期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Osmotic membranes for municipal wastewater reclamation:Insights into applications,transmembrane diffusion mechanisms and prospects
1
作者 Yujie Xie Kexin Yuan +3 位作者 Beiyang Luo Haoran Feng Xian Bao Jun Ma 《Chinese Chemical Letters》 2025年第7期23-33,共11页
With the global advancement of the circular economy,integrating reverse osmosis(RO)or forward osmosis(FO)with anaerobic membrane bioreactor(AnMBR)offers a promising approach to simultaneously generate high-grade recla... With the global advancement of the circular economy,integrating reverse osmosis(RO)or forward osmosis(FO)with anaerobic membrane bioreactor(AnMBR)offers a promising approach to simultaneously generate high-grade reclaimed water,produce energy,and preserve valuable nutrients from municipal wastewater.However,the selectivity of these osmotic membranes towards ammonia nitrogen,a major component in municipal wastewater and anaerobic effluent,remains unsatisfactory due to its similar polarity and hydraulic radius to water molecules.Therefore,enhancing the ammonia nitrogen rejection of osmotic membranes is imperative to maximize the quality of reclaimed water and minimize the loss of ammonia nitrogen resources.Unfortunately,the current understanding of the mapping relationship between ammonia nitrogen transmembrane diffusion and the micro/nano-structure of osmotic membranes is not systematic,making precise optimization of the membranes challenging.Hence,this review comprehensively analyzed the diffusion behavior of ammonia nitrogen through osmotic membranes to lay the foundation for targeted regulation of membrane fine structure.Initially,the desire for ammonia/ammonium-rejecting membranes was highlighted by introducing current and promising osmotic membrane-based applications in municipal wastewater reclamation processes.Subsequently,the connection between the micro/nano-structure of osmotic membranes and the transmembrane diffusion behavior of ammonia nitrogen was explored by analyzing the effects of membrane characteristics on ammonia nitrogen transport using the DSPM-DE model.Finally,precise methods for modifying membranes to enhance ammonia nitrogen rejection were proposed.This review aims to offer theoretical insights guiding the development of RO and FO membranes with superior ammonia nitrogen rejection for efficient reclamation of municipal wastewater. 展开更多
关键词 Municipal wastewater reclamation Osmotic membrane Ammonia nitrogen selectivity Transmembrane diffusion mechanism Optimization strategies
原文传递
Understanding the Li diffusion mechanism and positive effect of current collector volume expansion in anode free batteries 被引量:3
2
作者 Yan Zhuang Zheyi Zou +4 位作者 Bo Lu Yajie Li Da Wang Maxim Avdeev Siqi Shi 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第6期17-24,共8页
In anode free batteries(AFBs), the current collector acts as anode simultaneously and has large volume expansion which is generally considered as a negative effect decreasing the structural stability of a battery. Mor... In anode free batteries(AFBs), the current collector acts as anode simultaneously and has large volume expansion which is generally considered as a negative effect decreasing the structural stability of a battery. Moreover, despite many studies on the fast lithium diffusion in the current collector materials of AFB such as copper and aluminum, the involved Li diffusion mechanism in these materials remains poorly understood. Through first-principles calculation and stress-assisted diffusion equations, here we study the Li diffusion mechanism in several current collectors and related alloys and clarify the effect of volume expansion on Li diffusion respectively. It is suggested that due to the lower Li migration barriers in aluminum and tin, they should be more suitable to be used as AFB anodes, compared to copper, silver, and lead. The Li diffusion facilitation in copper with a certain number of vacancies is proposed to explain why the use of copper with a thickness≤100 nm as the protective coating on the anode improves the lifetime of the batteries. We show that the volume expansion has a positive effect on Li diffusion via mechanical–electrochemical coupling. Namely, the volume expansion caused by Li diffusion will further induce stress which in turn affects the diffusion. These findings not only provide in-depth insight into the operating principle of AFBs, but also open a new route toward design of improved anode through utilizing the positive effect of mechanical–electrochemical coupling. 展开更多
关键词 anode free battery current collector Li diffusion mechanism mechanical-electrochemical coupling stress-assisted diffusion
