Electronic 3D printing possesses a remarkable molding ability and convenience in integrated circuits,flexible wearables,and individual automobile requirements.However,traditional 3D printing technology still struggles...Electronic 3D printing possesses a remarkable molding ability and convenience in integrated circuits,flexible wearables,and individual automobile requirements.However,traditional 3D printing technology still struggles to meet the demands of high precision and high efficiency in the process of fabricating a curved surface circuit,particularly achieving precise silver circuit molding on irregular substrates.Here,a high-precision and muti-scaled conformal manufacturing method for silver circuits is presented through the digital light processing(DLP)of ultraviolet-curable silver paste(UV-SP)with adjustable photocuring properties,enabling the successful preparation of micro-scaled conductive structure on the sharply skewed hook face.The minimum modeling depth and width of the cured silver paste can be well controlled to 10 and 88µm,respectively.Compared with traditional printing technology,the printing efficiency of complex patterns has increased by over 70%.The printed silver circuit demonstrates an exceptionally high electrical conductivity,reaching as high as 1.16×10^(7) S/m.Additionally,the UV-SP exhibits significant manufacturing efficiency and superior molding resolution compared to conventional direct ink writing and inkjet printing techniques,thereby contributing to the attainment of high precision and efficiency of conformal and micro-molding manufacturing in sensors,communication antennas,and other electronic devices based on curved substrates.展开更多
Digital light processing(DLP)is widely used in ceramic additive manufacturing.However,it remains unexplored for metals.In this study,the regulatory mechanisms of the microstructure and mechanical properties of AISI 31...Digital light processing(DLP)is widely used in ceramic additive manufacturing.However,it remains unexplored for metals.In this study,the regulatory mechanisms of the microstructure and mechanical properties of AISI 316L stainless steel were investigated by optimizing a DLP-compatible metal slurry formulation and sintering process.A photosensitive resin system(mass ratio of 5:1:2:2 for U600,LA,ACMO,and HDDA,respectively)with 88 wt%solid content is designed to achieve a slurry with balanced rheology,photocurability,and low pyrolysis residue.Compared to vacuum sintering,which leads to brittle fracture of material,the Ar/H2 mixed gas(5%H2)effectively reduces carbon and oxygen impurities via reduction,mitigating carbide and oxide segregation at grain boundaries and within grains,thereby enhancing strength-ductility.In addition,the prolonged high-temperature sintering inducesδ-ferrite precipitation at grain boundaries,which fills residual pores to improve densification obviously.Under optimized sintering conditions(Ar/H2,1380°C,6 h),the material achieves 96.2%relative density with tensile strength and fracture elongation of 543.5 MPa and 58.7%,respectively,exhibiting uniform dimple-dominated fracture morphology.This synergistic optimization of the slurry formulation and sintering parameters improves the strength-ductility balance in DLP-fabricated metal materials,offering theoretical and technical insights for the additive manufacturing of complex high-performance metal components.展开更多
The soft robotics display huge advantages over their rigid counterparts when interacting with living organisms and fragile objects.As one of the most efficient actuators toward soft robotics,the soft pneumatic actuato...The soft robotics display huge advantages over their rigid counterparts when interacting with living organisms and fragile objects.As one of the most efficient actuators toward soft robotics,the soft pneumatic actuator(SPA)can produce large,complex responses with utilizing pressure as the only input source.In this work,a new approach that combines digital light processing(DLP)and injection-assisted post-curing is proposed to create SPAs that can realize different functionalities.To enable this,we develop a new class of photo-cross linked elastomers with tunable mechanical properties,good stretchability,and rapid curing speed.By carefully designing the geometry of the cavities embedded in the actuators,the resulting actuators can realize contracting,expanding,flapping,and twisting motions.In addition,we successfully fabricate a soft self-sensing bending actuator by injecting conductive liquids into the three-dimensional(3D)printed actuator,demonstrating that the present method has the potential to be used to manufacture intelligent soft robotic systems.展开更多
Digital light processing(DLP)is a high-speed,high-precision 3-dimensional(3D)printing technique gaining traction in the fabrication of ceramic composites.However,when printing 0-3 composites containing lead zirconate ...Digital light processing(DLP)is a high-speed,high-precision 3-dimensional(3D)printing technique gaining traction in the fabrication of ceramic composites.However,when printing 0-3 composites containing lead zirconate titanate(PZT)particles,a widely used piezoelectric ceramic,severe density and refractive index mismatches between the 2 phases pose challenges for ink synthesis and the printing process.Here,we systematically and quantitatively optimized DLP printing of PZT composites,streamlining process development and providing a solid theoretical and experimental foundation for broader applications of DLP technology.PZT particles were pretreated with air plasma to improve slurry uniformity and enhance stress transfer at the composite interface,leading to improved chemical modification,mechanical strength,and piezoelectric properties.We investigated the effects of key process parameters on printability and accuracy by analyzing the curing behavior of PZT–polymer composites.A quantitative model of the DLP curing process was introduced.Unlike stereolithography(SLA),DLP curing depth was found to depend on energy dose and light intensity,with higher intensities proving more favorable for printing 0-3 PZT composites.From depth/width–energy curves,optimal process parameters were determined.We designed and fabricated a soft piezoelectric metamaterial-based touch sensor using these parameters,achieving a customized output profile.This work offers critical insights into optimizing DLP for functional materials and expands the potential of 3D-printed piezoelectric composites.展开更多
Flexible devices are increasingly crucial in various aspects of our lives,including healthcare devices and humanmachine interface systems,revolutionizing human life.As technology evolves rapidly,there is a high demand...Flexible devices are increasingly crucial in various aspects of our lives,including healthcare devices and humanmachine interface systems,revolutionizing human life.As technology evolves rapidly,there is a high demand for innovative manufacturing methods that enable rapid prototyping of custom and multifunctional flexible devices with high quality.Recently,digital light processing(DLP)3D printing has emerged as a promising manufacturing approach due to its capabilities of creating intricate customized structures,high fabrication speed,low-cost technology and widespread adoption.This review provides a state-of-the-art overview of the recent advances in the creation of flexible devices using DLP printing,with a focus on soft actuators,flexible sensors and flexible energy devices.We emphasize how DLP printing and the development of DLP printable materials enhance the structural design,sensitivity,mechanical performance,and overall functionality of these devices.Finally,we discuss the challenges and perspectives associated with DLP-printed flexible devices.We anticipate that the continued advancements in DLP printing will foster the development of smarter flexible devices,shortening the design-to-manufacturing cycles.展开更多
