve a seamless integration of standardization,technological innovation,and cultural preservation during its globalization process.The study finds that standardization provides the foundation for TCM education’s global expansion,while technological innovation drives the transformation of educational methodologies.Simultaneously,cultural preservation ensures the distinctiveness of TCM education.However,the tension between standardization and the unique characteristics of TCM,as well as the balance between technological empowerment and cultural transmission,remain critical challenges in the ongoing transformation.Based on these findings,the study proposes strategies such as the“digital apprenticeship”model and blockchain-based certification systems to advance the globalization and digital transformation of TCM education,providing theoretical support for the creation of a global health community.展开更多
Objectives This systematic review aimed to identify effective and cost-effective digital health interventions to improve self-management behaviors,blood pressure control,and cardiovascular risk reduction.Methods A sea...Objectives This systematic review aimed to identify effective and cost-effective digital health interventions to improve self-management behaviors,blood pressure control,and cardiovascular risk reduction.Methods A search for randomized and non-randomized control trials of digital health interventions among patients with uncontrolled hypertension was conducted from the databases of Embase,PubMed,Scopus,CINAHL,Web of Science,PsycINFO,Thai Journal Online(ThaiJO),the Faculty of Nursing Mahidol University(FON-MU)Nursing Research Database,and gray literature.After conducting the literature screening,the authors completed data extraction,and the risk of bias was assessed using the Joanna Briggs Institute randomized controlled trial checklist and the Joanna Briggs Institute critical appraisal checklist for quasi-experimental studies.Results The study included 22 articles,comprising 30 to 4,118 patients with uncontrolled hypertension.This review classified and summarized the components of digital health interventions and their effects on hypertensive outcomes.It was found that the key elements of digital health interventions include health education,reminders,self-monitoring,feedback and consultation,and instrumental support.Moreover,approximately 81.81%(n=18)of the digital health interventions involved healthcare providers participating in feedback and consultation.Additionally,digital health interventions effectively improve hypertensive outcomes such as self-management behaviors,blood pressure control,and cardiovascular risk reduction,providing cost-effectiveness.Conclusion Based on the available literature,digital health interventions have been shown to effectively enhance behavioral,clinical,and economic outcomes for individuals with uncontrolled hypertension.Moreover,the combination of digital health interventions and healthcare providers’interventions can potentially help patients with uncontrolled hypertension improve adherence to self-management when compared to stand-alone digital health interventions.Digital health interventions to support self-management interventions should be developed for patients by healthcare providers.展开更多
Geared-rotor systems are critical components in mechanical applications,and their performance can be severely affected by faults,such as profile errors,wear,pitting,spalling,flaking,and cracks.Profile errors in gear t...Geared-rotor systems are critical components in mechanical applications,and their performance can be severely affected by faults,such as profile errors,wear,pitting,spalling,flaking,and cracks.Profile errors in gear teeth are inevitable in manufacturing and subsequently accumulate during operations.This work aims to predict the status of gear profile deviations based on gear dynamics response using the digital model of an experimental rig setup.The digital model comprises detailed CAD models and has been validated against the expected physical behavior using commercial finite element analysis software.The different profile deviations are then modeled using gear charts,and the dynamic response is captured through simulations.The various features are then obtained by signal processing,and various ML models are then evaluated to predict the fault/no-fault condition for the gear.The best performance is achieved by an artificial neural network with a prediction accuracy of 97.5%,which concludes a strong influence on the dynamics of the gear rotor system due to profile deviations.展开更多
Cyber-Physical Systems(CPS)represent an integration of computational and physical elements,revolutionizing industries by enabling real-time monitoring,control,and optimization.A complementary technology,Digital Twin(D...Cyber-Physical Systems(CPS)represent an integration of computational and physical elements,revolutionizing industries by enabling real-time monitoring,control,and optimization.A complementary technology,Digital Twin(DT),acts as a virtual replica of physical assets or processes,facilitating better decision making through simulations and predictive analytics.CPS and DT underpin the evolution of Industry 4.0 by bridging the physical and digital domains.This survey explores their synergy,highlighting how DT enriches CPS with dynamic modeling,realtime data integration,and advanced simulation capabilities.The layered architecture of DTs within CPS is examined,showcasing the enabling technologies and tools vital for seamless integration.The study addresses key challenges in CPS modeling,such as concurrency and communication,and underscores the importance of DT in overcoming these obstacles.Applications in various sectors are analyzed,including smart manufacturing,healthcare,and urban planning,emphasizing the transformative potential of CPS-DT integration.In addition,the review identifies gaps in existing methodologies and proposes future research directions to develop comprehensive,scalable,and secure CPSDT systems.By synthesizing insights fromthe current literature and presenting a taxonomy of CPS and DT,this survey serves as a foundational reference for academics and practitioners.The findings stress the need for unified frameworks that align CPS and DT with emerging technologies,fostering innovation and efficiency in the digital transformation era.展开更多
