This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydra...This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydration simulation,thermodynamic calculation,and finite element analysis to examine the effects of pore solution,including effect of electrochemical potential,effect of chemical activity,and effect of mechanical interactions between ions,on the chloride effective diffusion coefficient of hydrated C3S paste.The results indicate that the effect of electrochemical potential on chloride diffusion becomes stronger with increasing hydration age due to the increase in the content of hydrated calcium silicate;as the hydration age increases,the effect of chemical activity on chloride diffusion weakens when the number of diffusible elements decreases;the effect of mechanical interactions between ions on chloride diffusion decreases with the increase of hydration age.展开更多
During nearly 200 years of development in the knowledge of Brownian motion,the Janus sphere,as a typical Brownian particle with special surface properties,has been widely studied in the past few decades.A standard Jan...During nearly 200 years of development in the knowledge of Brownian motion,the Janus sphere,as a typical Brownian particle with special surface properties,has been widely studied in the past few decades.A standard Janus sphere possesses two distinct surfaces.These two surfaces elicit different hydrodynamic interactions with ambient fluids or other interactions in response to environmental stimuli,such as chemical gradients,magnetic fields,and even light.The diffusion of Janus spheres,particularly when controlled by a remotely applied field,has inspired various applications,ranging from the design of micro-swimmers and novel procedures for probing the mechanical properties of suspensions to the fabrication of composites with enhanced performance.In this work,we report a systematic analysis of field-controlled diffusion of Janus spheres.Commencing with stochastic differential equations of motion at the microscale,we derive a coarse-grained Fokker-Planck equation at the macroscale,describing the evolution of the probability distribution function of the Janus sphere in terms of its position and orientation.Leveraging the concept of the hydrodynamic center,we derive,for the first time,explicit generalized Stokes-Einstein relations for long-time effective diffusivity,incorporating the effects of both the surface discontinuity of the Janus sphere and the external fields.The formulae enable predictions of the effective diffusivity as it varies with the slip length and characteristic angle of Janus spheres,and reveal the impact of an aligning potential field on the diffusion coefficients both parallel and perpendicular to the direction of the field.This work not only deepens the understanding of field-controlled diffusion of Janus particles,but also holds a meaningful impact on the future applications in microfluidics and related fields.展开更多
Weak turbulence often occurs during heavy pollution events in eastern China(EC).However,existing mesoscale meteorology models cannot accurately simulate turbulent diffusion under weakened turbulence,particularly under...Weak turbulence often occurs during heavy pollution events in eastern China(EC).However,existing mesoscale meteorology models cannot accurately simulate turbulent diffusion under weakened turbulence,particularly under the nocturnal stable boundary layer(SBL),often leading to significant turbulent diffusivity underestimation and surface aerosol overestimation.In this study,a new parameterization of minimum turbulent diffusivity coefficient(Kz_(min))was tested and applied to PM_(2.5)simulations in EC under SBL conditions in WRF-Chem.The original model overestimated the PM_(2.5)simulation and the simulation performance can be improved by adding Kz_(min).Sensitivity experiments revealed different ranges of available Kz_(min)values over the northern(0.8 to 1.2 m^(2)/s)and southern(1.0 to 1.5 m^(2)/s)regions of EC.The geographically related Kz_(min)was parameterized by sensible heat flux(H)and latent heat flux(LE),which also exhibited regional differences related to the climate and underlying surface.Furthermore,we assign physical significance to the parameterized formula Kz_(min)and found that our proposed Kz_(min)scheme can reasonably yield dynamic Kz_(min)values over EC.The revised Kz_(min)scheme(EXP_(NEW))enhanced the turbulent diffusion(north:0.93 m^(2)/s,south:1.10 m^(2)/s on average)in the SBL,simultaneously improving the PM_(2.5)simulations on the surface(north:65.78 to 0.67μg/m^(3);south 30.48 to 12.86μg/m^(3))and upper SBL.A process analysis showed that vertical mixing was the key process for improving PM_(2.5)simulations on the surface in EXP_(NEW).This study highlighted the importance of improving turbulent diffusion in current mesoscale models under SBL and has great significance for aerosol simulation.展开更多
Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological me...Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological mechanisms,preventing and treating cerebral small vessel vasculopathy is challenging.Recent studies have shown that the glymphatic system plays a crucial role in interstitial solute clearance and the maintenance of brain homeostasis.Increasing evidence also suggests that dysfunction in glymphatic clearance is a key factor in the progression of cerebral small vessel disease.This review begins with a comprehensive introduction to the structure,function,and driving factors of the glymphatic system,highlighting its essential role in brain waste clearance.Afterwards,cerebral small vessel disease was reviewed from the perspective of the glymphatic system,after which the mechanisms underlying their correlation were summarized.Glymphatic dysfunction may lead to the accumulation of metabolic waste in the brain,thereby exacerbating the pathological processes associated with cerebral small vessel disease.The review also discussed the direct evidence of glymphatic dysfunction in patients and animal models exhibiting two subtypes of cerebral small vessel disease:arteriolosclerosis-related cerebral small vessel disease and amyloid-related cerebral small vessel disease.Diffusion tensor image analysis along the perivascular space is an important non-invasive tool for assessing the clearance function of the glymphatic system.However,the effectiveness of its parameters needs to be enhanced.Among various nervous system diseases,including cerebral small vessel disease,glymphatic failure may be a common final pathway toward dementia.Overall,this review summarizes prevention and treatment strategies that target glymphatic drainage and will offer valuable insight for developing novel treatments for cerebral small vessel disease.展开更多
From viewpoint of chemical element and microstructure of wood, this paper makes a discussion on thermal diffusivity of wood and two theoretical expressions of thermal diffusivity for the choral and radial directions w...From viewpoint of chemical element and microstructure of wood, this paper makes a discussion on thermal diffusivity of wood and two theoretical expressions of thermal diffusivity for the choral and radial directions were derived. The thermal diffusivities of the choral and radial directions for about 20 species of trees were calculated with the derived theoretical expressions and compared with the experimental values. The average error of the theoretical values of thermal diffusivity was 7.5% for choral direction and 6.2% for radial direction.展开更多
In this paper,we are concerned with the stability of traveling wavefronts of a Belousov-Zhabotinsky model with mixed nonlocal and degenerate diffusions.Such a system can be used to study the competition among nonlocal...In this paper,we are concerned with the stability of traveling wavefronts of a Belousov-Zhabotinsky model with mixed nonlocal and degenerate diffusions.Such a system can be used to study the competition among nonlocally diffusive species and degenerately diffusive species.We prove that the traveling wavefronts are exponentially stable,when the initial perturbation around the traveling waves decays exponentially as x→-∞,but in other locations,the initial data can be arbitrarily large.The adopted methods are the weighted energy with the comparison principle and squeezing technique.展开更多
Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in hu...Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in humans remain unclear,including cell viability,distribution,migration,and fate.Conventional cell tracing methods cannot be used in the clinic.The use of superparamagnetic iron oxide nanoparticles as contrast agents allows for the observation of transplanted cells using magnetic resonance imaging.In 2016,the National Medical Products Administration of China approved a new superparamagnetic iron oxide nanoparticle,Ruicun,for use as a contrast agent in clinical trials.In the present study,an acute hemi-transection spinal cord injury model was established in beagle dogs.The injury was then treated by transplantation of Ruicun-labeled mesenchymal stromal cells.The results indicated that Ruicunlabeled mesenchymal stromal cells repaired damaged spinal cord fibers and partially restored neurological function in animals with acute spinal cord injury.T2*-weighted imaging revealed low signal areas on both sides of the injured spinal cord.The results of quantitative susceptibility mapping with ultrashort echo time sequences indicated that Ruicun-labeled mesenchymal stromal cells persisted stably within the injured spinal cord for over 4 weeks.These findings suggest that magnetic resonance imaging has the potential to effectively track the migration of Ruicun-labeled mesenchymal stromal cells and assess their ability to repair spinal cord injury.展开更多
在非霍奇金淋巴瘤(non-Hodgkin's lymphoma,NHL)中,弥漫大B细胞淋巴瘤(diffuse large B cell lymphoma,DLBCL)的发生率最高,其异质性明显。利妥昔单抗的出现极大改善了患者的预后及生存,其联合CHOP成为经典一线治疗方案,50%~70%患...在非霍奇金淋巴瘤(non-Hodgkin's lymphoma,NHL)中,弥漫大B细胞淋巴瘤(diffuse large B cell lymphoma,DLBCL)的发生率最高,其异质性明显。利妥昔单抗的出现极大改善了患者的预后及生存,其联合CHOP成为经典一线治疗方案,50%~70%患者可治愈,但仍有30%~50%因耐药等原因反应差或在缓解后复发。复发难治DLBCL,尤其是无法自体造血干细胞移植或移植后复发病人的治疗是目前亟待解决的问题。随着对靶向免疫治疗研究的不断深入,许多药物不断进入临床应用或正在开发中,该文主要就单克隆抗体、双特异性抗体、抗体药物偶联物、选择性核出口蛋白抑制剂、嵌合抗原受体T细胞、程序性死亡受体/配体1抑制剂等药物作一简要综述。展开更多
基金Funded by the Natural Science Foundation of Jiangsu Province(No.BK20241529)China Postdoctoral Science Foundation(No.2024M750736)。
文摘This study aims to develop a chloride diffusion simulation method that considers the hydration microstructure and pore solution properties during the hydration of tricalcium silicate(C3S).The method combines the hydration simulation,thermodynamic calculation,and finite element analysis to examine the effects of pore solution,including effect of electrochemical potential,effect of chemical activity,and effect of mechanical interactions between ions,on the chloride effective diffusion coefficient of hydrated C3S paste.The results indicate that the effect of electrochemical potential on chloride diffusion becomes stronger with increasing hydration age due to the increase in the content of hydrated calcium silicate;as the hydration age increases,the effect of chemical activity on chloride diffusion weakens when the number of diffusible elements decreases;the effect of mechanical interactions between ions on chloride diffusion decreases with the increase of hydration age.