Porous oil-containing materials achieve self-lubrication through pore-stored oil,making them suitable for demanding applications such as vacuum,high-speed and maintenance-free systems.While 3D printing combines the ad...Porous oil-containing materials achieve self-lubrication through pore-stored oil,making them suitable for demanding applications such as vacuum,high-speed and maintenance-free systems.While 3D printing combines the advantages of complex structure fabrication and performance regulation,research on its application in porous metal fabrication remains limited.This study integrates digital light processing(DLP)3D printing with vacuum impregnation to fabricate porous AISI 316L stainless steel materials impregnated with PAO10 oil.By adjusting the slurry solid loading(82 wt.%-88 wt.%)and sintering temperature(1200℃-1350℃),12 groups of materials with controlled porosity were fabricated.DLP technology enables precise regulation of oil impregnation rate(10 wt.%-40 wt.%)and achieves high open porosity exceeding 80%.The mechanical properties improve progressively with elevated process parameters,accompanied by fracture morphology evolution from interparticle fractures to dimple-dominated ductile fractures.Both oil impregnation rate and mechanical strength are critical to self-lubricating performance,showing a notable synergistic effect.Optimal self-lubricating performance requires a tensile strength of 250 MPa and an oil impregnation rate of 15%.S1-1350°C sample demonstrates the best performance,with a friction coefficient of 0.09 and an ultralow wear rate of 3.30×10-6mm3/(N m)under a 30 N load and 0.04 m/s sliding speed against Si3N4counterpart.These results will provide valuable insights for advancing the digital design and precision manufacturing of self-lubricating porous materials.展开更多
Hydroxyapatite(HA)bioceramic scaffolds were fabricated by using digital light processing(DLP)based additive manufacturing.Key issues on the HA bioceramic scaffolds,including dispersion,DLP fabrication,sintering,mechan...Hydroxyapatite(HA)bioceramic scaffolds were fabricated by using digital light processing(DLP)based additive manufacturing.Key issues on the HA bioceramic scaffolds,including dispersion,DLP fabrication,sintering,mechanical properties,and biocompatibility were discussed in detail.Firstly,the ffects of dispersant dosage,solid loading,and sintering temperature were studied.The optimal dispersant dosage,solid loading,and sintering temperature were 2wt%,50vol%,and 1250℃,respectively.Then,the mechanical properties and biocompatibility of the HA bioceramic scaffolds were investigated.The DLP-prepared porous HA bioceramic scaffold was found to exhibit excellent mechanical properties and degradation behavior.From this study,DLP technique shows good potential for manufacturing HA bioceramic scaffolds.展开更多
High performance hydroxyapatite(HA)ceramics with excellent densification and mechanical properties were successfully fabricated by digital light processing(DLP)three-dimensional(3D)printing technology.It was found tha...High performance hydroxyapatite(HA)ceramics with excellent densification and mechanical properties were successfully fabricated by digital light processing(DLP)three-dimensional(3D)printing technology.It was found that the sintering atmosphere of wet C02 can dramatically improve the densification process and thus lead to better mechanical properties.HA ceramics with a relative density of 97.12%and a three-point bending strength of 92.4 MPa can be achieved at a sintering temperature of 1300℃,which makes a solid foundation for application in bone engineering.Furthermore,a relatively high compressive strength of 4.09 MPa can be also achieved for a DLP-printed p-cell triply periodic minimum surface(TPMS)structure with a porosity of 74%,which meets the requirement of cancellous bone substitutes.A further cell proliferation test demonstrated that the sintering atmosphere of wet CO2 led to improve cell vitality after 7 days of cell culture Moreover,with the possible benefit from the bio-inspired structure,the 3D-printed TPMS structure significantly improved the cell vitality,which is crucial for early osteogenesis and osteointegration.展开更多
Fabrication of silicon carbide(SiC)ceramics by digital light processing(DLP)technology is difficult owing to high refractive index and high ultraviolet(UV)absorptivity of SiC powders.The surface of the SiC powders can...Fabrication of silicon carbide(SiC)ceramics by digital light processing(DLP)technology is difficult owing to high refractive index and high ultraviolet(UV)absorptivity of SiC powders.The surface of the SiC powders can be coated with silicon oxide(SiO_(2))with low refractive index and low UV absorptivity via high-temperature oxidation,reducing the loss of UV energy in the DLP process and realizing the DLP preparation of the SiC ceramics.However,it is necessary to explore a high-temperature modification process to obtain a better modification effect of the SiC powders.Therefore,the high-temperature modification behavior of the SiC powders is thoroughly investigated in this paper.The results show that nano-scale oxide film is formed on the surface of the SiC powders by short-time high-temperature oxidation,effectively reducing the UV absorptivity and the surface refractive index(nʹ)of the SiC powders.When the oxidation temperature is 1300℃,compared with that of unoxidized SiC powders,the UV absorptivity of oxidized SiC powders decreases from 0.5065 to 0.4654,and a curing depth of SiC slurry increases from 22±4 to 59±4μm.Finally,SiC green bodies are successfully prepared by the DLP with the the oxidized powders,and flexural strength of SiC sintered parts reaches 47.9±2.3 MPa after 3 h of atmospheric sintering at 2000℃without any sintering aid.展开更多
Digital light processing(DLP)-based 3D printing technique holds promise in fabricating scaffolds with high precision.Here raw calcium phosphate(CaP)powders were modified by 5.5%monoalcohol ethoxylate phosphate(MAEP)to...Digital light processing(DLP)-based 3D printing technique holds promise in fabricating scaffolds with high precision.Here raw calcium phosphate(CaP)powders were modified by 5.5%monoalcohol ethoxylate phosphate(MAEP)to ensure high solid loading and low viscosity.The rheological tests found that photocurable slurries composed of 50wt%modified CaP powders and 2wt%toners were suitable for DLP printing.Based on geometric models designed by computer-aided design(CAD)system,three printed CaP ceramics with distinct macroporous structures were prepared,including simple cube,octet-truss and inverse face-centered cube(fcc),which presented the similar phase composition and microstructure,but the different macropore geometries.Inverse fcc group showed the highest porosity and compressive strength.The in vitro and in vivo biological evaluations were performed to compare the bioactivity of three printed CaP ceramics,and the traditional foamed ceramic was used as control.It suggested that all CaP ceramics exhibited good biocompatibility,as evidence by an even bone-like apatite layer formation on the surface,and the good cell proliferation and spreading.A mouse intramuscular implantation model found that all of CaP ceramics could induce ectopic bone formation,and foam group had the strongest osteoinduction,followed by inverse fcc,while cube and octet-truss had the weakest one.It indicated that macropore geometry was of great importance to affect the osteoinductivity of scaffolds,and spherical,concave macropores facilitated osteogenesis.These findings provide a strategy to design and fabricate high-performance orthopedic grafts with proper pore geometry and desired biological performance via DLP-based 3D printing technique.展开更多
Bone scaffolds require both good bioactivity and mechanical properties to keep shape and promote bone repair.In this work,T-ZnO_(w) enhanced biphasic calcium phosphate(BCP)scaffolds with triply periodic minimal surfac...Bone scaffolds require both good bioactivity and mechanical properties to keep shape and promote bone repair.In this work,T-ZnO_(w) enhanced biphasic calcium phosphate(BCP)scaffolds with triply periodic minimal surface(TPMS)-based double-layer porous structure were fabricated by digital light processing(DLP)with high precision.Property of suspension was first discussed to obtain better printing quality.After sintering,T-ZnO_(w) reacts with b-tricalcium phosphate(β-TCP)to form Ca_(19)Zn_(2)(PO_(4))14,and inhibits the phase transition toα-TCP.With the content of T-ZnO_(w) increasing from 0 to 2 wt%,the flexural strength increases from 40.9 to 68.5 MPa because the four-needle whiskers can disperse stress,and have the effect of pulling out as well as fracture toughening.However,excessive whiskers will reduce the cure depth,and cause more printing defects,thus reducing the mechanical strength.Besides,T-ZnO_(w) accelerates the deposition of apatite,and the sample with 2 wt%T-ZnO_(w) shows the fastest mineralization rate.The good biocompatibility has been proved by cell proliferation test.Results confirmed that doping T-ZnO_(w) can improve the mechanical strength of BCP scaffolds,and keep good biological property,which provides a new strategy for better bone repair.展开更多