Purpose–This study aims to implement condition monitoring for urban rail train permanent magnet synchronous motors and inverter systems.Through the construction of a digital twin model,it performs fault diagnosis of ...Purpose–This study aims to implement condition monitoring for urban rail train permanent magnet synchronous motors and inverter systems.Through the construction of a digital twin model,it performs fault diagnosis of potential system failures,enabling rapid fault localization and protection.Design/methodology/approach–This research begins with a brief introduction to the structure and classification of permanent magnet synchronous motors(PMSMs),followed by a detailed analysis of their mathematical model.Subsequently,it thoroughly investigates the working principle of three-phase two-level inverters and the distribution of space voltage vectors.Based on the analysis of the main circuit topology,a digital twin model matching the external characteristics of the physical circuit is established using the model predictive control method,achieving accurate system simulation.Furthermore,through theoretical analysis and simulation verification of phase current characteristics under inverter switch tube faults,general patterns of phase currents under fault conditions are summarized.The established digital twin model is then employed to validate these patterns,confirming the model’s effectiveness in fault diagnosis.Findings–This study proposes a fault diagnosis method based on digital twins.Experimental and simulation results demonstrate that the established digital twin model can accurately simulate the external characteristics of the actual physical circuit,validating its effectiveness in inverter fault diagnosis.This approach offers practical value for condition monitoring in actual urban rail train systems.Originality/value–The study innovatively starts from a mathematical model and simulates the actual physical model through a virtual model,requiring only external characteristics to achieve system fault diagnosis,thereby enhancing diagnostic efficiency.展开更多
Traditional calibration method for the digital inclinometer relies on manual inspection,and results in its disadvantages of complicated process,low-efficiency and human errors easy to be introduced.To improve both the...Traditional calibration method for the digital inclinometer relies on manual inspection,and results in its disadvantages of complicated process,low-efficiency and human errors easy to be introduced.To improve both the calibration accuracy and efficiency of digital inclinometer,an automatic digital inclinometer calibration system was developed in this study,and a new display tube recognition algorithm was proposed.First,a high-precision automatic turntable was taken as the reference to calculate the indication error of the inclinometer.Then,the automatic inclinometer calibration control process and the digital inclinometer zero-setting function were formulated.For display tube recognition,a new display tube recognition algorithm combining threading method and feature extraction method was proposed.Finally,the calibration system was calibrated by photoelectric autocollimator and regular polygon mirror,and the calibration system error and repeatability were calculated via a series of experiments.The experimental results showed that the indication error of the proposed calibration system was less than 4",and the repeatability was 3.9".A digital inclinometer with the resolution of 0.1°was taken as a testing example,within the calibration points'range of[-90°,90°],the repeatability of the testing was 0.085°,and the whole testing process was less than 90 s.The digital inclinometer indication error is mainly introduced by the digital inclinometer resolution according to the uncertainty evaluation.展开更多
In the contemporary era,characterized by the Internet and digitalization as fundamental features,the operation and application of digital currency have gradually developed into a comprehensive structural system.This s...In the contemporary era,characterized by the Internet and digitalization as fundamental features,the operation and application of digital currency have gradually developed into a comprehensive structural system.This system restores the essential characteristics of currency while providing auxiliary services related to the formation,circulation,storage,application,and promotion of digital currency.Compared to traditional currency management technologies,big data analysis technology,which is primarily embedded in digital currency systems,enables the rapid acquisition of information.This facilitates the identification of standard associations within currency data and provides technical support for the operational framework of digital currency.展开更多
