Difunctionalization of unsaturated hydrocarbons is a pivotal synthetic strategy enabling the conversion of alkenes and alkynes into high value-added compounds.It allows for the introduction of two functional groups in...Difunctionalization of unsaturated hydrocarbons is a pivotal synthetic strategy enabling the conversion of alkenes and alkynes into high value-added compounds.It allows for the introduction of two functional groups into the unsaturated bond in a single step,facilitating the efficient construction of complex molecular architectures,which has been widely utilized in material chemistry,pharmaceutical and fine chemical synthesis.Recently,significant progress has been made via free radical-mediated difunctionalization due to the extensive application of photocatalysis.However,highly selective difunc-tionalization reactions still remain challenging.The research progress of selective difunctionalization of unsaturated hydro-carbons using a free radical addition/functional group migration strategy over the past decade is summarized,and synthetic strategies and key reaction steps are systematically elaborated.展开更多
Visible light promoted difunctionalization of alkynes is reviewed. The difunctionalization reaction is achieved by different reagents. Radicals such as carbon(sp3), carbon(sp2), and other heteroatom(P, S, N, Se, O, an...Visible light promoted difunctionalization of alkynes is reviewed. The difunctionalization reaction is achieved by different reagents. Radicals such as carbon(sp3), carbon(sp2), and other heteroatom(P, S, N, Se, O, and halide) radicals initiated by visible light can undergo radical addition to a carbon-carbon triple bond. Upon further transformation, the desired difunctionalized products are obtained. Some organometallic complexes can be activated by visible light;the difunctionalization of alkynes is catalyzed by these species. Other reagents like 1,3-dipole precursors could also react with alkynes to give difunctionalization products;here, the 1,3-dipole derivatives are obtained by visible light photocatalysis. So far, the strategy has been succeeded in the formation of C–C bonds and C–X bonds. Several valuable chemical skeletons have been constructed under mild conditions. However, high regio-and stereoselectivities in some direct difunctionalization methodologies are yet to be achieved.展开更多
An electrochemical vicinal heterodifunctionalization of olefins for the synthesis ofβ-oxysulfones is described.With suitable choice of the conditions,including current,electrodes,and electrolyte,this oxidation reacti...An electrochemical vicinal heterodifunctionalization of olefins for the synthesis ofβ-oxysulfones is described.With suitable choice of the conditions,including current,electrodes,and electrolyte,this oxidation reaction proceeded efficiently in an undivided cell without the use of a stoichiometric chemical oxidant.In addition to the previously established synthesis ofβ-hydroxysulfones in the presence of water,minor modification of this protocol by using either external alcohol nucleophiles or internal carboxylic acid nucleophile also led to the synthesis ofβ-alkoxysulfones,andβ-sulfonyl lactones.展开更多
Difunctionalization of alkenes have developed into an important type of reactions for rapidly and efficiently assemble complex molecules.While extensive advancements have been achieved by the assistance of transition ...Difunctionalization of alkenes have developed into an important type of reactions for rapidly and efficiently assemble complex molecules.While extensive advancements have been achieved by the assistance of transition metal catalysis,the employment of cheap,abundant aryl chlorides as coupling partner is still a challenging task in this field.Herein,we report our first achievement in 1,1-difunctionalization of alkenes with aryl chlorides as coupling partners.The success is predominantly ascribed to the judicious selection of 1,2-diamine ligand.This study provides an efficient protocol for the synthesis of secondary benzyl boronates from easily accessible feedstock chemicals.Furthermore,the distinguished features of this method include excellent 1,1-regio-and chemoselectivity,good functional group tolerance and easily-operational catalytic reaction conditions.展开更多