Fabricating SiC ceramics via the digital light processing(DLP)technology is of great challenge due to strong light absorption and high refractive index of deep-colored SiC powders,which highly differ from those of res...Fabricating SiC ceramics via the digital light processing(DLP)technology is of great challenge due to strong light absorption and high refractive index of deep-colored SiC powders,which highly differ from those of resin,and thus significantly affect the curing performance of the photosensitive SiC slurry.In this paper,a thin silicon oxide(SiO_(2))layer was in-situ formed on the surface of SiC powders by pre-oxidation treatment.This method was proven to effectively improve the curing ability of SiC slurry.The SiC photosensitive slurry was fabricated with solid content of 55 vol%and viscosity of 7.77 Pa·s(shear rate of 30 s^(−1)).The curing thickness was 50μm with exposure time of only 5 s.Then,a well-designed sintering additive was added to completely convert low-strength SiO_(2) into mullite reinforcement during sintering.Complexshaped mullite-bond SiC ceramics were successfully fabricated.The flexural strength of SiC ceramics sintered at 1550℃in air reached 97.6 MPa with porosity of 39.2 vol%,as high as those prepared by spark plasma sintering(SPS)techniques.展开更多
Sic-based composites are widely used as electromagnetic wave absorbers due to their excellent dielectric properties.However,the constraints associated with structural design and the intricacies of the preparation proc...Sic-based composites are widely used as electromagnetic wave absorbers due to their excellent dielectric properties.However,the constraints associated with structural design and the intricacies of the preparation process hinder their broader application.In this study,novel mullite anti-gyroid/SiC gyroid metastructures are designed to integrate the mechanical and electromagnetic wave(EMW)absorption properties of composite materials.Mullite anti-gyroid/SiC gyroid composites are fabricated utilizing a combination of digital light processing(DLP)three-dimensional(3D)printing and precursor infiltration and pyrolysis(PiP)processes.Through the modulation of structural units,the electromagnetic parameters can be effectively regulated,thus improving the impedance matching characteristics of the composites.The structural composites show outstanding EMW absorption properties,with a minimum reflection loss of-54 dB at a thickness of 1.9 mm and an effective absorption bandwidth of 3.20 GHz at a thickness of 2.2 mm.Furthermore,the PIP process significantly enhances the mechanical properties of the composites;compared with those of the mullite/SiC ceramics,the flexural strength of the composites is improved by 3.69-5.85 times(13.28±1.15 MPa vs.(49.05±1.07)-(77.78±3.72)MPa),and the compressive strength is improved by 4.59-13.58 times(8.55±0.90 MPa vs.(39.02±1.63)-(116.13±2.58)MPa).This approach offers a novel and effective method for fabricating structural composites with an expanded range of higher electromagnetic wave absorption properties and improved mechanical properties.展开更多
Digital light processing(DLP)of structurally complex poly(ethylene glycol)(PEG)hydrogels with high mechanical toughness represents a long-standing challenge in thefield of 3D printing.Here,we report a 3D printing appro...Digital light processing(DLP)of structurally complex poly(ethylene glycol)(PEG)hydrogels with high mechanical toughness represents a long-standing challenge in thefield of 3D printing.Here,we report a 3D printing approach for the high-resolution manufacturing of structurally complex and mechanically strong PEG hydrogels via heat-assisted DLP.Instead of using aqueous solutions of photo-crosslinkable monomers,PEG macromonomer melts werefirst printed in the absence of water,resulting in bulk PEG networks.Then,post-printing swelling of the printed networks was achieved in water,producing high-fidelity 3D hydrogels with complex structures.By employing a dual-macromonomer resin containing a PEG-based four-arm macrophotoinitiator,“all-PEG”hydrogel constructs were pro-duced with compressive toughness up to 1.3 MJ m^(-3).By this approach,porous 3D hydrogel scaffolds with trabecular-like architecture were fabricated,and the scaf-fold surface supported cell attachment and the formation of a monolayer mimicking bone-lining cells.This study highlights the promises of heat-assisted DLP of PEG photopolymers for hydrogel fabrication,which may accelerate the development of 3D tissue-like constructs for regenerative medicine.展开更多
The geometry of the phase interface in co-continuous piezoelectric composites is critical in improving their piezo-electric properties.However,conventional co-continuous piezoelectric composites are mostly simple stru...The geometry of the phase interface in co-continuous piezoelectric composites is critical in improving their piezo-electric properties.However,conventional co-continuous piezoelectric composites are mostly simple structures such as wood stacks or honeycombs,which are prone to stress concentrations at the joints,thus reducing the fatigue service performance and force-electric conversion efficiency of piezoelectric composites.Such simple structures limit further improvements in the overall performance of co-continuous piezoelectric composites.In this study,based on the digital light processing 3D printing method,we investigated the influence of three dif-ferent structures-the gyroid,diamond,and woodpile interfaces-on the piezoelectric and mechanical properties of co-continuous ceramic/polymer piezoelectric composites.These findings demonstrate that the gyroid and di-amond interfaces outperformed the ceramic skeleton of the woodpile interface in terms of both mechanical and electrical properties.When the ceramic volume percentage was 50%,the piezo-composite of the gyroid surface exhibited the greatest hydrostatic figure of merit(HFOM),reaching 4.23×10^(−12) Pa^(−1),and its piezoelectric coeffi-cient(d_(33))and relative dielectric constant(εr)reached 115 pC/N and 748,respectively.The research results lay the foundation for the application of co-continuous piezoelectric composites in underwater communication and detection.展开更多
A polymer based horizontal single step waveguide fbr the sensing of alcohol is developed and analyzed.The waveguide is fabricated by 3-dimensional(3D)printing digital light processing(DLP)technology using monocure 3D ...A polymer based horizontal single step waveguide fbr the sensing of alcohol is developed and analyzed.The waveguide is fabricated by 3-dimensional(3D)printing digital light processing(DLP)technology using monocure 3D rapid ultraviolet(UV)clear resin with a refractive index of n=1.50.The fabricated waveguide is a one-piece tower shaped ridge structure.It is designed to achieve the maximum light confinement at the core by reducing the effective refractive index around the cladding region.With the surface roughness generated from the 3D printing DLP technology,various waveguides with different gap sizes are printed.Comparison is done fbr the different gap waveguides to achieve the minimum feature gap size utilizing the light re-coupling principle and polymer swelling effect.This effect occurs due to the polymer-alcohol interaction that results in the diffusion of alcohol molecules inside the core of the waveguide,thus changing the waveguide from the leaky type(without alcohol)to the guided type(with alcohol).Using this principle,the analysis of alcohol concentration performing as a larger increase in the transmitted light in tensity can be measured.In this work,the sensitivity of the system is also compared and analyzed fbr different waveguide gap sizes with different concentrations of isopropanol alcohol(IPA).A waveguide gap size of 300 jim gives the highest in crease in the transmitted optical power of 65%when tested with 10μL(500ppm)concentration of IPA.Compared with all other gaps,it also displays faster response time(/=5seconds)fbr the optical power to change right after depositing IPA in the chamber.The measured limit of detection(LOD)achieved fbr 300μm is 0.366 yL.In addition,the fabricated waveguide gap of 300μm successfully demonstrates the sen sing limit of IPA concentration below 400μpm which is considered as an exposure limit by"National Institute for Occupational Safety and Health".All the mechanical mount and the alignments are done by 3D printing fused deposition method(FDM).展开更多
