AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,com...AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,combining transformer[2]models,3DCNN[3],and diffusion[4]generative models.展开更多
Degenerative disc disease is the most common cause of low back pain. Intervertebral disc abnormalities are commonly evaluated by magnetic resonance imaging (MRI), and Pfirrmann’s system involves the use of T2-weighte...Degenerative disc disease is the most common cause of low back pain. Intervertebral disc abnormalities are commonly evaluated by magnetic resonance imaging (MRI), and Pfirrmann’s system involves the use of T2-weighted images (T2WI) to classify disc degeneration. However, as this classification is based on visual evaluation, it is not possible to quantify degeneration using this method. The present study was performed to establish an MRI-based intervertebral disc classification system using diffusional kurtosis imaging (DKI), to quantify intervertebral disc water content according to the Pfirrmann classification. Sagittal mean diffusional kurtosis (MK) mapping was performed for the L3/4, L4/5, and L5/S1 intervertebral discs in 32 patients (15 female, 17 male;age range, 24 - 82 years;mean age, 57.7 years). The degree of disc degeneration was assessed in the midsagittal section on T2WI according to the Pfirrmann classification (grade I - V). The relationships between MK values, which are correlated with intervertebral disc composition changes, and grade of degeneration determined using the Pfirrmann classification were analyzed. The MK values tended to decrease with increasing grade of degeneration, and differed significantly between grades I and IV, but not between grade IV and V (P < 0.05, Mann-Whitney U test). DKI is an effective means of detecting the early stages of disc degeneration. Therefore, DKI may be a useful diagnostic tool for quantitative assessment of intervertebral disc degeneration.展开更多
The solid-phase transformations of metal materials under high magnetic fields are an important topic in research on the electromagnetic processing of materials.Progress in research on the diffusional phase transformat...The solid-phase transformations of metal materials under high magnetic fields are an important topic in research on the electromagnetic processing of materials.Progress in research on the diffusional phase transformations of Fe–C alloys under high magnetic fields is reviewed.The effects of high magnetic fields on the microstructural evolution in diffusional phase transformations in Fe–C alloys are discussed.The kinetics of ferrite transformations,pearlite transformations,and the precipitation of carbides under high magnetic fields are reviewed in terms of the thermodynamics of phase transformations and the diffusion behavior of carbon atoms.Finally,future trends in research on diffusional phase transformations of Fe–C alloys under high magnetic fields are discussed.展开更多
The microstructure,diffusional and mechanical bonding behavior and microhardness distribution of laminated composites fabricated by ECAP process were investigated.Al?Cu and Cu?Ni laminated composites were produced by ...The microstructure,diffusional and mechanical bonding behavior and microhardness distribution of laminated composites fabricated by ECAP process were investigated.Al?Cu and Cu?Ni laminated composites were produced by ECAP process up to4passes at room temperature and high temperature(300°C).The results of microstructure characterization by SEM and shear strength test revealed that the joints between the layers of4-pass ECAPed samples were considerably stronger than those of1-pass ECAPed samples due to tolerating higher values of plastic deformations during ECAP.Furthermore,shear strength data showed that increasing ECAP temperature caused a notable increase in shear strength of the specimens.The reason lies in the formation of diffusional joint between the interface of both Al/Cu and Cu/Ni layers at high temperature.The shear bonding strength of ECAPed Cu/Ni/Cu composite at high temperature was remarkably higher than that of ECAPed Cu/Al/Cu composite.展开更多
In this paper, we experimentally investigate the dark diffusional enhancement of the optimized multiplexed grating in the phenanthrenequinone doped poly (methyl methacrylate) (PQ-PMMA) photopolymer. The possibilit...In this paper, we experimentally investigate the dark diffusional enhancement of the optimized multiplexed grating in the phenanthrenequinone doped poly (methyl methacrylate) (PQ-PMMA) photopolymer. The possibility of improving the holographic characteristics of the material through the dark enhancement is demonstrated. The optimal preillumination exposure and the optimal time interval between exposures are extracted to obtain the optimized diffraction efficiency, and their values are 3.4×103 mJ/cm2 and 2 min, respectively. The dark enhancement of the multiplexed grating is presented as an effective method to improve the response region and the dynamic range and to prevent saturation of the material. The dependence of the phenanthrenequinone concentration on the increment of the refractive index modulation is quantitatively studied, which provides a significant basis for improving the homogeneity in the multiplexed gratings using a quantitative strategy. Finally, a simple experimental procedure using the dark enhancement is introduced to improve the homogeneity of the diffraction efficiency and to avoid the complex schedule exposure.展开更多