Indole and its derivatives represent the most important heterocycles that are widely present in bioactive molecules,natural products and advanced materials,and thus functionalization of simple indoles to construct com...Indole and its derivatives represent the most important heterocycles that are widely present in bioactive molecules,natural products and advanced materials,and thus functionalization of simple indoles to construct complex indole derivatives is a research area of great current interest.2,3-Difunctionalization of indoles has been extensively studied,but the reported examples are limited to the synthesis of 2,3-disubstituted indole derivatives or dearomatized products containing central chirality.Until now,atroposelective 2,3-difunctionalization of simple indoles for the synthesis of axially chiral molecules is unknown.In this article,we report a straightforward and general strategy for atroposelective 2,3-difunctionalization of simple indoles,forming indole-containing axially chiral products in good yields and excellent enantioselectivities.The strategy we introduce herein may lead to the discovery of new approaches for multifunctionalization of indoles and other heterocyclic scaffolds,thus accessing novel axially chiral heteroarene-containing scaffolds that may find applications in medicinal chemistry and asymmetric catalysis.展开更多
The direct difunctionalization of alkenes serves as one of the most straightforward strategies toward complex nitrogen-containing compounds.The existing approach is extensively promoted by using C/Xcentered radicals a...The direct difunctionalization of alkenes serves as one of the most straightforward strategies toward complex nitrogen-containing compounds.The existing approach is extensively promoted by using C/Xcentered radicals and N-nucleophiles to conduct 1,2-difunctional amination/azolization of alkenes.In contrast,2,1-difunctional amination/azolization of alkenes by using nitrogen-centered radicals(NCRs) and nucleophiles still remains rarely underexplored.It is possibly due to the highly active electron properties of NCRs and the relatively poor nucleophilicity of aromatic NCRs to be trapped by arylalkenes.Herein,we demonstrate an unprecedented 2,1-hydroxazolization reactions of arylalkenes through electrochemically enabled addition of NCRs from azoles and nucleophiles(NuH) in high yields and with high regioselectivity.This conversion is characterized by the fact that neither metal catalysts nor external chemical oxidants are required.This electrochemical oxidation synthesis method can also be applied for a broad range of NuH including pyridine hydrofluoride,ammonia,water,alcohols,and acids which enables the formation of C-N and C-X(X=F/N/O) bonds in one-pot fashion to furnish efficient fluoroamination,diamination and oxoamination of alkenes.展开更多
The radical difunctionalization of alkenes with sulfonyl bifunctional represents a powerful and straightforward approach to access functionalized alkane derivatives.However,both the mechanistic activation mode and the...The radical difunctionalization of alkenes with sulfonyl bifunctional represents a powerful and straightforward approach to access functionalized alkane derivatives.However,both the mechanistic activation mode and the substrate scopes of this type of radical difunctionalizations are still limited.We demonstrate herein a modular photoredox strategy for the difunctionalization of alkenes,employing arylsulfonyl acetate as the bifunctional reagent.This approach involves a radical addition/Smiles rearrangement cascade process,offering a robust alternative for the synthesis of valuableγ,γ-diaryl andγ-aryl esters.A complementary oxidative bifunctional reagents activation mode is identified to govern the radical cascade reactions,facilitating the simultaneous incorporation of aryl and carboxylate-bearing alkyl groups into the alkenes with excellent diastereoselectivity.Noteworthy features of this method include mild reaction conditions,organophotocatalysis,high atom-and step-economy,excellent functional group compatibility and great structural diversity.展开更多
Electroorganic synthesis is an emerging area of high impact research in organic chemistry, which is considered as one of the green and efficient methods and attracts growing research attention. In this review, we summ...Electroorganic synthesis is an emerging area of high impact research in organic chemistry, which is considered as one of the green and efficient methods and attracts growing research attention. In this review, we summarized comprehensively the recent literature reports on the electrochemical oxidative difunctionalization of unsaturated C—C bonds. The reaction types described in this review included electrochemical intermolecular cyclization, electrochemical intramolecular cyclization, and electrochemical difunctionalization of alkenes/alkynes. This review focuses on the discussion of its synthetic generality for the preparation of functionalized compounds and the related electrochemical oxidative reaction mechanism.展开更多