Three-dimensional(3D)printing is an emerging technique that has shown promising success in engineering human tissues in recent years.Further development of vatphotopolymerization printing modalities has significantly ...Three-dimensional(3D)printing is an emerging technique that has shown promising success in engineering human tissues in recent years.Further development of vatphotopolymerization printing modalities has significantly enhanced the complexity level for 3D printing of various functional structures and components.Similarly,the development of microfluidic chip systems is an emerging research sector with promising medical applications.This work demonstrates the coupling of a digital light processing(DLP)printing procedure with a microfluidic chip system to produce size-tunable,3D-printable porosities with narrow pore size distributions within a gelatin methacryloyl(GelMA)hydrogel matrix.It is found that the generation of size-tunable gas bubbles trapped within an aqueous GelMA hydrogel-precursor can be controlled with high precision.Furthermore,the porosities are printed in two-dimensional(2D)as well as in 3D using the DLP printer.In addition,the cytocompatibility of the printed porous scaffolds is investigated using fibroblasts,where high cell viabilities as well as cell proliferation,spreading,and migration are confirmed.It is anticipated that the strategy is widely applicable in a range of application areas such as tissue engineering and regenerative medicine,among others.展开更多
Background As the global population increases,the demand for protein sources is expected to increase,driving the demand for cell-based cultivated meat.This study aimed to enhance the productivity of cultivated meat th...Background As the global population increases,the demand for protein sources is expected to increase,driving the demand for cell-based cultivated meat.This study aimed to enhance the productivity of cultivated meat through optimization of the cell source and organization process.Results We engineered fibroblasts into myogenic cells via non-viral introduction of the MYOD1 gene,avoiding viral methods for safety.After confirming the stable derivation of myogenic cells,we combined knockout(KO)of MSTN,a negative regulator of myogenesis,with MYOD1-mediated myogenesis to improve cultivated meat production.Primary cells from MSTN KO cattle exhibited enhanced myogenic potential.Additionally,when tested in immortalized fibroblasts,myostatin treatment reduced MYOD1-induced myogenesis in two-dimensional cultures,while MSTN knockout increased it.To achieve muscle-like cell alignment,we employed digital light processing(DLP)-based three-dimensional(3D)bioprinting to organize cells into 3D groove-shaped hydrogels.These bioactive hydrogels supported stable cell proliferation and significantly improved muscle cell alignment.Upon differentiation into myotubes,the cells demonstrated an ordered alignment,particularly the MSTN KO cells,which showed highly efficient differentiation.Conclusions The integration of genetic modification and advanced DLP 3D bioprinting with groove-patterned hydrogels provides an effective strategy for producing high-quality,muscle-aligned cultivated meat.展开更多
Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biolo...Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biological properties of the scaffold(i.e.,degradability and cell growth rate).Lattice structure is a kind of periodic porous structure,which has some advantages of light weight and high strength,and is widely used in the preparation of bioceramic scaffolders.For the structure of the scaffold,high porosity and large pore size are important for bone growth,bone integration and promoting good mechanical interlocking between neighboring bones and the scaffold.However,scaffolds with a high porosity often lack mechanical strength.In addition,different parts of the bone have different structural requirements.In this paper,scaffolds with a non-uniform structure or a hierarchical structure were designed,with loose and porous exterior to facilitate cell adhesion,osteogenic differentiation and vascularization as well as relatively dense interior to provide sufficient mechanical support for bone repair.Methods In this work,composite ceramics scaffolds with 10%akermanite content were prepared by DLP technology.The scaffold had a high porosity outside to promote the growth of bone tissue,and a low porosity inside to withstand external forces.The compressive strength,fracture form,in-vitro degradation performance and bioactivity of graded bioceramic scaffolds were investigated.The models of scaffolds were imported into the DLP printer with a 405 nm light.The samples were printed with the intensity of 8 mJ/cm^(2)and a layer thickness of 50μm.Finally,the ceramic samples were sintered at 1100℃.The degradability of the hierarchical gyroid bioceramic scaffolds was evaluated through immersion in Tris-HCl solution and SBF solution at a ratio of 200 mL/g.The bioactivity of bioceramic was obtained via immersing them in SBF solution for two weeks.The concentrations of calcium,phosphate,silicon,and magnesium ions in the soaking solution were determined by an inductively coupled plasma optical emission spectrometer.Results and discussion In this work,a hierarchical Gyroid structure HA-AK10 scaffold(sintered at 1100℃)with a radial internal porosity of 50%and an external porosity of 70%is prepared,and the influence of structural form on the compressive strength and degradation performance of the scaffold is investigated.The biological activity of the bioceramics in vitro is also verified.The mechanical simulation results show that the stress distribution corresponds to the porosity distribution of the structure,and the low porosity is larger and the overall stress concentration phenomenon does not appear.After soaking in SBF solution,Si—OH is firstly formed on the surface of bioceramics,and then silicon gel layer is produced due to the presence of calcium and silicon ions.The silicon gel layer is dissociated into negatively charged groups under alkaline environment secondary adsorption of calcium ions and phosphate ions,forming amorphous calcium phosphate,and finally amorphous calcium phosphate crystals and adsorption of carbonate ions,forming carbonate hydroxyapatite.This indicates that the composite bioceramics have a good biological activity in-vitro and can provide a good environment for the growth of bone cells.A hierarchical Gyroid ceramic scaffold with a bone geometry is prepared via applying the hierarchical structure to the bone contour scaffold.The maximum load capacity of the hierarchical Gyroid ceramic scaffold is 8 times that of the uniform structure.Conclusions The hierarchical structure scaffold designed had good overall compressive performance,good degradation performance,and still maintained a good mechanical stability during degradation.In addition,in-vitro biological experimental results showed that the surface graded composite scaffold could have a good in-vitro biological activity and provide a good environment for bone cells.Compared to the heterosexual structure,the graded scaffold had greater mechanical properties.展开更多
Ceramic cores fabricated by stereolithography exhibit great potential in casting turbine blades.Previous research on ceramic core molding was primarily conducted using vertical printing techniques,which not only resul...Ceramic cores fabricated by stereolithography exhibit great potential in casting turbine blades.Previous research on ceramic core molding was primarily conducted using vertical printing techniques,which not only resulted in lengthy molding durations but also compromised the mechanical strength.In this work,silica(SiO--_2)ceramic cores,with fine complex geometric shapes,were fabricated using 65vol.%ceramic slurry by digital light processing(DLP)with different printing angles.Printing angles significantly impact the surface accuracy,shrinkage,printing efficiency of green bodies,as well as the microstructure and mechanical properties of sintered ceramic core samples.As the printing angle in the green body increases,the bonding area decreases,surface roughness on the XY plane worsens,shrinkage in the Z direction becomes more pronounced,and the printing efficiency declines.Similarly,an increase in the printing angle in the sintered body leads to a reduction in bending strength.At a printing angle of 30°,the printing time is reduced to half of that at 90°,which improves the molding efficiency.Meanwhile,the obtained bulk density of 1.71 g·cm~(-3),open porosity of 24%,and fiexural strength of 10.6±1 MPa can meet the requirements of sintered ceramic cores.Therefore,designing and optimizing the printing angles can achieve the balance between shrinkage,printing efficiency,and fiexural strength.展开更多
基金supported by the National Natural Science Foundation of China(Nos.51972079 and 52302062)the National Key Research and Development Program of China(Nos.2022YFB370630202 and 2022YFB3706305).
