In phenomenological models,diffusivity is at least a function of composition and the diffusivities at infinite dilution.An additional parameter(?),which can be determined by diffusivity in midpoint,are specially broug...In phenomenological models,diffusivity is at least a function of composition and the diffusivities at infinite dilution.An additional parameter(?),which can be determined by diffusivity in midpoint,are specially brought forward as token of fractional friction related with the interactions of same molecules in this paper,to extrapolate a new correlative equation for the mutual Maxwell-Stefan diffusivities.Furthermore,the correlative equation can be extended to calculate diffusivities in multicomponent mixtures based on binary data alone.The theoretical calculations are evaluated with published experimental data.The M-S diffusivities in a three-component liquid system are regarded as binary coefficients,the predictive results also agree with the experimental data.Results indicate that the model with additional coefficients is superior to currently used Darken methods,especially for systems of polar organic-water and those containing associative component.展开更多
In the present work, the mass transfer characteristics, namely moisture diffusivity and moisture transfer coefficient of “Violet de Galmi” variety of onions were evaluated using the analytical model. Onions were dri...In the present work, the mass transfer characteristics, namely moisture diffusivity and moisture transfer coefficient of “Violet de Galmi” variety of onions were evaluated using the analytical model. Onions were dried in a single layer at different temperatures (40℃, 50℃, 60℃, and 70℃) and for a relative humidity of drying air of 20%. The results showed a reasonably good agreement between the values predicted by the correlation and the experimental observations. This model computed the Biot number, effective moisture diffusivity, and mass transfer coefficient. Effective diffusion coefficient values are obtained between 0.2578 × 10<sup>-9</sup> m<sup>2</sup>·s<sup>-1</sup> and 0.5460 × 10<sup>-9</sup> m<sup>2</sup>·s<sup>-1</sup>. Mass transfer coefficients of “Violet de Galmi” onion drying vary between 3.37 × 10<sup>-7</sup> m·s<sup>-1</sup> and 13.38 × 10<sup>-7</sup> m·s<sup>-1</sup>. Numbers of mass transfer Biot are found between 0.9797 and 2.9397. The activation energy E<sub>a</sub> is 31.73 kJ·mol<sup>-1</sup>.展开更多
Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological me...Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological mechanisms,preventing and treating cerebral small vessel vasculopathy is challenging.Recent studies have shown that the glymphatic system plays a crucial role in interstitial solute clearance and the maintenance of brain homeostasis.Increasing evidence also suggests that dysfunction in glymphatic clearance is a key factor in the progression of cerebral small vessel disease.This review begins with a comprehensive introduction to the structure,function,and driving factors of the glymphatic system,highlighting its essential role in brain waste clearance.Afterwards,cerebral small vessel disease was reviewed from the perspective of the glymphatic system,after which the mechanisms underlying their correlation were summarized.Glymphatic dysfunction may lead to the accumulation of metabolic waste in the brain,thereby exacerbating the pathological processes associated with cerebral small vessel disease.The review also discussed the direct evidence of glymphatic dysfunction in patients and animal models exhibiting two subtypes of cerebral small vessel disease:arteriolosclerosis-related cerebral small vessel disease and amyloid-related cerebral small vessel disease.Diffusion tensor image analysis along the perivascular space is an important non-invasive tool for assessing the clearance function of the glymphatic system.However,the effectiveness of its parameters needs to be enhanced.Among various nervous system diseases,including cerebral small vessel disease,glymphatic failure may be a common final pathway toward dementia.Overall,this review summarizes prevention and treatment strategies that target glymphatic drainage and will offer valuable insight for developing novel treatments for cerebral small vessel disease.展开更多
In this paper,we are concerned with the stability of traveling wavefronts of a Belousov-Zhabotinsky model with mixed nonlocal and degenerate diffusions.Such a system can be used to study the competition among nonlocal...In this paper,we are concerned with the stability of traveling wavefronts of a Belousov-Zhabotinsky model with mixed nonlocal and degenerate diffusions.Such a system can be used to study the competition among nonlocally diffusive species and degenerately diffusive species.We prove that the traveling wavefronts are exponentially stable,when the initial perturbation around the traveling waves decays exponentially as x→-∞,but in other locations,the initial data can be arbitrarily large.The adopted methods are the weighted energy with the comparison principle and squeezing technique.展开更多
Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in hu...Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in humans remain unclear,including cell viability,distribution,migration,and fate.Conventional cell tracing methods cannot be used in the clinic.The use of superparamagnetic iron oxide nanoparticles as contrast agents allows for the observation of transplanted cells using magnetic resonance imaging.In 2016,the National Medical Products Administration of China approved a new superparamagnetic iron oxide nanoparticle,Ruicun,for use as a contrast agent in clinical trials.In the present study,an acute hemi-transection spinal cord injury model was established in beagle dogs.The injury was then treated by transplantation of Ruicun-labeled mesenchymal stromal cells.The results indicated that Ruicunlabeled mesenchymal stromal cells repaired damaged spinal cord fibers and partially restored neurological function in animals with acute spinal cord injury.T2*-weighted imaging revealed low signal areas on both sides of the injured spinal cord.The results of quantitative susceptibility mapping with ultrashort echo time sequences indicated that Ruicun-labeled mesenchymal stromal cells persisted stably within the injured spinal cord for over 4 weeks.These findings suggest that magnetic resonance imaging has the potential to effectively track the migration of Ruicun-labeled mesenchymal stromal cells and assess their ability to repair spinal cord injury.展开更多
Knowledge of diffusivity is a prerequisite for understanding many scientific and technological disciplines. In this paper, firstly major experimental methods, which are employed to provide various diffusivity data, ar...Knowledge of diffusivity is a prerequisite for understanding many scientific and technological disciplines. In this paper, firstly major experimental methods, which are employed to provide various diffusivity data, are briefly described. Secondly, the fun-damentals of various computational methods, including first-principles method, embedded atomic method/molecular dynamic simulation, semi-empirical approaches, and phenomenological DICTRA technique, are demonstrated. Diffusion models re- cently developed for order/disorder transitions and stoichiometric compounds are also briefly depicted. Thirdly, a newly estab- lished diffusivity database for liquid, fcc_A1, Lie, bcc_A2, bcc_B2, and interrnetallic phases in the multicomponent A1 alloys is presented via a few case studies in binary, ternary and quaternary systems. And the integration of various computational techniques and experimental methods is highlighted. The reliability of this diffusivity database is validated by comparing the calculated and measured concentration profiles, diffusion paths, and Kirkendall shifts in various binary, ternary and quaternary diffusion couples. Next, the established diffusivity databases along with thermodynamic and other thermo-physical properties are utilized to simulate the microstructural evolution for Al alloys during solidification, interdiffusion and precipitation. A spe- cial discussion is presented on the phase-field simulation of interdiffusion microstructures in a series of Ni-Al diffusion couples composed of γ, γ', and β phases under the effects of both coherent strain and external compressive force. Future orientations in the establishment of next generation of diffusivity database are finally addressed.展开更多
The simultaneous measurement of heat and mass diffusivities in unsaturated moist soils was presented by using a constant heat flux method. It can determine the heat and mass diffusivities in a moist soil through only ...The simultaneous measurement of heat and mass diffusivities in unsaturated moist soils was presented by using a constant heat flux method. It can determine the heat and mass diffusivities in a moist soil through only one test. The experimental results show that the developed method is timesaving and has potential applications. It provides a new way for the fast and accurate measurement of heat and mass diffusivities in moist soils and other unsaturated wet porous media.展开更多
The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.T...The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.The novel structural features of GBDP(Nd,Ce)-Fe-B magnets give a version of different domain reversal processes from those of non-diffused magnets.In this work,the in-situ magnetic domain evolution of the DMP magnets was observed at elevated temperatures,and the temperature demagnetization and coercivity mechanism of the GBDP dual-main-phase(Nd,Ce)-Fe-B magnets are discussed.The results show that the shell composition of different types of grains in DMP magnets is similar,while the magnetic microstructure results indicate the Ce-rich grains tend to demagnetize first.Dy-rich shell with a high anisotropic field caused by GBDP leads to an increase in the nucleation field,which enhances the coercivity.It is found that much more grains exhibit single domain characteristics in the remanent state for GBDP dual-main-phase(Nd,Ce)-Fe-B magnets.In addition,the grains that undergo demagnetization first are Ce-rich or Nd-rich grains,which is different from that of non-diffused magnets.These results were not found in previous studies but can be intuitively characterized from the perspective of magnetic domains in this work,providing a new perspective and understanding of the performance improvement of magnetic materials.展开更多
文摘In phenomenological models,diffusivity is at least a function of composition and the diffusivities at infinite dilution.An additional parameter(?),which can be determined by diffusivity in midpoint,are specially brought forward as token of fractional friction related with the interactions of same molecules in this paper,to extrapolate a new correlative equation for the mutual Maxwell-Stefan diffusivities.Furthermore,the correlative equation can be extended to calculate diffusivities in multicomponent mixtures based on binary data alone.The theoretical calculations are evaluated with published experimental data.The M-S diffusivities in a three-component liquid system are regarded as binary coefficients,the predictive results also agree with the experimental data.Results indicate that the model with additional coefficients is superior to currently used Darken methods,especially for systems of polar organic-water and those containing associative component.