Oxygen consumption is a fundamental component of metabolic networks, mitochondrial function, and global carbon cycling. To date there is no method available that allows for replicate measurements on attached and unatt...Oxygen consumption is a fundamental component of metabolic networks, mitochondrial function, and global carbon cycling. To date there is no method available that allows for replicate measurements on attached and unattached biological samples without compensation for extraneous oxygen leaking into the system. Here we present the Respiratory Detection System, which is compatible with virtually any biological sample. The RDS can be used to measure oxygen uptake in microliter-scale volumes with a reversibly sealed sample chamber, which contains a porphyrin-based oxygen sensor. With the RDS, one can maintain a diffusional seal for up to three hours, allowing for the direct measurement of respiratory function of samples with fast or slow metabolic rates. The ability to easily measure oxygen uptake in small volumes with small populations or dilute samples has implications in cell biology, environmental biology, and clinical diagnostics.展开更多
An exact solution has been obtained for the release kinetics of a solute from a cylindrical non-erodible polymeric matrix into a finite external volume when the initial solute loading is greater than the solubility li...An exact solution has been obtained for the release kinetics of a solute from a cylindrical non-erodible polymeric matrix into a finite external volume when the initial solute loading is greater than the solubility limit in the matrix. The moving boundary solution is derived based on the combination of variable method. The formulas of the moving boundary and the fractional solute release are given. The moving boundary and the fractional solute release profiles have been calculated at various solute loading levels and different external volumes. The obtained results show that as the external fluid volume increases, the fractional release at any time and the maximum fractional release increase. In addition, for a given external volume, as initial drug loading increases, the fractional release at any time decreases.展开更多
Brain development is one of the most fascinating subjects in the field of biological sciences. Nonetheless, our scientific commu- nity still faces challenges in trying to understand the concepts that define the underl...Brain development is one of the most fascinating subjects in the field of biological sciences. Nonetheless, our scientific commu- nity still faces challenges in trying to understand the concepts that define the underlying mechanisms of neural tissue devel- opment. After all, it is a very complex subject to grasp and many of the processes that take place during central nervous system maturation are yet to be ascertained. Despite this challenge, we have come to recognize that understanding the natural course of normal brain tissue development on both microscopic and macroscopic scales is the key to deciphering the mechanisms through which these neural networks also heal and regenerate. Realizing this concept, my good friend and colleague, Dr. Sar- ah Milla, and I decided to take on a human study to investigate brain maturation using non-invasive imaging techniques in the pediatric population at New York University (NYU) School of Medicine (Paydar et al., 2013). Our research subjects included 59 normal infants with an age spectrum ranging from birth to approximately 5 years of age, when the brain is in its most active stage of development. We implemented a Magnetic Resonance Imaging (MRI) diffusion technique called Diffusional Kurtosis Imaging (DKI) to investigate the microstructural changes that occur in both the white matter (WM) and gray matter (GM) in the developing brain.展开更多
Density functional theory calculations in conjunction with the climbing images nudged elastic band method are conducted to study the diffusion phenomena of the Ni-based single crystal superalloys.We focus our attentio...Density functional theory calculations in conjunction with the climbing images nudged elastic band method are conducted to study the diffusion phenomena of the Ni-based single crystal superalloys.We focus our attention on the diffusion processes of the Ni and Al atoms in the γ and γ ’ phases along the direction perpendicular to the interface.The diffusion mechanisms and the expressions of the diffusion coefficients are presented.The vacancy formation energies,the migration energies,and the activation energies for the diffusing Ni and Al atoms are estimated,and these quantities display the expected and clear transition zones in the vicinity of the interface of about 3–7(002) layers.The local density-of-states profiles of atoms in each(002) layer in the γ and γ ’ phases and the partial density-of-states curves of Re and some of its nearest-neighbor atoms are also presented to explore the electronic effect of the diffusion behavior.展开更多
Separation was reported by Dunn, Hankins and Ghowsi for the case that ions incapillary electrophoresis move opposite to electroosmosis and ions move faster than flow finally they get separated and reach the detector. ...Separation was reported by Dunn, Hankins and Ghowsi for the case that ions incapillary electrophoresis move opposite to electroosmosis and ions move faster than flow finally they get separated and reach the detector. Similar mode for electrokinetic chromatography is reported for p-xylene and toluene separation, which is called reverse direction MECC (micellar electrokinetic capillary chromatography). The effect of injection time on separation in reverse direction micellar electrokinetic capillary chromatography is investigated. In this study, hydrostatic and diffusion injection were studied.展开更多