Traditional Chinese medicine(TCM)auscultation has a long history,and with advancements in equipment and analytical methods,the quantitative analysis of auscultation parameters has determined.However,the complexity and...Traditional Chinese medicine(TCM)auscultation has a long history,and with advancements in equipment and analytical methods,the quantitative analysis of auscultation parameters has determined.However,the complexity and diversity of auscultation,along with variations in devices,analytical methods,and applications,bring challenges to its standardization and deeper application.This review presents the advancements in auscultation equipment and systems,auscultation characteristic parameters,and their application in the diagnosis of pulmonary diseases and syndromes over the past 10 years,while also exploring the progress and challenges of current digital research of auscultation.This review also proposes the establishment of standardized protocols for the collection and analysis of auscultation data,the incorporation of advanced artificial intelligence(AI)auscultation analysis methods,and an exploration of the diagnostic utility of auscultatory features in pulmonary diseases and syndromes,so as to provide more precise decision support for intelligent diagnosis of pulmonary diseases and syndromes.展开更多
Digital Twin (DT) technology is revolutionizing the railway sector by providing a virtual replica of physical systems, enabling real-time monitoring, predictive maintenance, and enhanced decision-making. This systemat...Digital Twin (DT) technology is revolutionizing the railway sector by providing a virtual replica of physical systems, enabling real-time monitoring, predictive maintenance, and enhanced decision-making. This systematic literature review examines the status, enabling technologies, case studies, and frameworks for DT applications in railway systems with 91 selected papers from Scopus, Web of Science, IEEE, and the Snowballing Technique. The review focuses on four primary subsystems: tracks, civil structures, vehicles, and overhead contact line structures. Key findings reveal that DT has successfully optimized maintenance strategies, improved operational efficiency, and enhanced system safety. Internet of Things (IoT) devices, Artificial Intelligence (AI), machine learning, and cloud computing are critical in implementing DT models. However, challenges like data integration, high implementation costs, and cybersecurity risks remain, necessitating the discussed implications. Future research should focus on improving data interoperability, reducing costs through scalable cloud-based solutions, and addressing cybersecurity vulnerabilities. DT technology has the potential to revolutionize railway infrastructure management, ensuring greater efficiency, safety, and sustainability.展开更多
To achieve a low-complexity nonlinearity compensation(NLC)in high-symbol-rate(HSR)systems,we propose a modified weighted digital backpropagation(M-W-DBP)by jointly shifting the calculated position of nonlinear phase n...To achieve a low-complexity nonlinearity compensation(NLC)in high-symbol-rate(HSR)systems,we propose a modified weighted digital backpropagation(M-W-DBP)by jointly shifting the calculated position of nonlinear phase noise and considering the correlation of neighboring symbols in the NLC section of DBP.Based on this model,with the aid of neural network optimization,a learned version of M-W-DBP(M-W-LDBP)is also proposed and explored.Furthermore,enough technical details are revealed for the first time,including the principle of our proposed M-W-DBP and M-W-LDBP,the training process,and the complexity analysis of different DBPclass NLC algorithms.Evaluated numerically with QPSK,16QAM,and PS-64QAM modulation formats,1-step-per-span(1-StPS)M-W-DBP/LDBP achieves up to 1.29/1.49 dB and 0.63/0.74 dB signal-to-noise ratio improvement compared to chromatic dispersion compensation(CDC)in 90-GBaud and 128-GBaud 1000-km single-channel transmission systems,respectively.Moreover,1-StPS M-W-DBP/LDBP provides a more powerful NLC ability than 2-StPS LDBP but only needs about 60%of the complexity.The effectiveness of the proposed M-W-DBP and M-W-LDBP in the presence of laser phase noise is also verified and the necessity of using the learned version of M-WDBP is also discussed.This work is a comprehensive study of M-W-DBP/LDBP and other DBP-class NLC algorithms in HSR systems.展开更多
This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as ru...This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as rule-based fuzzy systems and conventional FDI methods,often struggle with the dynamic nature of modern grids,resulting in delays and inaccuracies in fault classification.To overcome these limitations,this study introduces a Hybrid NeuroFuzzy Fault Detection Model that combines the adaptive learning capabilities of neural networks with the reasoning strength of fuzzy logic.The model’s performance was evaluated through extensive simulations on the IEEE 33-bus test system,considering various fault scenarios,including line-to-ground faults(LGF),three-phase short circuits(3PSC),and harmonic distortions(HD).The quantitative results show that the model achieves 97.2%accuracy,a false negative rate(FNR)of 1.9%,and a false positive rate(FPR)of 2.3%,demonstrating its high precision in fault diagnosis.The qualitative analysis further highlights the model’s adaptability and its potential for seamless integration into smart grids,micro grids,and renewable energy systems.By dynamically refining fuzzy inference rules,the model enhances fault detection efficiency without compromising computational feasibility.These findings contribute to the development of more resilient and adaptive fault management systems,paving the way for advanced smart grid technologies.展开更多
Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization an...Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization and modeling,on the one hand,the system has successfully achieved the reuse of software modules among different satellite models;on the other hand,it has achieved the reuse of software modules between the digital twin and the testing system,significantly improving the development efficiency of the digital twin system.The paper elaborates on the technical architecture and application fields of this digital twin system,and further prospects its future development.At the same time,through a real inorbit case,the engineering value of the digital twin system is strongly demonstrated.展开更多