文摘Electronic 3D printing possesses a remarkable molding ability and convenience in integrated circuits,flexible wearables,and individual automobile requirements.However,traditional 3D printing technology still struggles to meet the demands of high precision and high efficiency in the process of fabricating a curved surface circuit,particularly achieving precise silver circuit molding on irregular substrates.Here,a high-precision and muti-scaled conformal manufacturing method for silver circuits is presented through the digital light processing(DLP)of ultraviolet-curable silver paste(UV-SP)with adjustable photocuring properties,enabling the successful preparation of micro-scaled conductive structure on the sharply skewed hook face.The minimum modeling depth and width of the cured silver paste can be well controlled to 10 and 88µm,respectively.Compared with traditional printing technology,the printing efficiency of complex patterns has increased by over 70%.The printed silver circuit demonstrates an exceptionally high electrical conductivity,reaching as high as 1.16×10^(7) S/m.Additionally,the UV-SP exhibits significant manufacturing efficiency and superior molding resolution compared to conventional direct ink writing and inkjet printing techniques,thereby contributing to the attainment of high precision and efficiency of conformal and micro-molding manufacturing in sensors,communication antennas,and other electronic devices based on curved substrates.
基金supported by National Natural Science Foundation of China(Grant Nos.52205231,52205196)Taishan Scholars Program,and Research Project of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai(Grant Nos.AMGM0613,AMGM0620).
文摘Digital light processing(DLP)is widely used in ceramic additive manufacturing.However,it remains unexplored for metals.In this study,the regulatory mechanisms of the microstructure and mechanical properties of AISI 316L stainless steel were investigated by optimizing a DLP-compatible metal slurry formulation and sintering process.A photosensitive resin system(mass ratio of 5:1:2:2 for U600,LA,ACMO,and HDDA,respectively)with 88 wt%solid content is designed to achieve a slurry with balanced rheology,photocurability,and low pyrolysis residue.Compared to vacuum sintering,which leads to brittle fracture of material,the Ar/H2 mixed gas(5%H2)effectively reduces carbon and oxygen impurities via reduction,mitigating carbide and oxide segregation at grain boundaries and within grains,thereby enhancing strength-ductility.In addition,the prolonged high-temperature sintering inducesδ-ferrite precipitation at grain boundaries,which fills residual pores to improve densification obviously.Under optimized sintering conditions(Ar/H2,1380°C,6 h),the material achieves 96.2%relative density with tensile strength and fracture elongation of 543.5 MPa and 58.7%,respectively,exhibiting uniform dimple-dominated fracture morphology.This synergistic optimization of the slurry formulation and sintering parameters improves the strength-ductility balance in DLP-fabricated metal materials,offering theoretical and technical insights for the additive manufacturing of complex high-performance metal components.
基金the National Natural Science Foundation of China(Nos.11572002 and 12002032)the China Postdoctoral Science Foundation(Nos.BX20200056 and 2020M670149)。
文摘The soft robotics display huge advantages over their rigid counterparts when interacting with living organisms and fragile objects.As one of the most efficient actuators toward soft robotics,the soft pneumatic actuator(SPA)can produce large,complex responses with utilizing pressure as the only input source.In this work,a new approach that combines digital light processing(DLP)and injection-assisted post-curing is proposed to create SPAs that can realize different functionalities.To enable this,we develop a new class of photo-cross linked elastomers with tunable mechanical properties,good stretchability,and rapid curing speed.By carefully designing the geometry of the cavities embedded in the actuators,the resulting actuators can realize contracting,expanding,flapping,and twisting motions.In addition,we successfully fabricate a soft self-sensing bending actuator by injecting conductive liquids into the three-dimensional(3D)printed actuator,demonstrating that the present method has the potential to be used to manufacture intelligent soft robotic systems.
基金supported by the National Natural Science Foundation of China(grant no.12072143)the Science,Technology and Innovation Commission of Shenzhen Municipality(grant no.ZDSYS20210623092005017)the Stable Support Plan Program of Shenzhen Natural Science Fund(grant no.20200925155345003).
文摘Digital light processing(DLP)is a high-speed,high-precision 3-dimensional(3D)printing technique gaining traction in the fabrication of ceramic composites.However,when printing 0-3 composites containing lead zirconate titanate(PZT)particles,a widely used piezoelectric ceramic,severe density and refractive index mismatches between the 2 phases pose challenges for ink synthesis and the printing process.Here,we systematically and quantitatively optimized DLP printing of PZT composites,streamlining process development and providing a solid theoretical and experimental foundation for broader applications of DLP technology.PZT particles were pretreated with air plasma to improve slurry uniformity and enhance stress transfer at the composite interface,leading to improved chemical modification,mechanical strength,and piezoelectric properties.We investigated the effects of key process parameters on printability and accuracy by analyzing the curing behavior of PZT–polymer composites.A quantitative model of the DLP curing process was introduced.Unlike stereolithography(SLA),DLP curing depth was found to depend on energy dose and light intensity,with higher intensities proving more favorable for printing 0-3 PZT composites.From depth/width–energy curves,optimal process parameters were determined.We designed and fabricated a soft piezoelectric metamaterial-based touch sensor using these parameters,achieving a customized output profile.This work offers critical insights into optimizing DLP for functional materials and expands the potential of 3D-printed piezoelectric composites.
基金supported by the Science and Technology Development Fund,Macao SAR(0119/2022/A3 and 0009/2023/ITP1)the Research Grant from the University of Macao and the University of Macao Development Foundation(SRG2022-00038-FST and MYRG-GRG2023-00225-FST-UMDF).
文摘Flexible devices are increasingly crucial in various aspects of our lives,including healthcare devices and humanmachine interface systems,revolutionizing human life.As technology evolves rapidly,there is a high demand for innovative manufacturing methods that enable rapid prototyping of custom and multifunctional flexible devices with high quality.Recently,digital light processing(DLP)3D printing has emerged as a promising manufacturing approach due to its capabilities of creating intricate customized structures,high fabrication speed,low-cost technology and widespread adoption.This review provides a state-of-the-art overview of the recent advances in the creation of flexible devices using DLP printing,with a focus on soft actuators,flexible sensors and flexible energy devices.We emphasize how DLP printing and the development of DLP printable materials enhance the structural design,sensitivity,mechanical performance,and overall functionality of these devices.Finally,we discuss the challenges and perspectives associated with DLP-printed flexible devices.We anticipate that the continued advancements in DLP printing will foster the development of smarter flexible devices,shortening the design-to-manufacturing cycles.
基金supported by the Special Research Assistant Project of the Chinese Academy of Sciences(Grant No.E1ZL0295)the National Natural Science Foundation of China(Grant Nos.52205231,52205196)+1 种基金the Taishan Scholars Programthe Research Project of Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai(Grant Nos.AMGM0613,AMGM0620)。
文摘Porous oil-containing materials achieve self-lubrication through pore-stored oil,making them suitable for demanding applications such as vacuum,high-speed and maintenance-free systems.While 3D printing combines the advantages of complex structure fabrication and performance regulation,research on its application in porous metal fabrication remains limited.This study integrates digital light processing(DLP)3D printing with vacuum impregnation to fabricate porous AISI 316L stainless steel materials impregnated with PAO10 oil.By adjusting the slurry solid loading(82 wt.%-88 wt.%)and sintering temperature(1200℃-1350℃),12 groups of materials with controlled porosity were fabricated.DLP technology enables precise regulation of oil impregnation rate(10 wt.%-40 wt.%)and achieves high open porosity exceeding 80%.The mechanical properties improve progressively with elevated process parameters,accompanied by fracture morphology evolution from interparticle fractures to dimple-dominated ductile fractures.Both oil impregnation rate and mechanical strength are critical to self-lubricating performance,showing a notable synergistic effect.Optimal self-lubricating performance requires a tensile strength of 250 MPa and an oil impregnation rate of 15%.S1-1350°C sample demonstrates the best performance,with a friction coefficient of 0.09 and an ultralow wear rate of 3.30×10-6mm3/(N m)under a 30 N load and 0.04 m/s sliding speed against Si3N4counterpart.These results will provide valuable insights for advancing the digital design and precision manufacturing of self-lubricating porous materials.