Bifunctional reagents that serve as dual coupling partners with an activating species have emerged as valuable synthetic tools in organic chemistry.They allow for the development of diverse reaction modes with enhance...Bifunctional reagents that serve as dual coupling partners with an activating species have emerged as valuable synthetic tools in organic chemistry.They allow for the development of diverse reaction modes with enhanced efficiency and structural variability,which is in high demand for atom-economic and sustainable synthesis.Among them,bifunctional reagents containing Nheteroaryl groups have received much attention due to their ability to introduce privileged N-heteroaryl moieties into complex molecules that are otherwise challenging to access.Furthermore,these reagents have been employed under visible-light conditions to achieve various synthetic applications,enabling difunctionalization of alkenes,alkynes,and[1.1.1]propellanes under mild reaction conditions,providing access to highly functionalized N-heteroarenes.In this review,we provide an overview of the recent achievements and applications of photoinduced difunctionalization using bifunctional reagents containing N-heteroaryl groups.We systematically categorize the representative contributions in the field based on bifunctional reagents and their reactivity patterns.This review aims to highlight the potential of these reagents as powerful synthetic tools for sustainable and diverse synthesis.展开更多
Here,we report a cobalt-catalyzed sequential dehydrogenative Heck silylation/hydroamination of styrenes with hydrosilane and diazo compound to access 1-amino-2-silyl compounds with excellent regioselectivity.This difu...Here,we report a cobalt-catalyzed sequential dehydrogenative Heck silylation/hydroamination of styrenes with hydrosilane and diazo compound to access 1-amino-2-silyl compounds with excellent regioselectivity.This difunctionalization reaction could undergo smoothly using 1 mol%catalyst loading with good functional group tolerance.Not only di-and tri-substituted hydrosilanes,but also alkoxysilane is suitable,which does explore the scope of the family of 1-amino-2-silyl compounds.The ligand relay phenomenon between neutral tridentate NNN ligand and anionic NNN ligand is observed for the first time via absorption spectral analysis in this one-pot,two-step transformations.The primary mechanism has been proposed based on the control experiments.展开更多
A copper-catalyzed 1,1-difunctionalization of terminal alkynes was achieved via a three-component reaction, providing a variety of vinyl sulfones with good yields and excellent chemo-and stereoselectivity. Preliminary...A copper-catalyzed 1,1-difunctionalization of terminal alkynes was achieved via a three-component reaction, providing a variety of vinyl sulfones with good yields and excellent chemo-and stereoselectivity. Preliminary mechanistic studies indicated that the reaction probably underwent a Cu-catalyzed formal C–H insertion to produce an allene intermediate, which was then trapped by a sulfonyl anion to give the corresponding product.展开更多
Regiodivergent catalysis provides an efficient strategic approach for the construction of architecturally different molecules from the same starting materials. In this field, the intermolecular regiodivergent 1,2-difu...Regiodivergent catalysis provides an efficient strategic approach for the construction of architecturally different molecules from the same starting materials. In this field, the intermolecular regiodivergent 1,2-difunctionalization of alkenes with two electrophiles is still a challenging task. A ligand-controlled, nickel-catalyzed regiodivergent dicarbofunctionalization of alkenes using both aryl/vinyl halides and acetals as electrophiles under mild reductive reaction conditions has been accomplished. This study provides a general approach to accessing both β-methoxyl esters and γ-methoxyl esters from readily available acrylates,aryl halides and acetals. Experimental mechanistic evidence supports that the difference in regioselective outcomes is attributed to the ligand tuning the reactivity of the nickel catalyst, which results in different catalytic cycles operating for these two reaction conditions.展开更多
This work describes intermolecular acylfluorination of gem-difluoroenynes using acyl fluorides as both acyl source and fluorine source.Trifluoromethyl-substituted allenones or furans could be selectively achieved via ...This work describes intermolecular acylfluorination of gem-difluoroenynes using acyl fluorides as both acyl source and fluorine source.Trifluoromethyl-substituted allenones or furans could be selectively achieved via phosphine and silver catalysis.These approaches exhibit high regioselectivity,atom econ-omy and broad functionality tolerance.展开更多