This study proposes an automatic control system for Autonomous Underwater Vehicle(AUV)docking,utilizing a digital twin(DT)environment based on the HoloOcean platform,which integrates six-degree-of-freedom(6-DOF)motion...This study proposes an automatic control system for Autonomous Underwater Vehicle(AUV)docking,utilizing a digital twin(DT)environment based on the HoloOcean platform,which integrates six-degree-of-freedom(6-DOF)motion equations and hydrodynamic coefficients to create a realistic simulation.Although conventional model-based and visual servoing approaches often struggle in dynamic underwater environments due to limited adaptability and extensive parameter tuning requirements,deep reinforcement learning(DRL)offers a promising alternative.In the positioning stage,the Twin Delayed Deep Deterministic Policy Gradient(TD3)algorithm is employed for synchronized depth and heading control,which offers stable training,reduced overestimation bias,and superior handling of continuous control compared to other DRL methods.During the searching stage,zig-zag heading motion combined with a state-of-the-art object detection algorithm facilitates docking station localization.For the docking stage,this study proposes an innovative Image-based DDPG(I-DDPG),enhanced and trained in a Unity-MATLAB simulation environment,to achieve visual target tracking.Furthermore,integrating a DT environment enables efficient and safe policy training,reduces dependence on costly real-world tests,and improves sim-to-real transfer performance.Both simulation and real-world experiments were conducted,demonstrating the effectiveness of the system in improving AUV control strategies and supporting the transition from simulation to real-world operations in underwater environments.The results highlight the scalability and robustness of the proposed system,as evidenced by the TD3 controller achieving 25%less oscillation than the adaptive fuzzy controller when reaching the target depth,thereby demonstrating superior stability,accuracy,and potential for broader and more complex autonomous underwater tasks.展开更多
A state-of-the-art detector array with a digital data acquisition system has been developed for charged-particle decay studies,includingβ-delayed protons,αdecay,and direct proton emissions from exotic proton-rich nu...A state-of-the-art detector array with a digital data acquisition system has been developed for charged-particle decay studies,includingβ-delayed protons,αdecay,and direct proton emissions from exotic proton-rich nuclei.The digital data acquisition system enables precise synchronization and processing of complex signals from various detectors,such as plastic scintillators,silicon detectors,and germaniumγdetectors.The system's performance was evaluated using theβdecay of^(32)Ar and its neighboring nuclei,produced via projectile fragmentation at the first Radioactive Ion Beam Line in Lanzhou(RIBLL1).Key measurements,including the half-life,charged-particle spectrum,andγ-ray spectrum,were obtained and compared with previous results for validation.Using the implantation–decay method,the isotopes of interest were implanted into two doublesided silicon strip detectors,where their subsequent decays were measured and correlated with preceding implantations using both position and time information.This detection system has potential for further applications,including the study ofβ-delayed charged-particle decay and direct proton emissions from even more exotic proton-rich nuclei.展开更多
文摘By stating the problems faced by the experiment of digital logic design course in traditional laboratory, the necessity of hardware experiment virtualization is analyzed, and then two virtual experiment methods are introduced. The pilot implementation of remote virtual experimental platform and virtual component library shows that the virtualization of hardware experiment can effectively break the time and space limitation of traditional hardware experiment, and improves the learning enthusiasm and autonomy of students, which is worth further promoted.
基金Supported by Beijing Municipal Natural Science Foundation of China(Grant No.24JL002)China Postdoctoral Science Foundation(Grant No.2024M754054)+2 种基金National Natural Science Foundation of China(Grant No.52120105008)Beijing Municipal Outstanding Young Scientis Program of Chinathe New Cornerstone Science Foundation through the XPLORER PRIZE。
文摘With the continuous advancement and maturation of technologies such as big data,artificial intelligence,virtual reality,robotics,human-machine collaboration,and augmented reality,many enterprises are finding new avenues for digital transformation and intelligent upgrading.Industry 5.0,a further extension and development of Industry 4.0,has become an important development trend in industry with more emphasis on human-centered sustainability and flexibility.Accordingly,both the industrial metaverse and digital twins have attracted much attention in this new era.However,the relationship between them is not clear enough.In this paper,a comparison between digital twins and the metaverse in industry is made firstly.Then,we propose the concept and framework of Digital Twin Systems Engineering(DTSE)to demonstrate how digital twins support the industrial metaverse in the era of Industry 5.0 by integrating systems engineering principles.Furthermore,we discuss the key technologies and challenges of DTSE,in particular how artificial intelligence enhances the application of DTSE.Finally,a specific application scenario in the aviation field is presented to illustrate the application prospects of DTSE.