基金Project supported by the National Natural Science Foundation of China(Nos.12302079 and 11521202)the National Natural Science Foundation of U.S.A.(No.DMS-2306254)。
文摘During nearly 200 years of development in the knowledge of Brownian motion,the Janus sphere,as a typical Brownian particle with special surface properties,has been widely studied in the past few decades.A standard Janus sphere possesses two distinct surfaces.These two surfaces elicit different hydrodynamic interactions with ambient fluids or other interactions in response to environmental stimuli,such as chemical gradients,magnetic fields,and even light.The diffusion of Janus spheres,particularly when controlled by a remotely applied field,has inspired various applications,ranging from the design of micro-swimmers and novel procedures for probing the mechanical properties of suspensions to the fabrication of composites with enhanced performance.In this work,we report a systematic analysis of field-controlled diffusion of Janus spheres.Commencing with stochastic differential equations of motion at the microscale,we derive a coarse-grained Fokker-Planck equation at the macroscale,describing the evolution of the probability distribution function of the Janus sphere in terms of its position and orientation.Leveraging the concept of the hydrodynamic center,we derive,for the first time,explicit generalized Stokes-Einstein relations for long-time effective diffusivity,incorporating the effects of both the surface discontinuity of the Janus sphere and the external fields.The formulae enable predictions of the effective diffusivity as it varies with the slip length and characteristic angle of Janus spheres,and reveal the impact of an aligning potential field on the diffusion coefficients both parallel and perpendicular to the direction of the field.This work not only deepens the understanding of field-controlled diffusion of Janus particles,but also holds a meaningful impact on the future applications in microfluidics and related fields.
基金supported by the National Natural Science Foundation of China(Nos.92044302 and 42275115)the Natural Science Foundation of Jiangsu Province(No.BK20241711)the Postgraduate Research and Practice Innovation of Jiangsu Province Program(No.KYCX20_0952)。
文摘Weak turbulence often occurs during heavy pollution events in eastern China(EC).However,existing mesoscale meteorology models cannot accurately simulate turbulent diffusion under weakened turbulence,particularly under the nocturnal stable boundary layer(SBL),often leading to significant turbulent diffusivity underestimation and surface aerosol overestimation.In this study,a new parameterization of minimum turbulent diffusivity coefficient(Kz_(min))was tested and applied to PM_(2.5)simulations in EC under SBL conditions in WRF-Chem.The original model overestimated the PM_(2.5)simulation and the simulation performance can be improved by adding Kz_(min).Sensitivity experiments revealed different ranges of available Kz_(min)values over the northern(0.8 to 1.2 m^(2)/s)and southern(1.0 to 1.5 m^(2)/s)regions of EC.The geographically related Kz_(min)was parameterized by sensible heat flux(H)and latent heat flux(LE),which also exhibited regional differences related to the climate and underlying surface.Furthermore,we assign physical significance to the parameterized formula Kz_(min)and found that our proposed Kz_(min)scheme can reasonably yield dynamic Kz_(min)values over EC.The revised Kz_(min)scheme(EXP_(NEW))enhanced the turbulent diffusion(north:0.93 m^(2)/s,south:1.10 m^(2)/s on average)in the SBL,simultaneously improving the PM_(2.5)simulations on the surface(north:65.78 to 0.67μg/m^(3);south 30.48 to 12.86μg/m^(3))and upper SBL.A process analysis showed that vertical mixing was the key process for improving PM_(2.5)simulations on the surface in EXP_(NEW).This study highlighted the importance of improving turbulent diffusion in current mesoscale models under SBL and has great significance for aerosol simulation.
基金supported by the National Natural Science Foundation of China,No.82274304(to YH)the Major Clinical Study Projects of Shanghai Shenkang Hospital Development Center,No.SHDC2020CR2046B(to YH)Shanghai Municipal Health Commission Talent Plan,No.2022LJ010(to YH).