One of the great advantages of electrospun fibers is the large tridimensional area produced, capable of storing any type of material. The aim of our investigation is to study the electrospinning technique to produce p...One of the great advantages of electrospun fibers is the large tridimensional area produced, capable of storing any type of material. The aim of our investigation is to study the electrospinning technique to produce polymer membranes for drug delivery applications, given their large surface area and ability to transport a bioactive compound. A mathematical modeling of the delivery system kinetics was also studied to find the mechanism that controls the releasing process. Results showed that electrospinning could provide regular and smooth membranes suitable for drug delivery processes. The mathematical modeling also proved that thicker PLLA membranes exhibited a Fickian diffusion behavior during the drug transport, presenting better control in drug delivery processes.展开更多
This paper is devoted to the study of the dynamical behavior and harvesting problem of an exploited population with diffusional migration, for which a protective patch is established. We examine the effects of protect...This paper is devoted to the study of the dynamical behavior and harvesting problem of an exploited population with diffusional migration, for which a protective patch is established. We examine the effects of protective patch and harvest on the population resources and conclude that the protective patch is effective for the conservation of population resources and ecological environment, though in some cases the extinction can not be eliminated. The dangerous region, the parameters domains and the typical bifurcation curves of stability of steady states for the considered system are determined. The optimal harvest policy for the considered population is made also. The explicit expressions are obtained for the optimal harvesting effort, the maximum sustainable yield and the corre- sponding population density. Our results provide a theoretical evidence for the practical management of biological resources.展开更多
Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological me...Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological mechanisms,preventing and treating cerebral small vessel vasculopathy is challenging.Recent studies have shown that the glymphatic system plays a crucial role in interstitial solute clearance and the maintenance of brain homeostasis.Increasing evidence also suggests that dysfunction in glymphatic clearance is a key factor in the progression of cerebral small vessel disease.This review begins with a comprehensive introduction to the structure,function,and driving factors of the glymphatic system,highlighting its essential role in brain waste clearance.Afterwards,cerebral small vessel disease was reviewed from the perspective of the glymphatic system,after which the mechanisms underlying their correlation were summarized.Glymphatic dysfunction may lead to the accumulation of metabolic waste in the brain,thereby exacerbating the pathological processes associated with cerebral small vessel disease.The review also discussed the direct evidence of glymphatic dysfunction in patients and animal models exhibiting two subtypes of cerebral small vessel disease:arteriolosclerosis-related cerebral small vessel disease and amyloid-related cerebral small vessel disease.Diffusion tensor image analysis along the perivascular space is an important non-invasive tool for assessing the clearance function of the glymphatic system.However,the effectiveness of its parameters needs to be enhanced.Among various nervous system diseases,including cerebral small vessel disease,glymphatic failure may be a common final pathway toward dementia.Overall,this review summarizes prevention and treatment strategies that target glymphatic drainage and will offer valuable insight for developing novel treatments for cerebral small vessel disease.展开更多
In this paper,we are concerned with the stability of traveling wavefronts of a Belousov-Zhabotinsky model with mixed nonlocal and degenerate diffusions.Such a system can be used to study the competition among nonlocal...In this paper,we are concerned with the stability of traveling wavefronts of a Belousov-Zhabotinsky model with mixed nonlocal and degenerate diffusions.Such a system can be used to study the competition among nonlocally diffusive species and degenerately diffusive species.We prove that the traveling wavefronts are exponentially stable,when the initial perturbation around the traveling waves decays exponentially as x→-∞,but in other locations,the initial data can be arbitrarily large.The adopted methods are the weighted energy with the comparison principle and squeezing technique.展开更多
Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in hu...Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in humans remain unclear,including cell viability,distribution,migration,and fate.Conventional cell tracing methods cannot be used in the clinic.The use of superparamagnetic iron oxide nanoparticles as contrast agents allows for the observation of transplanted cells using magnetic resonance imaging.In 2016,the National Medical Products Administration of China approved a new superparamagnetic iron oxide nanoparticle,Ruicun,for use as a contrast agent in clinical trials.In the present study,an acute hemi-transection spinal cord injury model was established in beagle dogs.The injury was then treated by transplantation of Ruicun-labeled mesenchymal stromal cells.The results indicated that Ruicunlabeled mesenchymal stromal cells repaired damaged spinal cord fibers and partially restored neurological function in animals with acute spinal cord injury.T2*-weighted imaging revealed low signal areas on both sides of the injured spinal cord.The results of quantitative susceptibility mapping with ultrashort echo time sequences indicated that Ruicun-labeled mesenchymal stromal cells persisted stably within the injured spinal cord for over 4 weeks.These findings suggest that magnetic resonance imaging has the potential to effectively track the migration of Ruicun-labeled mesenchymal stromal cells and assess their ability to repair spinal cord injury.展开更多