文摘Objectives:Childhood and adolescent obesity are an increasing global health concern.This study aimed to evaluate the effectiveness of digital components and interaction types in counseling interventions for prevention and treatment.Methods:All studies were searched in online databases and grey literature,including PubMed(Medline),Web of Science,CINAHL,Scopus,IEEE Xplore Digital Library,Journal of Medical Internet Research(JMIR),MedNar,EBSco Open Dissertations.The search period is from inception to June 2023,and the languages are Finnish,English and Swedish.The research quality was evaluated using the web-based data management system Covidence for prevalence studies.The study protocol was registered with PROSPERO(registration number:CRD42021247595).Results:In this review,4,407 studies were screened,and 22 were included.These involved 3,433 participants and 264 child-parent pairs.The digital approaches included multicomponent elements like internet platforms,text messaging,video conferencing,online communities,wearable technology,and mobile apps,allowing one-way,two-way,and face-to-face interactions.Two studies showed statistically significant effects of treatment on BMI and waist-to-hip ratio.Most interventions reported positive outcomes,with no significant differences between groups,and none showed null effects during followup.Conclusions:Digital multicomponents like mobile apps and wearables can help obese children and adolescents adopt healthier lifestyles.While these interventions show promise for obesity management,further research is needed to assess their effectiveness,particularly regarding nurses'perspectives.
文摘In the context of the digital transformation of vocational education,a quality evaluation index system has been constructed.Based on a questionnaire survey conducted among higher vocational colleges and enterprises in Hainan Province,it has been found that the quality of vocational education generally depends on the talent training program and professional construction at the macro level.At the meso level,the teacher level and teaching environment are critical,while at the micro level,the evaluation of talent training quality cannot be underestimated.Strategies for quality improvement in vocational education are proposed from the perspectives of talent training programs,major construction,teacher development,teaching environment,and talent training quality,all under the lens of digital transformation.
文摘To the Editor:As a student actively involved in advocacy for heart disease prevention,I was particularly intrigued by the policymaking implications of digital interventions in the article "Digital components and interaction types in counseling interventions for childhood and adolescent obesity:A systematic review" [1].Through my work as the Founder and President of the nonprofit Guardians of Heart,I have developed and promoted early educational programs,digital tools,and community outreach initiatives designed to instill heart-healthy habits in youth,intending to mitigate risk factors such as obesity that significantly contribute to cardiovascular disease later in life.
文摘This study examines the digital transformation of traditional Chinese medicine(TCM)education within the context of global standardization,along with the challenges and opportunities of its cross-cultural dissemination.With the rapid advancement of technologies such as artificial intelligence,virtual reality,and blockchain,TCM education is experiencing a significant disruption and innovation of its traditional models.The research develops a“Standard-Technology-Culture”tri-spiral model to analyze how TCM education can achieve a seamless integration of standardization,technological innovation,and cultural preservation during its globalization process.The study finds that standardization provides the foundation for TCM education’s global expansion,while technological innovation drives the transformation of educational methodologies.Simultaneously,cultural preservation ensures the distinctiveness of TCM education.However,the tension between standardization and the unique characteristics of TCM,as well as the balance between technological empowerment and cultural transmission,remain critical challenges in the ongoing transformation.Based on these findings,the study proposes strategies such as the“digital apprenticeship”model and blockchain-based certification systems to advance the globalization and digital transformation of TCM education,providing theoretical support for the creation of a global health community.
基金the support provided by the 2D43 TW009883 D43 Post-Doctoral Program at the School of Nursing,University of Michigan,USA。
文摘Objectives This systematic review aimed to identify effective and cost-effective digital health interventions to improve self-management behaviors,blood pressure control,and cardiovascular risk reduction.Methods A search for randomized and non-randomized control trials of digital health interventions among patients with uncontrolled hypertension was conducted from the databases of Embase,PubMed,Scopus,CINAHL,Web of Science,PsycINFO,Thai Journal Online(ThaiJO),the Faculty of Nursing Mahidol University(FON-MU)Nursing Research Database,and gray literature.After conducting the literature screening,the authors completed data extraction,and the risk of bias was assessed using the Joanna Briggs Institute randomized controlled trial checklist and the Joanna Briggs Institute critical appraisal checklist for quasi-experimental studies.Results The study included 22 articles,comprising 30 to 4,118 patients with uncontrolled hypertension.This review classified and summarized the components of digital health interventions and their effects on hypertensive outcomes.It was found that the key elements of digital health interventions include health education,reminders,self-monitoring,feedback and consultation,and instrumental support.Moreover,approximately 81.81%(n=18)of the digital health interventions involved healthcare providers participating in feedback and consultation.Additionally,digital health interventions effectively improve hypertensive outcomes such as self-management behaviors,blood pressure control,and cardiovascular risk reduction,providing cost-effectiveness.Conclusion Based on the available literature,digital health interventions have been shown to effectively enhance behavioral,clinical,and economic outcomes for individuals with uncontrolled hypertension.Moreover,the combination of digital health interventions and healthcare providers’interventions can potentially help patients with uncontrolled hypertension improve adherence to self-management when compared to stand-alone digital health interventions.Digital health interventions to support self-management interventions should be developed for patients by healthcare providers.