A highly site-selective intermolecular trifluoromethylimination of activated and unactivated olefins was reported under transition-metal-and photosensitizer-free conditions.This newly developed strategy provides strai...A highly site-selective intermolecular trifluoromethylimination of activated and unactivated olefins was reported under transition-metal-and photosensitizer-free conditions.This newly developed strategy provides straightforward and efficient access to diverse value-added vicinal trifluoromethyl amines without resorting to the pre-functionalized reagents.Mechanistic experiments demonstrate that the approach proceeded through CF_(3)and iminyl two-radicals process,which were generated directly from commercially available benzophenone imine in a novel electron-donor mode via a SET process activated by the bifunctional hypervalent iodine reagents.The synthetic potential of the protocols was further showcased via the condensation/amination sequential cascade,and transformations to accessβ-CF_(3)primary amines.展开更多
A photoredox-catalyzed cascade carbon/carboxylation of activated alkenes with malonates acetals and CO_(2) has been achieved,leading to a range of functionalized 1,1,3-tricarboxylates in good efficiency under mild rea...A photoredox-catalyzed cascade carbon/carboxylation of activated alkenes with malonates acetals and CO_(2) has been achieved,leading to a range of functionalized 1,1,3-tricarboxylates in good efficiency under mild reaction conditions.This reaction provides a facile and sustainable method for the synthesis of tricarboxylates by using CO_(2) as the carboxylic source.展开更多
We report a Ni-catalyzed three-component cross-electrophile coupling of alkynes with alkenyl halides and fluoroalkyl halides to generate fluoroalkyl-incorporated 1,3-dienes.This mild and operationally simple protocol ...We report a Ni-catalyzed three-component cross-electrophile coupling of alkynes with alkenyl halides and fluoroalkyl halides to generate fluoroalkyl-incorporated 1,3-dienes.This mild and operationally simple protocol is distinguished by its broad substrate scope and excellent chemo-,regio-,and stereo-selectivity,offering a new and organometallic agent-free platform for the construction of fluoroalkyl-incorporated diene motifs.Preliminary mechanistic studies have been conducted to probe the potential reaction pathway.展开更多
In recent years,the direct introduction of sulfonyl and sulfenyl groups into unsaturated substrates by using thiosulfonates as unique dual functional reagents has inarguably provided chemists a new platform for the di...In recent years,the direct introduction of sulfonyl and sulfenyl groups into unsaturated substrates by using thiosulfonates as unique dual functional reagents has inarguably provided chemists a new platform for the diverse synthesis of important S-containing derivatives.These 1,n-thiosulfonylation reactions usually feature simple procedures,100%atom economy,and high regioselectivity.This review focuses on the recent advancements in the transformations of thiosulfonates through 1,n-thiosulfonylation involving the formation of two distinct C-S bonds under transition-metal-catalyzed or metal-free conditions,where thiosulfonates act as both a sulfonyl and a sulfenyl component.展开更多
1,3‐Dienes are a class of easily accessible and versatile feedstock chemicals that can participate in a wide range of reactions to facilitate the synthesis of various valuable allylic compounds.In the past decades,ra...1,3‐Dienes are a class of easily accessible and versatile feedstock chemicals that can participate in a wide range of reactions to facilitate the synthesis of various valuable allylic compounds.In the past decades,radical methodology has emerged as a powerful tool for organic synthesis by virtue of the fact that diverse highly reactive radical species can usually be generated under mild,neutral and controlled conditions,and allow for rapid generation of molecular complexity.In this review,we critically illustrate the recent advances in the field of radical‐mediated transformations of 1,3‐dienes based on the different radical precursors and working modes.Wherever possible,particular emphasis is also put on the related mechanistic studies and synthetic applications.展开更多
A cooperative Pd/Cu-catalyzed three-component cross-coupling reaction of alkynes,B_(2)Pin_(2) and alkene-tethered aryl halides is reported.This reaction proceeds under mild conditions and shows broad sub-strate scope,...A cooperative Pd/Cu-catalyzed three-component cross-coupling reaction of alkynes,B_(2)Pin_(2) and alkene-tethered aryl halides is reported.This reaction proceeds under mild conditions and shows broad sub-strate scope,providing a variety of heterocycles containing tetrasubstituted alkenylboronate moieties in synthetically useful yields with excellent chemoselectivity and regioselectivity.This transformation fea-tures the catalytic generation ofβ-borylalkenylcopper intermediates and their use in Pd-catalyzed Heck cyclization/cross-couplings.An enantioselective cascade cyclization/cross-coupling process has also been developed for the synthesis of enantiomerically enriched oxindole bearing a tetrasubstituted alkenyl-boronate moiety.展开更多