基金This study is mainly financially supported by the Beijing Natural Science Foundation(2182064)hosted by Prof.Rujie He.Prof.Rujie He also thanks the support from the National Natural Science Foundation of China(51772028)+2 种基金Prof.M i n Xia thanks the support from the Fundamental Research Funds for the Central Universities(3052017010)Prof.Xinxin Jin thanks the support from the National Natural Science Foundation of China(51602082)Dr.Keqiang Zhang thanks the support from the Graduate Technology Innovation Project of Beijing Institute of Technology(No.2019CX10020).
文摘Hydroxyapatite(HA)bioceramic scaffolds were fabricated by using digital light processing(DLP)based additive manufacturing.Key issues on the HA bioceramic scaffolds,including dispersion,DLP fabrication,sintering,mechanical properties,and biocompatibility were discussed in detail.Firstly,the ffects of dispersant dosage,solid loading,and sintering temperature were studied.The optimal dispersant dosage,solid loading,and sintering temperature were 2wt%,50vol%,and 1250℃,respectively.Then,the mechanical properties and biocompatibility of the HA bioceramic scaffolds were investigated.The DLP-prepared porous HA bioceramic scaffold was found to exhibit excellent mechanical properties and degradation behavior.From this study,DLP technique shows good potential for manufacturing HA bioceramic scaffolds.
基金the National Key R&D Program of China(2017YFB1103500,2017YFB1103502).
文摘High performance hydroxyapatite(HA)ceramics with excellent densification and mechanical properties were successfully fabricated by digital light processing(DLP)three-dimensional(3D)printing technology.It was found that the sintering atmosphere of wet C02 can dramatically improve the densification process and thus lead to better mechanical properties.HA ceramics with a relative density of 97.12%and a three-point bending strength of 92.4 MPa can be achieved at a sintering temperature of 1300℃,which makes a solid foundation for application in bone engineering.Furthermore,a relatively high compressive strength of 4.09 MPa can be also achieved for a DLP-printed p-cell triply periodic minimum surface(TPMS)structure with a porosity of 74%,which meets the requirement of cancellous bone substitutes.A further cell proliferation test demonstrated that the sintering atmosphere of wet CO2 led to improve cell vitality after 7 days of cell culture Moreover,with the possible benefit from the bio-inspired structure,the 3D-printed TPMS structure significantly improved the cell vitality,which is crucial for early osteogenesis and osteointegration.
基金supported by grants from the Key Project Fund for Science and Technology Development of Guangdong Province (2020B090924003)the National Natural Science Foundation of China (51975230)Major Special Projects of Technological Innovation in Hubei Province (2019AAA002).
文摘Fabrication of silicon carbide(SiC)ceramics by digital light processing(DLP)technology is difficult owing to high refractive index and high ultraviolet(UV)absorptivity of SiC powders.The surface of the SiC powders can be coated with silicon oxide(SiO_(2))with low refractive index and low UV absorptivity via high-temperature oxidation,reducing the loss of UV energy in the DLP process and realizing the DLP preparation of the SiC ceramics.However,it is necessary to explore a high-temperature modification process to obtain a better modification effect of the SiC powders.Therefore,the high-temperature modification behavior of the SiC powders is thoroughly investigated in this paper.The results show that nano-scale oxide film is formed on the surface of the SiC powders by short-time high-temperature oxidation,effectively reducing the UV absorptivity and the surface refractive index(nʹ)of the SiC powders.When the oxidation temperature is 1300℃,compared with that of unoxidized SiC powders,the UV absorptivity of oxidized SiC powders decreases from 0.5065 to 0.4654,and a curing depth of SiC slurry increases from 22±4 to 59±4μm.Finally,SiC green bodies are successfully prepared by the DLP with the the oxidized powders,and flexural strength of SiC sintered parts reaches 47.9±2.3 MPa after 3 h of atmospheric sintering at 2000℃without any sintering aid.
基金sponsored by the National Key Research and Development Program of China(2017YFB0702600)National Natural Science Foundation of China(31971283,31670985)Sichuan Science and Technology Programs(2019JDTD0008,2021YFS0032).
文摘Digital light processing(DLP)-based 3D printing technique holds promise in fabricating scaffolds with high precision.Here raw calcium phosphate(CaP)powders were modified by 5.5%monoalcohol ethoxylate phosphate(MAEP)to ensure high solid loading and low viscosity.The rheological tests found that photocurable slurries composed of 50wt%modified CaP powders and 2wt%toners were suitable for DLP printing.Based on geometric models designed by computer-aided design(CAD)system,three printed CaP ceramics with distinct macroporous structures were prepared,including simple cube,octet-truss and inverse face-centered cube(fcc),which presented the similar phase composition and microstructure,but the different macropore geometries.Inverse fcc group showed the highest porosity and compressive strength.The in vitro and in vivo biological evaluations were performed to compare the bioactivity of three printed CaP ceramics,and the traditional foamed ceramic was used as control.It suggested that all CaP ceramics exhibited good biocompatibility,as evidence by an even bone-like apatite layer formation on the surface,and the good cell proliferation and spreading.A mouse intramuscular implantation model found that all of CaP ceramics could induce ectopic bone formation,and foam group had the strongest osteoinduction,followed by inverse fcc,while cube and octet-truss had the weakest one.It indicated that macropore geometry was of great importance to affect the osteoinductivity of scaffolds,and spherical,concave macropores facilitated osteogenesis.These findings provide a strategy to design and fabricate high-performance orthopedic grafts with proper pore geometry and desired biological performance via DLP-based 3D printing technique.
基金This work was supported by the financial support from the Major Special Projects of Technological Innovation in Hubei Province(2019AAA002)the National Key R&D Program of China(2018YFB1105503)Fundamental Research Funds for the Central Universities(2019kfyXMPY020,2020kfyFPZX003,2018KFYYXJJ030,and 2019kfyXKJC011).
文摘Bone scaffolds require both good bioactivity and mechanical properties to keep shape and promote bone repair.In this work,T-ZnO_(w) enhanced biphasic calcium phosphate(BCP)scaffolds with triply periodic minimal surface(TPMS)-based double-layer porous structure were fabricated by digital light processing(DLP)with high precision.Property of suspension was first discussed to obtain better printing quality.After sintering,T-ZnO_(w) reacts with b-tricalcium phosphate(β-TCP)to form Ca_(19)Zn_(2)(PO_(4))14,and inhibits the phase transition toα-TCP.With the content of T-ZnO_(w) increasing from 0 to 2 wt%,the flexural strength increases from 40.9 to 68.5 MPa because the four-needle whiskers can disperse stress,and have the effect of pulling out as well as fracture toughening.However,excessive whiskers will reduce the cure depth,and cause more printing defects,thus reducing the mechanical strength.Besides,T-ZnO_(w) accelerates the deposition of apatite,and the sample with 2 wt%T-ZnO_(w) shows the fastest mineralization rate.The good biocompatibility has been proved by cell proliferation test.Results confirmed that doping T-ZnO_(w) can improve the mechanical strength of BCP scaffolds,and keep good biological property,which provides a new strategy for better bone repair.
基金supported by Shandong University−MSEA International Institute for Materials Genome Joint Innovation Center for Advanced Ceramics,and the Key Research and Development Projects of Shaanxi Province(Nos.2018ZDCXLGY-09-06 and 2021ZDLGY14-06).