原文传递
Diffusion mechanism of immiscible Fe-Mg system induced by high-density defects at the steel/Mg composite interface 被引量:2
3
作者 Yanlan Sun Xuefeng Liu +2 位作者 Wenjing Wang Yaohua Yang Weiliang Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第13期150-160,共11页
Due to positive mixing heat between Fe and Mg,it is difficult to diffuse for Fe-Mg at the interface of steel/Mg laminated composites,resulting in the inability to achieve high-strength metallurgical bonding.In this pa... Due to positive mixing heat between Fe and Mg,it is difficult to diffuse for Fe-Mg at the interface of steel/Mg laminated composites,resulting in the inability to achieve high-strength metallurgical bonding.In this paper,20#steel/Mg laminated composites were prepared by large deformation rolling and subse-quent diffusion heat treatment process.The interfacial bonding strength was improved by constructing high-density crystal defects at the interface to promote element diffusion.The mechanisms of interface morphology evolution and element diffusion were analyzed by finite element simulation and theoretical calculation.The results show after diffusion heat treatment,the bond strength of the large deformation rolled interface was increased from 14 to 30 MPa.Fe-Mg transition layer with about 80 nm thickness as well as high-density vacancies,dislocations and grain boundaries were formed in the large deforma-tion rolled interface region.During diffusion heat treatment,Mg elements diffused into grain interior and grain boundary regions of 20#steel under the effect of heat-force coupling,and the thickness of Fe-Mg transition layer increased to 150 nm,forming an Fe-based supersaturated solid solution.The in-terface with high-density defects constituted a non-equilibrium interface.The 20#steel internal energy in the non-equilibrium interface is able to overcome positive mixing heat of immiscible Fe-Mg system and provide the driving force for Mg elements diffusion.Promoting elemental diffusion by constructing high-density defects can be a new concept to achieve metallurgical bonding at the interface of immiscible metal laminated composites. 展开更多
关键词 Steel/Mg composite interface Immiscible Fe-Mg system Non-equilibrium interface diffusion mechanism
原文传递
Diffusion Mechanism of Energy Flow in Multi-heat-source Synthesis of SiC 被引量:1
4
作者 陈杰 WANG Xiaogang LI Yang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期266-270,共5页
Through the experiments and the numerical simulation of temperature field in multi-heatsource synthesis Si C furnace, in order to research the feature point in multi-heat-source synthesis furnace, the variation law of... Through the experiments and the numerical simulation of temperature field in multi-heatsource synthesis Si C furnace, in order to research the feature point in multi-heat-source synthesis furnace, the variation law of heat fl ux was studied and the multi-directional energy fl ow diffusion mechanism was revealed. The results show that, due to the shielding action between the heat-source and the superposition effect of thermal fields, the insulating effect is best in multi-heat-source synthesis furnace. The heat emission effect is good outside the common area between heat-sources, but the heat storage is poor. Compared with the synthesis furnace that heat source is parallelly arranged, the furnace of stereoscopic arrangement has a more obvious heat stacking effect and better heat preservation effect, but the air permeability of heat source connecting regions is worse. In the case with the same ingredients, the resistance to thermal diffusion and mass diffusion is higher in heat source connecting regions. 展开更多
关键词 multi-heat-source synthesis SiC temperature field energy diffusion mechanism heat flux
原文传递
Monte Carlo Simulations of Topological Properties in Two-Phase Polycrystalline Materials for Several Diffusion Mechanism
5
作者 Rifa J. El-Khozondar 《Advances in Pure Mathematics》 2020年第9期471-491,共21页