Ab initio molecular dynamics(AIMD)simulation is widely employed in studying diffusion mechanisms and in quantifying diffusional properties of materials.However,AIMD simulations are often limited to a few hundred atoms...Ab initio molecular dynamics(AIMD)simulation is widely employed in studying diffusion mechanisms and in quantifying diffusional properties of materials.However,AIMD simulations are often limited to a few hundred atoms and a short,sub-nanosecond physical timescale,which leads to models that include only a limited number of diffusion events.As a result,the diffusional properties obtained from AIMD simulations are often plagued by poor statistics.In this paper,we re-examine the process to estimate diffusivity and ionic conductivity from the AIMD simulations and establish the procedure to minimize the fitting errors.In addition,we propose methods for quantifying the statistical variance of the diffusivity and ionic conductivity from the number of diffusion events observed during the AIMD simulation.Since an adequate number of diffusion events must be sampled,AIMD simulations should be sufficiently long and can only be performed on materials with reasonably fast diffusion.We chart the ranges of materials and physical conditions that can be accessible by AIMD simulations in studying diffusional properties.Our work provides the foundation for quantifying the statistical confidence levels of diffusion results from AIMD simulations and for correctly employing this powerful technique.展开更多
A self-organisation is an universal phenomenon in nature and,in particular,is highly important in materials systems.Our goal was to develop a new theory that provides a computationally effective approach to this probl...A self-organisation is an universal phenomenon in nature and,in particular,is highly important in materials systems.Our goal was to develop a new theory that provides a computationally effective approach to this problem.In this paper a quasiparticle theory of a diffusional self-organisation of atoms in continuum space during the diffusional time scale has been introduced.This became possible due to two novelties,a concept of quasiparticles,fratons,used for a description of dynamic degrees of freedom and model Hamiltonian taking into account a directionality,length and strength of interatomic bonds.To illustrate a predictive power and achievable level of complexity of self-assembled structures,the challenging cases of self-assembling of the diamond,zinc-blende,helix and double-helix structures,from a random atomic distribution,have been successfully modelled.This approach opens a way to model a self-assembling of complex atomic and molecular structures in the atomic scale during diffusional time.展开更多
Separations of mixtures in fixed-bed adsorbers are influenced by factors such as(1)selectivity of adsorption,Sads,(2)diffusional time constants,Đi/rc 2,and(3)diffusion selectivity,Đ1/Đ2.In synergistic separations,intr...Separations of mixtures in fixed-bed adsorbers are influenced by factors such as(1)selectivity of adsorption,Sads,(2)diffusional time constants,Đi/rc 2,and(3)diffusion selectivity,Đ1/Đ2.In synergistic separations,intracrystalline diffusion of vip molecules serves to enhance the selectivities dictated by thermodynamics of mixture adsorption.In antisynergistic separations,intracrystalline diffusion serves to reverse the hierarchy of selectivities dictated by adsorption equilibrium.For both scenarios,the productivities of the desired product in fixed-bed operations are crucially dependent on diffusional time constants,Đi/rc 2;these need to be sufficiently low in order for diffusional influences to be effective.Also,the ratioĐ1/Đ2 should be large enough for manifestation of synergistic or antisynergistic influence.Both synergistic and antisynergistic separations have two common,distinguishing characteristics.Firstly,for transient uptake within crystals,the more mobile component attains supraequilibrium loadings during the initial stages of the transience.Such overshoots,signifying uphill diffusion,are engendered by the cross-coefficientsΓij(i≠j)of thermodynamic correction factors.Secondly,the component molar loadings,plotted in composition space,follow serpentine equilibration paths.If cross-coefficients are neglected,no overshoots in the loadings of the more mobile component are experienced,and the component loadings follow monotonous equilibration paths.The important takeaway message is that the modeling of mixture separations in fixed-bed adsorbers requires the use of the Maxwell−Stefan equations describing mixture diffusion employing chemical potential gradients as driving forces.展开更多
基金supported by the Key Project of International Cooperation of Qilu University of Technology(Grant No.:QLUTGJHZ2018008)Shandong Provincial Natural Science Foundation Committee,China(Grant No.:ZR2016HB54)Shandong Provincial Key Laboratory of Microbial Engineering(SME).