Phosphinoylazidation of alkenes is a direct method to build nitrogen-and phosphorus-containing compounds from feed-stock chemicals.Notwithstanding the advances in other phosphinyl radical related difunctionalization o...Phosphinoylazidation of alkenes is a direct method to build nitrogen-and phosphorus-containing compounds from feed-stock chemicals.Notwithstanding the advances in other phosphinyl radical related difunctionalization of alkenes,catalytic phosphinoylazidation of alkenes has not yet been reported.Here,we describe the first iron-catalyzed intermolecular phosphinoylazidation of styrenes and unactivated alkenes.The method is practically useful and requires a relatively low loading of catalyst.Mechanistic studies confirmed the radical nature of the reaction and disclosed the unusually low activation energy 4.8 kcal/mol of radical azido group transfer from the azidyl iron(III)phthalocyanine species(PcFeulN3)to a benzylic radical.This work may help to clarify the mechanism of iron-catalyzed azidation,inspire other mechanism studies and spur further synthetic applications.展开更多
文摘Difunctionalization of unsaturated hydrocarbons is a pivotal synthetic strategy enabling the conversion of alkenes and alkynes into high value-added compounds.It allows for the introduction of two functional groups into the unsaturated bond in a single step,facilitating the efficient construction of complex molecular architectures,which has been widely utilized in material chemistry,pharmaceutical and fine chemical synthesis.Recently,significant progress has been made via free radical-mediated difunctionalization due to the extensive application of photocatalysis.However,highly selective difunc-tionalization reactions still remain challenging.The research progress of selective difunctionalization of unsaturated hydro-carbons using a free radical addition/functional group migration strategy over the past decade is summarized,and synthetic strategies and key reaction steps are systematically elaborated.
基金supported by Zhejiang Provincial Natural Science Foundation of China(LR19B020001)the National Natural Science Foundation of China(21472162,21772171)the National Basic Research Program of China(2015CB856600)~~
文摘Visible light promoted difunctionalization of alkynes is reviewed. The difunctionalization reaction is achieved by different reagents. Radicals such as carbon(sp3), carbon(sp2), and other heteroatom(P, S, N, Se, O, and halide) radicals initiated by visible light can undergo radical addition to a carbon-carbon triple bond. Upon further transformation, the desired difunctionalized products are obtained. Some organometallic complexes can be activated by visible light;the difunctionalization of alkynes is catalyzed by these species. Other reagents like 1,3-dipole precursors could also react with alkynes to give difunctionalization products;here, the 1,3-dipole derivatives are obtained by visible light photocatalysis. So far, the strategy has been succeeded in the formation of C–C bonds and C–X bonds. Several valuable chemical skeletons have been constructed under mild conditions. However, high regio-and stereoselectivities in some direct difunctionalization methodologies are yet to be achieved.
基金Financial support was provided by Hong Kong RGC (No. 16302318)Shenzhen Science and Technology Innovation Committee (No. JCYJ20170818113708560)HKUST (No. IEG17SC03)
文摘An electrochemical vicinal heterodifunctionalization of olefins for the synthesis ofβ-oxysulfones is described.With suitable choice of the conditions,including current,electrodes,and electrolyte,this oxidation reaction proceeded efficiently in an undivided cell without the use of a stoichiometric chemical oxidant.In addition to the previously established synthesis ofβ-hydroxysulfones in the presence of water,minor modification of this protocol by using either external alcohol nucleophiles or internal carboxylic acid nucleophile also led to the synthesis ofβ-alkoxysulfones,andβ-sulfonyl lactones.
基金supported by grants from the National Natural Science Foundation of China(No.22122107)the Fundamental Research Funds for Central Universities(No.2042021kf0190).
文摘Difunctionalization of alkenes have developed into an important type of reactions for rapidly and efficiently assemble complex molecules.While extensive advancements have been achieved by the assistance of transition metal catalysis,the employment of cheap,abundant aryl chlorides as coupling partner is still a challenging task in this field.Herein,we report our first achievement in 1,1-difunctionalization of alkenes with aryl chlorides as coupling partners.The success is predominantly ascribed to the judicious selection of 1,2-diamine ligand.This study provides an efficient protocol for the synthesis of secondary benzyl boronates from easily accessible feedstock chemicals.Furthermore,the distinguished features of this method include excellent 1,1-regio-and chemoselectivity,good functional group tolerance and easily-operational catalytic reaction conditions.