文摘Geared-rotor systems are critical components in mechanical applications,and their performance can be severely affected by faults,such as profile errors,wear,pitting,spalling,flaking,and cracks.Profile errors in gear teeth are inevitable in manufacturing and subsequently accumulate during operations.This work aims to predict the status of gear profile deviations based on gear dynamics response using the digital model of an experimental rig setup.The digital model comprises detailed CAD models and has been validated against the expected physical behavior using commercial finite element analysis software.The different profile deviations are then modeled using gear charts,and the dynamic response is captured through simulations.The various features are then obtained by signal processing,and various ML models are then evaluated to predict the fault/no-fault condition for the gear.The best performance is achieved by an artificial neural network with a prediction accuracy of 97.5%,which concludes a strong influence on the dynamics of the gear rotor system due to profile deviations.
文摘Cyber-Physical Systems(CPS)represent an integration of computational and physical elements,revolutionizing industries by enabling real-time monitoring,control,and optimization.A complementary technology,Digital Twin(DT),acts as a virtual replica of physical assets or processes,facilitating better decision making through simulations and predictive analytics.CPS and DT underpin the evolution of Industry 4.0 by bridging the physical and digital domains.This survey explores their synergy,highlighting how DT enriches CPS with dynamic modeling,realtime data integration,and advanced simulation capabilities.The layered architecture of DTs within CPS is examined,showcasing the enabling technologies and tools vital for seamless integration.The study addresses key challenges in CPS modeling,such as concurrency and communication,and underscores the importance of DT in overcoming these obstacles.Applications in various sectors are analyzed,including smart manufacturing,healthcare,and urban planning,emphasizing the transformative potential of CPS-DT integration.In addition,the review identifies gaps in existing methodologies and proposes future research directions to develop comprehensive,scalable,and secure CPSDT systems.By synthesizing insights fromthe current literature and presenting a taxonomy of CPS and DT,this survey serves as a foundational reference for academics and practitioners.The findings stress the need for unified frameworks that align CPS and DT with emerging technologies,fostering innovation and efficiency in the digital transformation era.
基金supported by the Fund of China State Railway Group Corporation Limited(L2023J001)the Fund of China Academy of Railway Sciences Corporation Limited(2023YJ247).
文摘Purpose–This study aims to implement condition monitoring for urban rail train permanent magnet synchronous motors and inverter systems.Through the construction of a digital twin model,it performs fault diagnosis of potential system failures,enabling rapid fault localization and protection.Design/methodology/approach–This research begins with a brief introduction to the structure and classification of permanent magnet synchronous motors(PMSMs),followed by a detailed analysis of their mathematical model.Subsequently,it thoroughly investigates the working principle of three-phase two-level inverters and the distribution of space voltage vectors.Based on the analysis of the main circuit topology,a digital twin model matching the external characteristics of the physical circuit is established using the model predictive control method,achieving accurate system simulation.Furthermore,through theoretical analysis and simulation verification of phase current characteristics under inverter switch tube faults,general patterns of phase currents under fault conditions are summarized.The established digital twin model is then employed to validate these patterns,confirming the model’s effectiveness in fault diagnosis.Findings–This study proposes a fault diagnosis method based on digital twins.Experimental and simulation results demonstrate that the established digital twin model can accurately simulate the external characteristics of the actual physical circuit,validating its effectiveness in inverter fault diagnosis.This approach offers practical value for condition monitoring in actual urban rail train systems.Originality/value–The study innovatively starts from a mathematical model and simulates the actual physical model through a virtual model,requiring only external characteristics to achieve system fault diagnosis,thereby enhancing diagnostic efficiency.
基金the National Natural Science Foundation of China(No.61927822)。
文摘Traditional calibration method for the digital inclinometer relies on manual inspection,and results in its disadvantages of complicated process,low-efficiency and human errors easy to be introduced.To improve both the calibration accuracy and efficiency of digital inclinometer,an automatic digital inclinometer calibration system was developed in this study,and a new display tube recognition algorithm was proposed.First,a high-precision automatic turntable was taken as the reference to calculate the indication error of the inclinometer.Then,the automatic inclinometer calibration control process and the digital inclinometer zero-setting function were formulated.For display tube recognition,a new display tube recognition algorithm combining threading method and feature extraction method was proposed.Finally,the calibration system was calibrated by photoelectric autocollimator and regular polygon mirror,and the calibration system error and repeatability were calculated via a series of experiments.The experimental results showed that the indication error of the proposed calibration system was less than 4",and the repeatability was 3.9".A digital inclinometer with the resolution of 0.1°was taken as a testing example,within the calibration points'range of[-90°,90°],the repeatability of the testing was 0.085°,and the whole testing process was less than 90 s.The digital inclinometer indication error is mainly introduced by the digital inclinometer resolution according to the uncertainty evaluation.