文摘AlphaPanda(AlphaFold2[1]inspired protein-specific antibody design in a diffusional manner)is an advanced algorithm for designing complementary determining regions(CDRs)of the antibody targeted the specific epitope,combining transformer[2]models,3DCNN[3],and diffusion[4]generative models.
文摘Degenerative disc disease is the most common cause of low back pain. Intervertebral disc abnormalities are commonly evaluated by magnetic resonance imaging (MRI), and Pfirrmann’s system involves the use of T2-weighted images (T2WI) to classify disc degeneration. However, as this classification is based on visual evaluation, it is not possible to quantify degeneration using this method. The present study was performed to establish an MRI-based intervertebral disc classification system using diffusional kurtosis imaging (DKI), to quantify intervertebral disc water content according to the Pfirrmann classification. Sagittal mean diffusional kurtosis (MK) mapping was performed for the L3/4, L4/5, and L5/S1 intervertebral discs in 32 patients (15 female, 17 male;age range, 24 - 82 years;mean age, 57.7 years). The degree of disc degeneration was assessed in the midsagittal section on T2WI according to the Pfirrmann classification (grade I - V). The relationships between MK values, which are correlated with intervertebral disc composition changes, and grade of degeneration determined using the Pfirrmann classification were analyzed. The MK values tended to decrease with increasing grade of degeneration, and differed significantly between grades I and IV, but not between grade IV and V (P < 0.05, Mann-Whitney U test). DKI is an effective means of detecting the early stages of disc degeneration. Therefore, DKI may be a useful diagnostic tool for quantitative assessment of intervertebral disc degeneration.
基金supported by the National Natural Science Foundation of China(Grant No.51690162)Liaoning Revitalization Talents Program(Grant No.XLYC1908002)Fundamental Research Funds for the Central Universities(Grant No.N180912004).
文摘The solid-phase transformations of metal materials under high magnetic fields are an important topic in research on the electromagnetic processing of materials.Progress in research on the diffusional phase transformations of Fe–C alloys under high magnetic fields is reviewed.The effects of high magnetic fields on the microstructural evolution in diffusional phase transformations in Fe–C alloys are discussed.The kinetics of ferrite transformations,pearlite transformations,and the precipitation of carbides under high magnetic fields are reviewed in terms of the thermodynamics of phase transformations and the diffusion behavior of carbon atoms.Finally,future trends in research on diffusional phase transformations of Fe–C alloys under high magnetic fields are discussed.
文摘The microstructure,diffusional and mechanical bonding behavior and microhardness distribution of laminated composites fabricated by ECAP process were investigated.Al?Cu and Cu?Ni laminated composites were produced by ECAP process up to4passes at room temperature and high temperature(300°C).The results of microstructure characterization by SEM and shear strength test revealed that the joints between the layers of4-pass ECAPed samples were considerably stronger than those of1-pass ECAPed samples due to tolerating higher values of plastic deformations during ECAP.Furthermore,shear strength data showed that increasing ECAP temperature caused a notable increase in shear strength of the specimens.The reason lies in the formation of diffusional joint between the interface of both Al/Cu and Cu/Ni layers at high temperature.The shear bonding strength of ECAPed Cu/Ni/Cu composite at high temperature was remarkably higher than that of ECAPed Cu/Al/Cu composite.
基金supported by the National Basic Research Program of China(Grant No.2007CB3070001)the Fundamental Research Funds for the Central Universities,China(Grant No.HIT.NSRIF.2010009)+1 种基金the Program of Excellent Team in Harbin Institute of Technology,Chinathe Research Startup Foundation of Civil Aviation University of China(Grant No.2010QN03X)
文摘In this paper, we experimentally investigate the dark diffusional enhancement of the optimized multiplexed grating in the phenanthrenequinone doped poly (methyl methacrylate) (PQ-PMMA) photopolymer. The possibility of improving the holographic characteristics of the material through the dark enhancement is demonstrated. The optimal preillumination exposure and the optimal time interval between exposures are extracted to obtain the optimized diffraction efficiency, and their values are 3.4×103 mJ/cm2 and 2 min, respectively. The dark enhancement of the multiplexed grating is presented as an effective method to improve the response region and the dynamic range and to prevent saturation of the material. The dependence of the phenanthrenequinone concentration on the increment of the refractive index modulation is quantitatively studied, which provides a significant basis for improving the homogeneity in the multiplexed gratings using a quantitative strategy. Finally, a simple experimental procedure using the dark enhancement is introduced to improve the homogeneity of the diffraction efficiency and to avoid the complex schedule exposure.