文摘Indole and its derivatives represent the most important heterocycles that are widely present in bioactive molecules,natural products and advanced materials,and thus functionalization of simple indoles to construct complex indole derivatives is a research area of great current interest.2,3-Difunctionalization of indoles has been extensively studied,but the reported examples are limited to the synthesis of 2,3-disubstituted indole derivatives or dearomatized products containing central chirality.Until now,atroposelective 2,3-difunctionalization of simple indoles for the synthesis of axially chiral molecules is unknown.In this article,we report a straightforward and general strategy for atroposelective 2,3-difunctionalization of simple indoles,forming indole-containing axially chiral products in good yields and excellent enantioselectivities.The strategy we introduce herein may lead to the discovery of new approaches for multifunctionalization of indoles and other heterocyclic scaffolds,thus accessing novel axially chiral heteroarene-containing scaffolds that may find applications in medicinal chemistry and asymmetric catalysis.
基金the National Science Foundation of China(No.22071058)the Fundamental Research Funds for the Central Universities for financial support。
文摘The direct difunctionalization of alkenes serves as one of the most straightforward strategies toward complex nitrogen-containing compounds.The existing approach is extensively promoted by using C/Xcentered radicals and N-nucleophiles to conduct 1,2-difunctional amination/azolization of alkenes.In contrast,2,1-difunctional amination/azolization of alkenes by using nitrogen-centered radicals(NCRs) and nucleophiles still remains rarely underexplored.It is possibly due to the highly active electron properties of NCRs and the relatively poor nucleophilicity of aromatic NCRs to be trapped by arylalkenes.Herein,we demonstrate an unprecedented 2,1-hydroxazolization reactions of arylalkenes through electrochemically enabled addition of NCRs from azoles and nucleophiles(NuH) in high yields and with high regioselectivity.This conversion is characterized by the fact that neither metal catalysts nor external chemical oxidants are required.This electrochemical oxidation synthesis method can also be applied for a broad range of NuH including pyridine hydrofluoride,ammonia,water,alcohols,and acids which enables the formation of C-N and C-X(X=F/N/O) bonds in one-pot fashion to furnish efficient fluoroamination,diamination and oxoamination of alkenes.
基金the National Natural Science Foundation of China(No.21901199)National Training Program of Innovation and Entrepreneurship for Undergraduates(No.S202310698011)Xi’an Jiaotong University(No.7121192002)for financial support.
文摘The radical difunctionalization of alkenes with sulfonyl bifunctional represents a powerful and straightforward approach to access functionalized alkane derivatives.However,both the mechanistic activation mode and the substrate scopes of this type of radical difunctionalizations are still limited.We demonstrate herein a modular photoredox strategy for the difunctionalization of alkenes,employing arylsulfonyl acetate as the bifunctional reagent.This approach involves a radical addition/Smiles rearrangement cascade process,offering a robust alternative for the synthesis of valuableγ,γ-diaryl andγ-aryl esters.A complementary oxidative bifunctional reagents activation mode is identified to govern the radical cascade reactions,facilitating the simultaneous incorporation of aryl and carboxylate-bearing alkyl groups into the alkenes with excellent diastereoselectivity.Noteworthy features of this method include mild reaction conditions,organophotocatalysis,high atom-and step-economy,excellent functional group compatibility and great structural diversity.
文摘Electroorganic synthesis is an emerging area of high impact research in organic chemistry, which is considered as one of the green and efficient methods and attracts growing research attention. In this review, we summarized comprehensively the recent literature reports on the electrochemical oxidative difunctionalization of unsaturated C—C bonds. The reaction types described in this review included electrochemical intermolecular cyclization, electrochemical intramolecular cyclization, and electrochemical difunctionalization of alkenes/alkynes. This review focuses on the discussion of its synthetic generality for the preparation of functionalized compounds and the related electrochemical oxidative reaction mechanism.
基金supported by the Institute for Basic Science(IBS-R010-A2)。
文摘Bifunctional reagents that serve as dual coupling partners with an activating species have emerged as valuable synthetic tools in organic chemistry.They allow for the development of diverse reaction modes with enhanced efficiency and structural variability,which is in high demand for atom-economic and sustainable synthesis.Among them,bifunctional reagents containing Nheteroaryl groups have received much attention due to their ability to introduce privileged N-heteroaryl moieties into complex molecules that are otherwise challenging to access.Furthermore,these reagents have been employed under visible-light conditions to achieve various synthetic applications,enabling difunctionalization of alkenes,alkynes,and[1.1.1]propellanes under mild reaction conditions,providing access to highly functionalized N-heteroarenes.In this review,we provide an overview of the recent achievements and applications of photoinduced difunctionalization using bifunctional reagents containing N-heteroaryl groups.We systematically categorize the representative contributions in the field based on bifunctional reagents and their reactivity patterns.This review aims to highlight the potential of these reagents as powerful synthetic tools for sustainable and diverse synthesis.