文摘Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological mechanisms,preventing and treating cerebral small vessel vasculopathy is challenging.Recent studies have shown that the glymphatic system plays a crucial role in interstitial solute clearance and the maintenance of brain homeostasis.Increasing evidence also suggests that dysfunction in glymphatic clearance is a key factor in the progression of cerebral small vessel disease.This review begins with a comprehensive introduction to the structure,function,and driving factors of the glymphatic system,highlighting its essential role in brain waste clearance.Afterwards,cerebral small vessel disease was reviewed from the perspective of the glymphatic system,after which the mechanisms underlying their correlation were summarized.Glymphatic dysfunction may lead to the accumulation of metabolic waste in the brain,thereby exacerbating the pathological processes associated with cerebral small vessel disease.The review also discussed the direct evidence of glymphatic dysfunction in patients and animal models exhibiting two subtypes of cerebral small vessel disease:arteriolosclerosis-related cerebral small vessel disease and amyloid-related cerebral small vessel disease.Diffusion tensor image analysis along the perivascular space is an important non-invasive tool for assessing the clearance function of the glymphatic system.However,the effectiveness of its parameters needs to be enhanced.Among various nervous system diseases,including cerebral small vessel disease,glymphatic failure may be a common final pathway toward dementia.Overall,this review summarizes prevention and treatment strategies that target glymphatic drainage and will offer valuable insight for developing novel treatments for cerebral small vessel disease.
基金Natural Science Foundation of Fujian Province. "Theoretical Research on Wood Thermal Property".
文摘From viewpoint of chemical element and microstructure of wood, this paper makes a discussion on thermal diffusivity of wood and two theoretical expressions of thermal diffusivity for the choral and radial directions were derived. The thermal diffusivities of the choral and radial directions for about 20 species of trees were calculated with the derived theoretical expressions and compared with the experimental values. The average error of the theoretical values of thermal diffusivity was 7.5% for choral direction and 6.2% for radial direction.
基金Supported by the National Natural Science Foundation of China(Grant No.12261081).
文摘In this paper,we are concerned with the stability of traveling wavefronts of a Belousov-Zhabotinsky model with mixed nonlocal and degenerate diffusions.Such a system can be used to study the competition among nonlocally diffusive species and degenerately diffusive species.We prove that the traveling wavefronts are exponentially stable,when the initial perturbation around the traveling waves decays exponentially as x→-∞,but in other locations,the initial data can be arbitrarily large.The adopted methods are the weighted energy with the comparison principle and squeezing technique.
基金supported by the National Key R&D Program of China,Nos.2017YFA0104302(to NG and XM)and 2017YFA0104304(to BW and ZZ)
文摘Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in humans remain unclear,including cell viability,distribution,migration,and fate.Conventional cell tracing methods cannot be used in the clinic.The use of superparamagnetic iron oxide nanoparticles as contrast agents allows for the observation of transplanted cells using magnetic resonance imaging.In 2016,the National Medical Products Administration of China approved a new superparamagnetic iron oxide nanoparticle,Ruicun,for use as a contrast agent in clinical trials.In the present study,an acute hemi-transection spinal cord injury model was established in beagle dogs.The injury was then treated by transplantation of Ruicun-labeled mesenchymal stromal cells.The results indicated that Ruicunlabeled mesenchymal stromal cells repaired damaged spinal cord fibers and partially restored neurological function in animals with acute spinal cord injury.T2*-weighted imaging revealed low signal areas on both sides of the injured spinal cord.The results of quantitative susceptibility mapping with ultrashort echo time sequences indicated that Ruicun-labeled mesenchymal stromal cells persisted stably within the injured spinal cord for over 4 weeks.These findings suggest that magnetic resonance imaging has the potential to effectively track the migration of Ruicun-labeled mesenchymal stromal cells and assess their ability to repair spinal cord injury.
文摘在非霍奇金淋巴瘤(non-Hodgkin's lymphoma,NHL)中,弥漫大B细胞淋巴瘤(diffuse large B cell lymphoma,DLBCL)的发生率最高,其异质性明显。利妥昔单抗的出现极大改善了患者的预后及生存,其联合CHOP成为经典一线治疗方案,50%~70%患者可治愈,但仍有30%~50%因耐药等原因反应差或在缓解后复发。复发难治DLBCL,尤其是无法自体造血干细胞移植或移植后复发病人的治疗是目前亟待解决的问题。随着对靶向免疫治疗研究的不断深入,许多药物不断进入临床应用或正在开发中,该文主要就单克隆抗体、双特异性抗体、抗体药物偶联物、选择性核出口蛋白抑制剂、嵌合抗原受体T细胞、程序性死亡受体/配体1抑制剂等药物作一简要综述。