文摘Oxygen consumption is a fundamental component of metabolic networks, mitochondrial function, and global carbon cycling. To date there is no method available that allows for replicate measurements on attached and unattached biological samples without compensation for extraneous oxygen leaking into the system. Here we present the Respiratory Detection System, which is compatible with virtually any biological sample. The RDS can be used to measure oxygen uptake in microliter-scale volumes with a reversibly sealed sample chamber, which contains a porphyrin-based oxygen sensor. With the RDS, one can maintain a diffusional seal for up to three hours, allowing for the direct measurement of respiratory function of samples with fast or slow metabolic rates. The ability to easily measure oxygen uptake in small volumes with small populations or dilute samples has implications in cell biology, environmental biology, and clinical diagnostics.
文摘An exact solution has been obtained for the release kinetics of a solute from a cylindrical non-erodible polymeric matrix into a finite external volume when the initial solute loading is greater than the solubility limit in the matrix. The moving boundary solution is derived based on the combination of variable method. The formulas of the moving boundary and the fractional solute release are given. The moving boundary and the fractional solute release profiles have been calculated at various solute loading levels and different external volumes. The obtained results show that as the external fluid volume increases, the fractional release at any time and the maximum fractional release increase. In addition, for a given external volume, as initial drug loading increases, the fractional release at any time decreases.
文摘Brain development is one of the most fascinating subjects in the field of biological sciences. Nonetheless, our scientific commu- nity still faces challenges in trying to understand the concepts that define the underlying mechanisms of neural tissue devel- opment. After all, it is a very complex subject to grasp and many of the processes that take place during central nervous system maturation are yet to be ascertained. Despite this challenge, we have come to recognize that understanding the natural course of normal brain tissue development on both microscopic and macroscopic scales is the key to deciphering the mechanisms through which these neural networks also heal and regenerate. Realizing this concept, my good friend and colleague, Dr. Sar- ah Milla, and I decided to take on a human study to investigate brain maturation using non-invasive imaging techniques in the pediatric population at New York University (NYU) School of Medicine (Paydar et al., 2013). Our research subjects included 59 normal infants with an age spectrum ranging from birth to approximately 5 years of age, when the brain is in its most active stage of development. We implemented a Magnetic Resonance Imaging (MRI) diffusion technique called Diffusional Kurtosis Imaging (DKI) to investigate the microstructural changes that occur in both the white matter (WM) and gray matter (GM) in the developing brain.
基金Project supported by National Basic Research Program of China(Grant No.2011CB606402)the National Natural Science Foundation of China(Grant No.51071091)
文摘Density functional theory calculations in conjunction with the climbing images nudged elastic band method are conducted to study the diffusion phenomena of the Ni-based single crystal superalloys.We focus our attention on the diffusion processes of the Ni and Al atoms in the γ and γ ’ phases along the direction perpendicular to the interface.The diffusion mechanisms and the expressions of the diffusion coefficients are presented.The vacancy formation energies,the migration energies,and the activation energies for the diffusing Ni and Al atoms are estimated,and these quantities display the expected and clear transition zones in the vicinity of the interface of about 3–7(002) layers.The local density-of-states profiles of atoms in each(002) layer in the γ and γ ’ phases and the partial density-of-states curves of Re and some of its nearest-neighbor atoms are also presented to explore the electronic effect of the diffusion behavior.
文摘Separation was reported by Dunn, Hankins and Ghowsi for the case that ions incapillary electrophoresis move opposite to electroosmosis and ions move faster than flow finally they get separated and reach the detector. Similar mode for electrokinetic chromatography is reported for p-xylene and toluene separation, which is called reverse direction MECC (micellar electrokinetic capillary chromatography). The effect of injection time on separation in reverse direction micellar electrokinetic capillary chromatography is investigated. In this study, hydrostatic and diffusion injection were studied.