基金Financial supports were provided by the National Key R&D Program of China(2021YFA1500200 and 2021YFF0701600)the NSFC(22271249)the Fundamental Research Funds for the Central Universities(226-2022-00224 and 226-2023-00115).
文摘Here,we report a cobalt-catalyzed sequential dehydrogenative Heck silylation/hydroamination of styrenes with hydrosilane and diazo compound to access 1-amino-2-silyl compounds with excellent regioselectivity.This difunctionalization reaction could undergo smoothly using 1 mol%catalyst loading with good functional group tolerance.Not only di-and tri-substituted hydrosilanes,but also alkoxysilane is suitable,which does explore the scope of the family of 1-amino-2-silyl compounds.The ligand relay phenomenon between neutral tridentate NNN ligand and anionic NNN ligand is observed for the first time via absorption spectral analysis in this one-pot,two-step transformations.The primary mechanism has been proposed based on the control experiments.
基金supported by the National Natural Science Foundation of China(21432009,21672200,21472177,21772185,21801233)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB20000000)
文摘A copper-catalyzed 1,1-difunctionalization of terminal alkynes was achieved via a three-component reaction, providing a variety of vinyl sulfones with good yields and excellent chemo-and stereoselectivity. Preliminary mechanistic studies indicated that the reaction probably underwent a Cu-catalyzed formal C–H insertion to produce an allene intermediate, which was then trapped by a sulfonyl anion to give the corresponding product.
基金supported by the National Natural Science Foundation of China (21871211, 21774029, 22122107)the Fundamental Research Funds for Central Universities (2042019kf0208)。
文摘Regiodivergent catalysis provides an efficient strategic approach for the construction of architecturally different molecules from the same starting materials. In this field, the intermolecular regiodivergent 1,2-difunctionalization of alkenes with two electrophiles is still a challenging task. A ligand-controlled, nickel-catalyzed regiodivergent dicarbofunctionalization of alkenes using both aryl/vinyl halides and acetals as electrophiles under mild reductive reaction conditions has been accomplished. This study provides a general approach to accessing both β-methoxyl esters and γ-methoxyl esters from readily available acrylates,aryl halides and acetals. Experimental mechanistic evidence supports that the difference in regioselective outcomes is attributed to the ligand tuning the reactivity of the nickel catalyst, which results in different catalytic cycles operating for these two reaction conditions.
基金support from the National Natural Science Foundation of China(Nos.21971107,22071101,22271147).
文摘This work describes intermolecular acylfluorination of gem-difluoroenynes using acyl fluorides as both acyl source and fluorine source.Trifluoromethyl-substituted allenones or furans could be selectively achieved via phosphine and silver catalysis.These approaches exhibit high regioselectivity,atom econ-omy and broad functionality tolerance.
基金Financial support from the National Natural Science Foundation of China(Nos.22201239,22205192 and 22271244)the Hunan Provincial Natural Science Foundation of China(No.2022JJ40429)+2 种基金the Scientific Research Fund of Hunan Provincial Education Department(No.21B0130)the Open Research Fund of School of Chemistry and Chemical Engineering,Henan Normal University(No.2022C02)the Process Intensification&Green Chemical Engineering Innovation Team Project of Hunan Province。
文摘A highly site-selective intermolecular trifluoromethylimination of activated and unactivated olefins was reported under transition-metal-and photosensitizer-free conditions.This newly developed strategy provides straightforward and efficient access to diverse value-added vicinal trifluoromethyl amines without resorting to the pre-functionalized reagents.Mechanistic experiments demonstrate that the approach proceeded through CF_(3)and iminyl two-radicals process,which were generated directly from commercially available benzophenone imine in a novel electron-donor mode via a SET process activated by the bifunctional hypervalent iodine reagents.The synthetic potential of the protocols was further showcased via the condensation/amination sequential cascade,and transformations to accessβ-CF_(3)primary amines.