文摘Fabricating SiC ceramics via the digital light processing(DLP)technology is of great challenge due to strong light absorption and high refractive index of deep-colored SiC powders,which highly differ from those of resin,and thus significantly affect the curing performance of the photosensitive SiC slurry.In this paper,a thin silicon oxide(SiO_(2))layer was in-situ formed on the surface of SiC powders by pre-oxidation treatment.This method was proven to effectively improve the curing ability of SiC slurry.The SiC photosensitive slurry was fabricated with solid content of 55 vol%and viscosity of 7.77 Pa·s(shear rate of 30 s^(−1)).The curing thickness was 50μm with exposure time of only 5 s.Then,a well-designed sintering additive was added to completely convert low-strength SiO_(2) into mullite reinforcement during sintering.Complexshaped mullite-bond SiC ceramics were successfully fabricated.The flexural strength of SiC ceramics sintered at 1550℃in air reached 97.6 MPa with porosity of 39.2 vol%,as high as those prepared by spark plasma sintering(SPS)techniques.
基金The authors gratefully acknowledged the financial support provided by the National Key R&D Program of China(No.2021YFB3701500)the Program of Shanghai Academic/Technology Research Leader(No.22XD1404000).
文摘Sic-based composites are widely used as electromagnetic wave absorbers due to their excellent dielectric properties.However,the constraints associated with structural design and the intricacies of the preparation process hinder their broader application.In this study,novel mullite anti-gyroid/SiC gyroid metastructures are designed to integrate the mechanical and electromagnetic wave(EMW)absorption properties of composite materials.Mullite anti-gyroid/SiC gyroid composites are fabricated utilizing a combination of digital light processing(DLP)three-dimensional(3D)printing and precursor infiltration and pyrolysis(PiP)processes.Through the modulation of structural units,the electromagnetic parameters can be effectively regulated,thus improving the impedance matching characteristics of the composites.The structural composites show outstanding EMW absorption properties,with a minimum reflection loss of-54 dB at a thickness of 1.9 mm and an effective absorption bandwidth of 3.20 GHz at a thickness of 2.2 mm.Furthermore,the PIP process significantly enhances the mechanical properties of the composites;compared with those of the mullite/SiC ceramics,the flexural strength of the composites is improved by 3.69-5.85 times(13.28±1.15 MPa vs.(49.05±1.07)-(77.78±3.72)MPa),and the compressive strength is improved by 4.59-13.58 times(8.55±0.90 MPa vs.(39.02±1.63)-(116.13±2.58)MPa).This approach offers a novel and effective method for fabricating structural composites with an expanded range of higher electromagnetic wave absorption properties and improved mechanical properties.
基金financial support(Sinergia No.177178 and research project No.315230_197644/1)financial support from the Swiss National Science Foundation(No.190345,188522 and 206501)financial support from China Scholarship Council(CSC,No.202006790027).
文摘Digital light processing(DLP)of structurally complex poly(ethylene glycol)(PEG)hydrogels with high mechanical toughness represents a long-standing challenge in thefield of 3D printing.Here,we report a 3D printing approach for the high-resolution manufacturing of structurally complex and mechanically strong PEG hydrogels via heat-assisted DLP.Instead of using aqueous solutions of photo-crosslinkable monomers,PEG macromonomer melts werefirst printed in the absence of water,resulting in bulk PEG networks.Then,post-printing swelling of the printed networks was achieved in water,producing high-fidelity 3D hydrogels with complex structures.By employing a dual-macromonomer resin containing a PEG-based four-arm macrophotoinitiator,“all-PEG”hydrogel constructs were pro-duced with compressive toughness up to 1.3 MJ m^(-3).By this approach,porous 3D hydrogel scaffolds with trabecular-like architecture were fabricated,and the scaf-fold surface supported cell attachment and the formation of a monolayer mimicking bone-lining cells.This study highlights the promises of heat-assisted DLP of PEG photopolymers for hydrogel fabrication,which may accelerate the development of 3D tissue-like constructs for regenerative medicine.
基金supported by National Key Research and Develop-ment Plan of China(Grant.No.2021YFB3703100)National Natural Science Foundation of China(Grant.No.52202066)+3 种基金Joint Fund of Min-istry of China Education for Pre-Research of Equipment(Grant.No.8091B032105)Hubei High Value Patent Cultivation Project of China(Grant.No.2021pm0012)Wuhan Knowledge Innovation Project-Dawn Plan‘JD’Technology Research Project in Hubei Province of China(2023BAA023).
文摘The geometry of the phase interface in co-continuous piezoelectric composites is critical in improving their piezo-electric properties.However,conventional co-continuous piezoelectric composites are mostly simple structures such as wood stacks or honeycombs,which are prone to stress concentrations at the joints,thus reducing the fatigue service performance and force-electric conversion efficiency of piezoelectric composites.Such simple structures limit further improvements in the overall performance of co-continuous piezoelectric composites.In this study,based on the digital light processing 3D printing method,we investigated the influence of three dif-ferent structures-the gyroid,diamond,and woodpile interfaces-on the piezoelectric and mechanical properties of co-continuous ceramic/polymer piezoelectric composites.These findings demonstrate that the gyroid and di-amond interfaces outperformed the ceramic skeleton of the woodpile interface in terms of both mechanical and electrical properties.When the ceramic volume percentage was 50%,the piezo-composite of the gyroid surface exhibited the greatest hydrostatic figure of merit(HFOM),reaching 4.23×10^(−12) Pa^(−1),and its piezoelectric coeffi-cient(d_(33))and relative dielectric constant(εr)reached 115 pC/N and 748,respectively.The research results lay the foundation for the application of co-continuous piezoelectric composites in underwater communication and detection.
文摘A polymer based horizontal single step waveguide fbr the sensing of alcohol is developed and analyzed.The waveguide is fabricated by 3-dimensional(3D)printing digital light processing(DLP)technology using monocure 3D rapid ultraviolet(UV)clear resin with a refractive index of n=1.50.The fabricated waveguide is a one-piece tower shaped ridge structure.It is designed to achieve the maximum light confinement at the core by reducing the effective refractive index around the cladding region.With the surface roughness generated from the 3D printing DLP technology,various waveguides with different gap sizes are printed.Comparison is done fbr the different gap waveguides to achieve the minimum feature gap size utilizing the light re-coupling principle and polymer swelling effect.This effect occurs due to the polymer-alcohol interaction that results in the diffusion of alcohol molecules inside the core of the waveguide,thus changing the waveguide from the leaky type(without alcohol)to the guided type(with alcohol).Using this principle,the analysis of alcohol concentration performing as a larger increase in the transmitted light in tensity can be measured.In this work,the sensitivity of the system is also compared and analyzed fbr different waveguide gap sizes with different concentrations of isopropanol alcohol(IPA).A waveguide gap size of 300 jim gives the highest in crease in the transmitted optical power of 65%when tested with 10μL(500ppm)concentration of IPA.Compared with all other gaps,it also displays faster response time(/=5seconds)fbr the optical power to change right after depositing IPA in the chamber.The measured limit of detection(LOD)achieved fbr 300μm is 0.366 yL.In addition,the fabricated waveguide gap of 300μm successfully demonstrates the sen sing limit of IPA concentration below 400μpm which is considered as an exposure limit by"National Institute for Occupational Safety and Health".All the mechanical mount and the alignments are done by 3D printing fused deposition method(FDM).