文摘One of the great advantages of electrospun fibers is the large tridimensional area produced, capable of storing any type of material. The aim of our investigation is to study the electrospinning technique to produce polymer membranes for drug delivery applications, given their large surface area and ability to transport a bioactive compound. A mathematical modeling of the delivery system kinetics was also studied to find the mechanism that controls the releasing process. Results showed that electrospinning could provide regular and smooth membranes suitable for drug delivery processes. The mathematical modeling also proved that thicker PLLA membranes exhibited a Fickian diffusion behavior during the drug transport, presenting better control in drug delivery processes.
基金This research is supported by the National Natural Science Foundation of China(No. 19871012).
文摘This paper is devoted to the study of the dynamical behavior and harvesting problem of an exploited population with diffusional migration, for which a protective patch is established. We examine the effects of protective patch and harvest on the population resources and conclude that the protective patch is effective for the conservation of population resources and ecological environment, though in some cases the extinction can not be eliminated. The dangerous region, the parameters domains and the typical bifurcation curves of stability of steady states for the considered system are determined. The optimal harvest policy for the considered population is made also. The explicit expressions are obtained for the optimal harvesting effort, the maximum sustainable yield and the corre- sponding population density. Our results provide a theoretical evidence for the practical management of biological resources.
基金supported by the National Natural Science Foundation of China,No.82274304(to YH)the Major Clinical Study Projects of Shanghai Shenkang Hospital Development Center,No.SHDC2020CR2046B(to YH)Shanghai Municipal Health Commission Talent Plan,No.2022LJ010(to YH).
文摘Cerebral small vessel disease encompasses a group of neurological disorders characterized by injury to small blood vessels,often leading to stroke and dementia.Due to its diverse etiologies and complex pathological mechanisms,preventing and treating cerebral small vessel vasculopathy is challenging.Recent studies have shown that the glymphatic system plays a crucial role in interstitial solute clearance and the maintenance of brain homeostasis.Increasing evidence also suggests that dysfunction in glymphatic clearance is a key factor in the progression of cerebral small vessel disease.This review begins with a comprehensive introduction to the structure,function,and driving factors of the glymphatic system,highlighting its essential role in brain waste clearance.Afterwards,cerebral small vessel disease was reviewed from the perspective of the glymphatic system,after which the mechanisms underlying their correlation were summarized.Glymphatic dysfunction may lead to the accumulation of metabolic waste in the brain,thereby exacerbating the pathological processes associated with cerebral small vessel disease.The review also discussed the direct evidence of glymphatic dysfunction in patients and animal models exhibiting two subtypes of cerebral small vessel disease:arteriolosclerosis-related cerebral small vessel disease and amyloid-related cerebral small vessel disease.Diffusion tensor image analysis along the perivascular space is an important non-invasive tool for assessing the clearance function of the glymphatic system.However,the effectiveness of its parameters needs to be enhanced.Among various nervous system diseases,including cerebral small vessel disease,glymphatic failure may be a common final pathway toward dementia.Overall,this review summarizes prevention and treatment strategies that target glymphatic drainage and will offer valuable insight for developing novel treatments for cerebral small vessel disease.
基金Supported by the National Natural Science Foundation of China(Grant No.12261081).
文摘In this paper,we are concerned with the stability of traveling wavefronts of a Belousov-Zhabotinsky model with mixed nonlocal and degenerate diffusions.Such a system can be used to study the competition among nonlocally diffusive species and degenerately diffusive species.We prove that the traveling wavefronts are exponentially stable,when the initial perturbation around the traveling waves decays exponentially as x→-∞,but in other locations,the initial data can be arbitrarily large.The adopted methods are the weighted energy with the comparison principle and squeezing technique.
基金supported by the National Key R&D Program of China,Nos.2017YFA0104302(to NG and XM)and 2017YFA0104304(to BW and ZZ)
文摘Mesenchymal stromal cell transplantation is an effective and promising approach for treating various systemic and diffuse diseases.However,the biological characteristics of transplanted mesenchymal stromal cells in humans remain unclear,including cell viability,distribution,migration,and fate.Conventional cell tracing methods cannot be used in the clinic.The use of superparamagnetic iron oxide nanoparticles as contrast agents allows for the observation of transplanted cells using magnetic resonance imaging.In 2016,the National Medical Products Administration of China approved a new superparamagnetic iron oxide nanoparticle,Ruicun,for use as a contrast agent in clinical trials.In the present study,an acute hemi-transection spinal cord injury model was established in beagle dogs.The injury was then treated by transplantation of Ruicun-labeled mesenchymal stromal cells.The results indicated that Ruicunlabeled mesenchymal stromal cells repaired damaged spinal cord fibers and partially restored neurological function in animals with acute spinal cord injury.T2*-weighted imaging revealed low signal areas on both sides of the injured spinal cord.The results of quantitative susceptibility mapping with ultrashort echo time sequences indicated that Ruicun-labeled mesenchymal stromal cells persisted stably within the injured spinal cord for over 4 weeks.These findings suggest that magnetic resonance imaging has the potential to effectively track the migration of Ruicun-labeled mesenchymal stromal cells and assess their ability to repair spinal cord injury.