文摘In the present work, the mass transfer characteristics, namely moisture diffusivity and moisture transfer coefficient of “Violet de Galmi” variety of onions were evaluated using the analytical model. Onions were dried in a single layer at different temperatures (40℃, 50℃, 60℃, and 70℃) and for a relative humidity of drying air of 20%. The results showed a reasonably good agreement between the values predicted by the correlation and the experimental observations. This model computed the Biot number, effective moisture diffusivity, and mass transfer coefficient. Effective diffusion coefficient values are obtained between 0.2578 × 10<sup>-9</sup> m<sup>2</sup>·s<sup>-1</sup> and 0.5460 × 10<sup>-9</sup> m<sup>2</sup>·s<sup>-1</sup>. Mass transfer coefficients of “Violet de Galmi” onion drying vary between 3.37 × 10<sup>-7</sup> m·s<sup>-1</sup> and 13.38 × 10<sup>-7</sup> m·s<sup>-1</sup>. Numbers of mass transfer Biot are found between 0.9797 and 2.9397. The activation energy E<sub>a</sub> is 31.73 kJ·mol<sup>-1</sup>.
基金supported by the National Natural Science Foundation of China,No.82274304(to YH)the Major Clinical Study Projects of Shanghai Shenkang Hospital Development Center,No.SHDC2020CR2046B(to YH)Shanghai Municipal Health Commission Talent Plan,No.2022LJ010(to YH).
文摘Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological mechanisms,preventing and treating cerebral small vessel vasculopathy is challenging.Recent studies have shown that the glymphatic system plays a crucial role in interstitial solute clearance and the maintenance of brain homeostasis.Increasing evidence also suggests that dysfunction in glymphatic clearance is a key factor in the progression of cerebral small vessel disease.This review begins with a comprehensive introduction to the structure,function,and driving factors of the glymphatic system,highlighting its essential role in brain waste clearance.Afterwards,cerebral small vessel disease was reviewed from the perspective of the glymphatic system,after which the mechanisms underlying their correlation were summarized.Glymphatic dysfunction may lead to the accumulation of metabolic waste in the brain,thereby exacerbating the pathological processes associated with cerebral small vessel disease.The review also discussed the direct evidence of glymphatic dysfunction in patients and animal models exhibiting two subtypes of cerebral small vessel disease:arteriolosclerosis-related cerebral small vessel disease and amyloid-related cerebral small vessel disease.Diffusion tensor image analysis along the perivascular space is an important non-invasive tool for assessing the clearance function of the glymphatic system.However,the effectiveness of its parameters needs to be enhanced.Among various nervous system diseases,including cerebral small vessel disease,glymphatic failure may be a common final pathway toward dementia.Overall,this review summarizes prevention and treatment strategies that target glymphatic drainage and will offer valuable insight for developing novel treatments for cerebral small vessel disease.
基金Supported by the National Natural Science Foundation of China(Grant No.12261081).
文摘In this paper,we are concerned with the stability of traveling wavefronts of a Belousov-Zhabotinsky model with mixed nonlocal and degenerate diffusions.Such a system can be used to study the competition among nonlocally diffusive species and degenerately diffusive species.We prove that the traveling wavefronts are exponentially stable,when the initial perturbation around the traveling waves decays exponentially as x→-∞,but in other locations,the initial data can be arbitrarily large.The adopted methods are the weighted energy with the comparison principle and squeezing technique.