文摘In the contemporary era,characterized by the Internet and digitalization as fundamental features,the operation and application of digital currency have gradually developed into a comprehensive structural system.This system restores the essential characteristics of currency while providing auxiliary services related to the formation,circulation,storage,application,and promotion of digital currency.Compared to traditional currency management technologies,big data analysis technology,which is primarily embedded in digital currency systems,enables the rapid acquisition of information.This facilitates the identification of standard associations within currency data and provides technical support for the operational framework of digital currency.
基金National Natural Science Foundation of China(82104738)National Administration of Traditional Chinese Medicine(TCM)High-level Key Discipline Construction Project:TCM Diagnostics(ZYYZDXK-2023069).
文摘Traditional Chinese medicine(TCM)auscultation has a long history,and with advancements in equipment and analytical methods,the quantitative analysis of auscultation parameters has determined.However,the complexity and diversity of auscultation,along with variations in devices,analytical methods,and applications,bring challenges to its standardization and deeper application.This review presents the advancements in auscultation equipment and systems,auscultation characteristic parameters,and their application in the diagnosis of pulmonary diseases and syndromes over the past 10 years,while also exploring the progress and challenges of current digital research of auscultation.This review also proposes the establishment of standardized protocols for the collection and analysis of auscultation data,the incorporation of advanced artificial intelligence(AI)auscultation analysis methods,and an exploration of the diagnostic utility of auscultatory features in pulmonary diseases and syndromes,so as to provide more precise decision support for intelligent diagnosis of pulmonary diseases and syndromes.
文摘Digital Twin (DT) technology is revolutionizing the railway sector by providing a virtual replica of physical systems, enabling real-time monitoring, predictive maintenance, and enhanced decision-making. This systematic literature review examines the status, enabling technologies, case studies, and frameworks for DT applications in railway systems with 91 selected papers from Scopus, Web of Science, IEEE, and the Snowballing Technique. The review focuses on four primary subsystems: tracks, civil structures, vehicles, and overhead contact line structures. Key findings reveal that DT has successfully optimized maintenance strategies, improved operational efficiency, and enhanced system safety. Internet of Things (IoT) devices, Artificial Intelligence (AI), machine learning, and cloud computing are critical in implementing DT models. However, challenges like data integration, high implementation costs, and cybersecurity risks remain, necessitating the discussed implications. Future research should focus on improving data interoperability, reducing costs through scalable cloud-based solutions, and addressing cybersecurity vulnerabilities. DT technology has the potential to revolutionize railway infrastructure management, ensuring greater efficiency, safety, and sustainability.
基金supported in part by National Natural Science Foundation of China(No.62271080)in part by Fund of State Key Laboratory of IPOC(BUPT)(No.IPOC2022ZT06)in part by BUPT Excellent Ph.D Students Foundation(No.CX2022102).
文摘To achieve a low-complexity nonlinearity compensation(NLC)in high-symbol-rate(HSR)systems,we propose a modified weighted digital backpropagation(M-W-DBP)by jointly shifting the calculated position of nonlinear phase noise and considering the correlation of neighboring symbols in the NLC section of DBP.Based on this model,with the aid of neural network optimization,a learned version of M-W-DBP(M-W-LDBP)is also proposed and explored.Furthermore,enough technical details are revealed for the first time,including the principle of our proposed M-W-DBP and M-W-LDBP,the training process,and the complexity analysis of different DBPclass NLC algorithms.Evaluated numerically with QPSK,16QAM,and PS-64QAM modulation formats,1-step-per-span(1-StPS)M-W-DBP/LDBP achieves up to 1.29/1.49 dB and 0.63/0.74 dB signal-to-noise ratio improvement compared to chromatic dispersion compensation(CDC)in 90-GBaud and 128-GBaud 1000-km single-channel transmission systems,respectively.Moreover,1-StPS M-W-DBP/LDBP provides a more powerful NLC ability than 2-StPS LDBP but only needs about 60%of the complexity.The effectiveness of the proposed M-W-DBP and M-W-LDBP in the presence of laser phase noise is also verified and the necessity of using the learned version of M-WDBP is also discussed.This work is a comprehensive study of M-W-DBP/LDBP and other DBP-class NLC algorithms in HSR systems.