文摘A photoredox-catalyzed cascade carbon/carboxylation of activated alkenes with malonates acetals and CO_(2) has been achieved,leading to a range of functionalized 1,1,3-tricarboxylates in good efficiency under mild reaction conditions.This reaction provides a facile and sustainable method for the synthesis of tricarboxylates by using CO_(2) as the carboxylic source.
基金financial support provided by the National Natural Science Foundation of China(Nos.21991123,21971036,21901036)the Shanghai Rising-Star Program(No.20QA1400200)。
文摘We report a Ni-catalyzed three-component cross-electrophile coupling of alkynes with alkenyl halides and fluoroalkyl halides to generate fluoroalkyl-incorporated 1,3-dienes.This mild and operationally simple protocol is distinguished by its broad substrate scope and excellent chemo-,regio-,and stereo-selectivity,offering a new and organometallic agent-free platform for the construction of fluoroalkyl-incorporated diene motifs.Preliminary mechanistic studies have been conducted to probe the potential reaction pathway.
基金financial support from the Natural Science Foundation of China(No.22001121)Natural Science Foundation of Jiangsu Province(No.BK20180690)+1 种基金Nanjing Tech University(Start-up Grant Nos.39837118 and39837146)Xuzhou Medical University(Start-up Grant No.RC20552038)。
文摘In recent years,the direct introduction of sulfonyl and sulfenyl groups into unsaturated substrates by using thiosulfonates as unique dual functional reagents has inarguably provided chemists a new platform for the diverse synthesis of important S-containing derivatives.These 1,n-thiosulfonylation reactions usually feature simple procedures,100%atom economy,and high regioselectivity.This review focuses on the recent advancements in the transformations of thiosulfonates through 1,n-thiosulfonylation involving the formation of two distinct C-S bonds under transition-metal-catalyzed or metal-free conditions,where thiosulfonates act as both a sulfonyl and a sulfenyl component.
文摘1,3‐Dienes are a class of easily accessible and versatile feedstock chemicals that can participate in a wide range of reactions to facilitate the synthesis of various valuable allylic compounds.In the past decades,radical methodology has emerged as a powerful tool for organic synthesis by virtue of the fact that diverse highly reactive radical species can usually be generated under mild,neutral and controlled conditions,and allow for rapid generation of molecular complexity.In this review,we critically illustrate the recent advances in the field of radical‐mediated transformations of 1,3‐dienes based on the different radical precursors and working modes.Wherever possible,particular emphasis is also put on the related mechanistic studies and synthetic applications.
基金financial support from the National Natural Science Foundation of China(No.22171215)the Excellent Youth Foundation of Hubei Scientific Committee(No.2022CFA092)the GuangDong Basic and Applied Basic Research Foundation(No.2022A1515110113).
文摘A cooperative Pd/Cu-catalyzed three-component cross-coupling reaction of alkynes,B_(2)Pin_(2) and alkene-tethered aryl halides is reported.This reaction proceeds under mild conditions and shows broad sub-strate scope,providing a variety of heterocycles containing tetrasubstituted alkenylboronate moieties in synthetically useful yields with excellent chemoselectivity and regioselectivity.This transformation fea-tures the catalytic generation ofβ-borylalkenylcopper intermediates and their use in Pd-catalyzed Heck cyclization/cross-couplings.An enantioselective cascade cyclization/cross-coupling process has also been developed for the synthesis of enantiomerically enriched oxindole bearing a tetrasubstituted alkenyl-boronate moiety.
文摘Phosphinoylazidation of alkenes is a direct method to build nitrogen-and phosphorus-containing compounds from feed-stock chemicals.Notwithstanding the advances in other phosphinyl radical related difunctionalization of alkenes,catalytic phosphinoylazidation of alkenes has not yet been reported.Here,we describe the first iron-catalyzed intermolecular phosphinoylazidation of styrenes and unactivated alkenes.The method is practically useful and requires a relatively low loading of catalyst.Mechanistic studies confirmed the radical nature of the reaction and disclosed the unusually low activation energy 4.8 kcal/mol of radical azido group transfer from the azidyl iron(III)phthalocyanine species(PcFeulN3)to a benzylic radical.This work may help to clarify the mechanism of iron-catalyzed azidation,inspire other mechanism studies and spur further synthetic applications.