基金supported by the National Key R&D Program of China,Nos.2017YFA0104302(to NG and XM)and 2017YFA0104304(to BW and ZZ)
文摘Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in humans remain unclear,including cell viability,distribution,migration,and fate.Conventional cell tracing methods cannot be used in the clinic.The use of superparamagnetic iron oxide nanoparticles as contrast agents allows for the observation of transplanted cells using magnetic resonance imaging.In 2016,the National Medical Products Administration of China approved a new superparamagnetic iron oxide nanoparticle,Ruicun,for use as a contrast agent in clinical trials.In the present study,an acute hemi-transection spinal cord injury model was established in beagle dogs.The injury was then treated by transplantation of Ruicun-labeled mesenchymal stromal cells.The results indicated that Ruicunlabeled mesenchymal stromal cells repaired damaged spinal cord fibers and partially restored neurological function in animals with acute spinal cord injury.T2*-weighted imaging revealed low signal areas on both sides of the injured spinal cord.The results of quantitative susceptibility mapping with ultrashort echo time sequences indicated that Ruicun-labeled mesenchymal stromal cells persisted stably within the injured spinal cord for over 4 weeks.These findings suggest that magnetic resonance imaging has the potential to effectively track the migration of Ruicun-labeled mesenchymal stromal cells and assess their ability to repair spinal cord injury.
基金supported by the National Basic Research Program of China (Grant No. 2011CB610401)the Creative Research Group of the National Natural Science Foundation of China (Grant No. 51021063)+1 种基金the National Natural Science Foundation of China (Grant No. 50831007)the Science Center for Phase Diagrams & Materials Design and Manu-facture, Central South University
文摘Knowledge of diffusivity is a prerequisite for understanding many scientific and technological disciplines. In this paper, firstly major experimental methods, which are employed to provide various diffusivity data, are briefly described. Secondly, the fun-damentals of various computational methods, including first-principles method, embedded atomic method/molecular dynamic simulation, semi-empirical approaches, and phenomenological DICTRA technique, are demonstrated. Diffusion models re- cently developed for order/disorder transitions and stoichiometric compounds are also briefly depicted. Thirdly, a newly estab- lished diffusivity database for liquid, fcc_A1, Lie, bcc_A2, bcc_B2, and interrnetallic phases in the multicomponent A1 alloys is presented via a few case studies in binary, ternary and quaternary systems. And the integration of various computational techniques and experimental methods is highlighted. The reliability of this diffusivity database is validated by comparing the calculated and measured concentration profiles, diffusion paths, and Kirkendall shifts in various binary, ternary and quaternary diffusion couples. Next, the established diffusivity databases along with thermodynamic and other thermo-physical properties are utilized to simulate the microstructural evolution for Al alloys during solidification, interdiffusion and precipitation. A spe- cial discussion is presented on the phase-field simulation of interdiffusion microstructures in a series of Ni-Al diffusion couples composed of γ, γ', and β phases under the effects of both coherent strain and external compressive force. Future orientations in the establishment of next generation of diffusivity database are finally addressed.
文摘The simultaneous measurement of heat and mass diffusivities in unsaturated moist soils was presented by using a constant heat flux method. It can determine the heat and mass diffusivities in a moist soil through only one test. The experimental results show that the developed method is timesaving and has potential applications. It provides a new way for the fast and accurate measurement of heat and mass diffusivities in moist soils and other unsaturated wet porous media.
基金supported by the National Key Research and Development Program of China(Nos.2021YFB3503003,2021YFB3503100,and 2022YFB3505401).
文摘The combination of dual-main-phase(DMP)(Nd,Ce)-Fe-B magnets and grain boundary diffusion process(GBDP)is currently a research topic for obtaining high-cost performance materials in rare earth permanent magnet fields.The novel structural features of GBDP(Nd,Ce)-Fe-B magnets give a version of different domain reversal processes from those of non-diffused magnets.In this work,the in-situ magnetic domain evolution of the DMP magnets was observed at elevated temperatures,and the temperature demagnetization and coercivity mechanism of the GBDP dual-main-phase(Nd,Ce)-Fe-B magnets are discussed.The results show that the shell composition of different types of grains in DMP magnets is similar,while the magnetic microstructure results indicate the Ce-rich grains tend to demagnetize first.Dy-rich shell with a high anisotropic field caused by GBDP leads to an increase in the nucleation field,which enhances the coercivity.It is found that much more grains exhibit single domain characteristics in the remanent state for GBDP dual-main-phase(Nd,Ce)-Fe-B magnets.In addition,the grains that undergo demagnetization first are Ce-rich or Nd-rich grains,which is different from that of non-diffused magnets.These results were not found in previous studies but can be intuitively characterized from the perspective of magnetic domains in this work,providing a new perspective and understanding of the performance improvement of magnetic materials.