基金National Science Centre Poland(NCN),Grant/Award Number:2020/37/B/ST8/02167European Union’s Horizon 2020 research and innovation program,Grant/Award Number:813786+2 种基金National Institutes of Health,Grant/Award Number:R21EB025270National Science Foundation,Grant/Award Number:CBET-EBMS-1936105Brigham Research Institute。
文摘Three-dimensional(3D)printing is an emerging technique that has shown promising success in engineering human tissues in recent years.Further development of vatphotopolymerization printing modalities has significantly enhanced the complexity level for 3D printing of various functional structures and components.Similarly,the development of microfluidic chip systems is an emerging research sector with promising medical applications.This work demonstrates the coupling of a digital light processing(DLP)printing procedure with a microfluidic chip system to produce size-tunable,3D-printable porosities with narrow pore size distributions within a gelatin methacryloyl(GelMA)hydrogel matrix.It is found that the generation of size-tunable gas bubbles trapped within an aqueous GelMA hydrogel-precursor can be controlled with high precision.Furthermore,the porosities are printed in two-dimensional(2D)as well as in 3D using the DLP printer.In addition,the cytocompatibility of the printed porous scaffolds is investigated using fibroblasts,where high cell viabilities as well as cell proliferation,spreading,and migration are confirmed.It is anticipated that the strategy is widely applicable in a range of application areas such as tissue engineering and regenerative medicine,among others.
基金financially supported by the Korea Institute of Planning and Evaluation for Technology in Food,Agriculture and Forestry(IPET-RS-2024–00402320)by the Meterials/Parts Technology Development Pro-gram(1415187291,Development of composite formulation with a sustained release(gene)for the treatment of companion animal sarcopenia)funded By the Ministry of Trade,Industry&Energy(MOTIE,Korea)。
文摘Background As the global population increases,the demand for protein sources is expected to increase,driving the demand for cell-based cultivated meat.This study aimed to enhance the productivity of cultivated meat through optimization of the cell source and organization process.Results We engineered fibroblasts into myogenic cells via non-viral introduction of the MYOD1 gene,avoiding viral methods for safety.After confirming the stable derivation of myogenic cells,we combined knockout(KO)of MSTN,a negative regulator of myogenesis,with MYOD1-mediated myogenesis to improve cultivated meat production.Primary cells from MSTN KO cattle exhibited enhanced myogenic potential.Additionally,when tested in immortalized fibroblasts,myostatin treatment reduced MYOD1-induced myogenesis in two-dimensional cultures,while MSTN knockout increased it.To achieve muscle-like cell alignment,we employed digital light processing(DLP)-based three-dimensional(3D)bioprinting to organize cells into 3D groove-shaped hydrogels.These bioactive hydrogels supported stable cell proliferation and significantly improved muscle cell alignment.Upon differentiation into myotubes,the cells demonstrated an ordered alignment,particularly the MSTN KO cells,which showed highly efficient differentiation.Conclusions The integration of genetic modification and advanced DLP 3D bioprinting with groove-patterned hydrogels provides an effective strategy for producing high-quality,muscle-aligned cultivated meat.
文摘Introduction It is necessary for an ideal bioceramic scaffold to have a suitable structure.The structure can affect the mechanical properties of the scaffold(i.e.,elastic modulus and compressive strength)and the biological properties of the scaffold(i.e.,degradability and cell growth rate).Lattice structure is a kind of periodic porous structure,which has some advantages of light weight and high strength,and is widely used in the preparation of bioceramic scaffolders.For the structure of the scaffold,high porosity and large pore size are important for bone growth,bone integration and promoting good mechanical interlocking between neighboring bones and the scaffold.However,scaffolds with a high porosity often lack mechanical strength.In addition,different parts of the bone have different structural requirements.In this paper,scaffolds with a non-uniform structure or a hierarchical structure were designed,with loose and porous exterior to facilitate cell adhesion,osteogenic differentiation and vascularization as well as relatively dense interior to provide sufficient mechanical support for bone repair.Methods In this work,composite ceramics scaffolds with 10%akermanite content were prepared by DLP technology.The scaffold had a high porosity outside to promote the growth of bone tissue,and a low porosity inside to withstand external forces.The compressive strength,fracture form,in-vitro degradation performance and bioactivity of graded bioceramic scaffolds were investigated.The models of scaffolds were imported into the DLP printer with a 405 nm light.The samples were printed with the intensity of 8 mJ/cm^(2)and a layer thickness of 50μm.Finally,the ceramic samples were sintered at 1100℃.The degradability of the hierarchical gyroid bioceramic scaffolds was evaluated through immersion in Tris-HCl solution and SBF solution at a ratio of 200 mL/g.The bioactivity of bioceramic was obtained via immersing them in SBF solution for two weeks.The concentrations of calcium,phosphate,silicon,and magnesium ions in the soaking solution were determined by an inductively coupled plasma optical emission spectrometer.Results and discussion In this work,a hierarchical Gyroid structure HA-AK10 scaffold(sintered at 1100℃)with a radial internal porosity of 50%and an external porosity of 70%is prepared,and the influence of structural form on the compressive strength and degradation performance of the scaffold is investigated.The biological activity of the bioceramics in vitro is also verified.The mechanical simulation results show that the stress distribution corresponds to the porosity distribution of the structure,and the low porosity is larger and the overall stress concentration phenomenon does not appear.After soaking in SBF solution,Si—OH is firstly formed on the surface of bioceramics,and then silicon gel layer is produced due to the presence of calcium and silicon ions.The silicon gel layer is dissociated into negatively charged groups under alkaline environment secondary adsorption of calcium ions and phosphate ions,forming amorphous calcium phosphate,and finally amorphous calcium phosphate crystals and adsorption of carbonate ions,forming carbonate hydroxyapatite.This indicates that the composite bioceramics have a good biological activity in-vitro and can provide a good environment for the growth of bone cells.A hierarchical Gyroid ceramic scaffold with a bone geometry is prepared via applying the hierarchical structure to the bone contour scaffold.The maximum load capacity of the hierarchical Gyroid ceramic scaffold is 8 times that of the uniform structure.Conclusions The hierarchical structure scaffold designed had good overall compressive performance,good degradation performance,and still maintained a good mechanical stability during degradation.In addition,in-vitro biological experimental results showed that the surface graded composite scaffold could have a good in-vitro biological activity and provide a good environment for bone cells.Compared to the heterosexual structure,the graded scaffold had greater mechanical properties.
基金the Youth Innovation Promotion Association of Chinese Academy of Science(No.2021160)the National Natural Science Foundation of China(No.51802319)the Technology and Engineering Center for Space(No.CSU-QZKT-2019-04)。
文摘Ceramic cores fabricated by stereolithography exhibit great potential in casting turbine blades.Previous research on ceramic core molding was primarily conducted using vertical printing techniques,which not only resulted in lengthy molding durations but also compromised the mechanical strength.In this work,silica(SiO--_2)ceramic cores,with fine complex geometric shapes,were fabricated using 65vol.%ceramic slurry by digital light processing(DLP)with different printing angles.Printing angles significantly impact the surface accuracy,shrinkage,printing efficiency of green bodies,as well as the microstructure and mechanical properties of sintered ceramic core samples.As the printing angle in the green body increases,the bonding area decreases,surface roughness on the XY plane worsens,shrinkage in the Z direction becomes more pronounced,and the printing efficiency declines.Similarly,an increase in the printing angle in the sintered body leads to a reduction in bending strength.At a printing angle of 30°,the printing time is reduced to half of that at 90°,which improves the molding efficiency.Meanwhile,the obtained bulk density of 1.71 g·cm~(-3),open porosity of 24%,and fiexural strength of 10.6±1 MPa can meet the requirements of sintered ceramic cores.Therefore,designing and optimizing the printing angles can achieve the balance between shrinkage,printing efficiency,and fiexural strength.