文摘This research aims to address the challenges of fault detection and isolation(FDI)in digital grids,focusing on improving the reliability and stability of power systems.Traditional fault detection techniques,such as rule-based fuzzy systems and conventional FDI methods,often struggle with the dynamic nature of modern grids,resulting in delays and inaccuracies in fault classification.To overcome these limitations,this study introduces a Hybrid NeuroFuzzy Fault Detection Model that combines the adaptive learning capabilities of neural networks with the reasoning strength of fuzzy logic.The model’s performance was evaluated through extensive simulations on the IEEE 33-bus test system,considering various fault scenarios,including line-to-ground faults(LGF),three-phase short circuits(3PSC),and harmonic distortions(HD).The quantitative results show that the model achieves 97.2%accuracy,a false negative rate(FNR)of 1.9%,and a false positive rate(FPR)of 2.3%,demonstrating its high precision in fault diagnosis.The qualitative analysis further highlights the model’s adaptability and its potential for seamless integration into smart grids,micro grids,and renewable energy systems.By dynamically refining fuzzy inference rules,the model enhances fault detection efficiency without compromising computational feasibility.These findings contribute to the development of more resilient and adaptive fault management systems,paving the way for advanced smart grid technologies.
文摘Digital twin shows broad application prospects in the aerospace field.This paper introduces a generalized satellite digital twin system in detail.With the innovative design concepts of modularization,generalization and modeling,on the one hand,the system has successfully achieved the reuse of software modules among different satellite models;on the other hand,it has achieved the reuse of software modules between the digital twin and the testing system,significantly improving the development efficiency of the digital twin system.The paper elaborates on the technical architecture and application fields of this digital twin system,and further prospects its future development.At the same time,through a real inorbit case,the engineering value of the digital twin system is strongly demonstrated.
基金supported by the National Science and Technology Council,Taiwan[Grant NSTC 111-2628-E-006-005-MY3]supported by the Ocean Affairs Council,Taiwansponsored in part by Higher Education Sprout Project,Ministry of Education to the Headquarters of University Advancement at National Cheng Kung University(NCKU).
文摘This study proposes an automatic control system for Autonomous Underwater Vehicle(AUV)docking,utilizing a digital twin(DT)environment based on the HoloOcean platform,which integrates six-degree-of-freedom(6-DOF)motion equations and hydrodynamic coefficients to create a realistic simulation.Although conventional model-based and visual servoing approaches often struggle in dynamic underwater environments due to limited adaptability and extensive parameter tuning requirements,deep reinforcement learning(DRL)offers a promising alternative.In the positioning stage,the Twin Delayed Deep Deterministic Policy Gradient(TD3)algorithm is employed for synchronized depth and heading control,which offers stable training,reduced overestimation bias,and superior handling of continuous control compared to other DRL methods.During the searching stage,zig-zag heading motion combined with a state-of-the-art object detection algorithm facilitates docking station localization.For the docking stage,this study proposes an innovative Image-based DDPG(I-DDPG),enhanced and trained in a Unity-MATLAB simulation environment,to achieve visual target tracking.Furthermore,integrating a DT environment enables efficient and safe policy training,reduces dependence on costly real-world tests,and improves sim-to-real transfer performance.Both simulation and real-world experiments were conducted,demonstrating the effectiveness of the system in improving AUV control strategies and supporting the transition from simulation to real-world operations in underwater environments.The results highlight the scalability and robustness of the proposed system,as evidenced by the TD3 controller achieving 25%less oscillation than the adaptive fuzzy controller when reaching the target depth,thereby demonstrating superior stability,accuracy,and potential for broader and more complex autonomous underwater tasks.
基金supported by the National Key Research and Development Project,China(No.2023YFA1606404)the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDB34010300)+5 种基金the National Natural Science Foundation of China(Nos.12022501,12105329,12475127)the Guangdong Major Project of Basic and Applied Basic Research(No.2021B0301030006)the Research Program of Heavy Ion Science and Technology Key Laboratory,Institute of Modern Physics,Chinese Academy of Sciences(Nos.HIST2024KS04,HIST2024CO04)Longyuan Youth Innovation and Entrepreneurship Talent Project of Gansu Province(No.2024GZT04)State Key Laboratory of Nuclear Physics and Technology,Peking University(No.NPT2023KFY01)the Major Science and Technology Projects in Gansu Province(No.24GD13GA005)。
文摘A state-of-the-art detector array with a digital data acquisition system has been developed for charged-particle decay studies,includingβ-delayed protons,αdecay,and direct proton emissions from exotic proton-rich nuclei.The digital data acquisition system enables precise synchronization and processing of complex signals from various detectors,such as plastic scintillators,silicon detectors,and germaniumγdetectors.The system's performance was evaluated using theβdecay of^(32)Ar and its neighboring nuclei,produced via projectile fragmentation at the first Radioactive Ion Beam Line in Lanzhou(RIBLL1).Key measurements,including the half-life,charged-particle spectrum,andγ-ray spectrum,were obtained and compared with previous results for validation.Using the implantation–decay method,the isotopes of interest were implanted into two doublesided silicon strip detectors,where their subsequent decays were measured and correlated with preceding implantations using both position and time information.This detection system has potential for further applications,including the study ofβ-delayed charged-particle decay and direct proton emissions from even more exotic proton-rich nuclei.