基金The authors acknowledge the support from Office of Naval Research(ONR)and from National Science Foundation under award No.1550423This research used computational facilities from the University of Maryland supercomputing resources,the Maryland Advanced Research Computing Center(MARCC),and the Extreme Science and Engineering Discovery Environment(XSEDE)supported by National Science Foundation Award No.DMR150038.
文摘Ab initio molecular dynamics(AIMD)simulation is widely employed in studying diffusion mechanisms and in quantifying diffusional properties of materials.However,AIMD simulations are often limited to a few hundred atoms and a short,sub-nanosecond physical timescale,which leads to models that include only a limited number of diffusion events.As a result,the diffusional properties obtained from AIMD simulations are often plagued by poor statistics.In this paper,we re-examine the process to estimate diffusivity and ionic conductivity from the AIMD simulations and establish the procedure to minimize the fitting errors.In addition,we propose methods for quantifying the statistical variance of the diffusivity and ionic conductivity from the number of diffusion events observed during the AIMD simulation.Since an adequate number of diffusion events must be sampled,AIMD simulations should be sufficiently long and can only be performed on materials with reasonably fast diffusion.We chart the ranges of materials and physical conditions that can be accessible by AIMD simulations in studying diffusional properties.Our work provides the foundation for quantifying the statistical confidence levels of diffusion results from AIMD simulations and for correctly employing this powerful technique.
基金supported in part by the grant from the French National Agency for the Research(ANR)project‘Spiderman’.
文摘A self-organisation is an universal phenomenon in nature and,in particular,is highly important in materials systems.Our goal was to develop a new theory that provides a computationally effective approach to this problem.In this paper a quasiparticle theory of a diffusional self-organisation of atoms in continuum space during the diffusional time scale has been introduced.This became possible due to two novelties,a concept of quasiparticles,fratons,used for a description of dynamic degrees of freedom and model Hamiltonian taking into account a directionality,length and strength of interatomic bonds.To illustrate a predictive power and achievable level of complexity of self-assembled structures,the challenging cases of self-assembling of the diamond,zinc-blende,helix and double-helix structures,from a random atomic distribution,have been successfully modelled.This approach opens a way to model a self-assembling of complex atomic and molecular structures in the atomic scale during diffusional time.
文摘Separations of mixtures in fixed-bed adsorbers are influenced by factors such as(1)selectivity of adsorption,Sads,(2)diffusional time constants,Đi/rc 2,and(3)diffusion selectivity,Đ1/Đ2.In synergistic separations,intracrystalline diffusion of vip molecules serves to enhance the selectivities dictated by thermodynamics of mixture adsorption.In antisynergistic separations,intracrystalline diffusion serves to reverse the hierarchy of selectivities dictated by adsorption equilibrium.For both scenarios,the productivities of the desired product in fixed-bed operations are crucially dependent on diffusional time constants,Đi/rc 2;these need to be sufficiently low in order for diffusional influences to be effective.Also,the ratioĐ1/Đ2 should be large enough for manifestation of synergistic or antisynergistic influence.Both synergistic and antisynergistic separations have two common,distinguishing characteristics.Firstly,for transient uptake within crystals,the more mobile component attains supraequilibrium loadings during the initial stages of the transience.Such overshoots,signifying uphill diffusion,are engendered by the cross-coefficientsΓij(i≠j)of thermodynamic correction factors.Secondly,the component molar loadings,plotted in composition space,follow serpentine equilibration paths.If cross-coefficients are neglected,no overshoots in the loadings of the more mobile component are experienced,and the component loadings follow monotonous equilibration paths.The important takeaway message is that the modeling of mixture separations in fixed-bed adsorbers requires the use of the Maxwell−Stefan equations describing mixture diffusion employing chemical potential gradients as driving forces.