Numerical simulations by means of the Monte Carlo Potts model have been provided to simulate grain structures in two-phase polycrystalline materials. The topological features in the simulated microstructure analyzed f... Numerical simulations by means of the Monte Carlo Potts model have been provided to simulate grain structures in two-phase polycrystalline materials. The topological features in the simulated microstructure analyzed for different diffusion mechanisms over a broad range of volume fractions for both phases. The topological properties include the average number of sides, grain topology distribution <span style="font-family:Verdana;">and<span style="font-family:Verdana;"> the topological size relation function. It is found that the average number of sides depends proportionally on the volume fraction. It increases as the <span style="font-family:Verdana;">volumes<span style="font-family:Verdana;"> fraction increases and vice versa. Moreover, it is shown that the grain topology distribution in the self-similar growth regime can be described by <span style="font-family:Verdana;">time<span style="font-family:Verdana;"> unchanged function of the relative grain size. Additionally, topological size function in the simulated microstructure can be evaluated by a quadratic function. 展开更多
关键词 Monte Carlo Potts Model Topology Distribution POLYCRYSTALLINE MICROSTRUCTURE diffusion mechanisms
在线阅读 下载PDF
Detailed Evolution Mechanism of Interfacial Void Morphology in Diffusion Bonding 被引量:8
6
作者 Chao Zhang Hong Li Miaoquan Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第3期259-264,共6页
Similar diffusion bonding of 1Cr11Ni2W2MoV stainless steel was conducted at different bonding tem- peratures. The interface characteristics and mechanical properties of joints were examined, and the evolution of inter... Similar diffusion bonding of 1Cr11Ni2W2MoV stainless steel was conducted at different bonding tem- peratures. The interface characteristics and mechanical properties of joints were examined, and the evolution of interracial void morphology was analyzed in detail The results showed that there were four typical interfacial void shapes generating sequentially: the large scraggly voids, penny-shaped voids, ellipse voids and rounded voids. The variation of interracial void shape was dominated by surface diffusion, while the reduction of void volume was ascribed to the combined effects of plastic flow of materials around voids, interface diffusion and volume diffusion. Owing to the elimination of void from the bonding interface, the sound joint obtained could exhibit nearly full interracial contact, and present excellent mechanical properties, in which the microhardness and shear strength of joint matched those of base material. 展开更多
关键词 Stainless steel diffusion bonding Void morphology Mechanical property
原文传递
Diffusion tensor tractography studies on mechanisms of recovery of injured fornix 被引量:3
7
作者 Sung Ho Jang Han Do Lee 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第10期1742-1744,共3页
The fornix,which connects the medial temporal lobe and the medial diencephalon,is involved in episodic memory as an important part of the Papez circuit.The mechanisms of recovery of an injured fornix revealed by diffu... The fornix,which connects the medial temporal lobe and the medial diencephalon,is involved in episodic memory as an important part of the Papez circuit.The mechanisms of recovery of an injured fornix revealed by diffusion tensor tractography in the five studies are summarized as follows:1) recovery through the nerve tract from an injured fornical crus to the medial temporal lobe via the normal pathway of the fornical crus;2)recovery through the nerve tract originating from an ipsi-lesional fornical body connected to the ipsi-lesional medial temporal lobe via the splenium of the corpus callosum;3) recovery through the nerve tract from the ipsi-lesional fornical body extending to the contra-lesional medial temporal lobe via the splenium of the corpus callosum;4) recovery through the nerve tract originating from the ipsi-lesional fornical column connected to the ipsi-lesional medial temporal lobe;and 5) recovery through the nerve tract originating from the contra-lesional fornical column connected to the ipsi-lesional medial temporal lobe via the contra-lesional medial temporal lobe and the splenium of the corpus callosum.These diffusion tensor tractography studies on mechanisms of recovery of injured fornical crus appeared to provide useful information for clinicians caring for patients with brain injury,however,studies on this topic are still in the beginning stages. 展开更多
关键词 nerve regeneration fornix diffusion tensor tractography recovery mechanism memory assessment scale Papez neural regeneration
暂未订购
Influence of anisotropy on the electrical conductivity and diffusion coefficient of dry K-feldspar: Implications of the mechanism of conduction
8
作者 代立东 胡海英 +2 位作者 李和平 孙文清 蒋建军 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第2期630-639,共10页
The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa i... The electrical conductivities of single-crystal K-feldspar along three different crystallographic directions are investigated by the Solartron-1260 Impedance/Gain-phase analyzer at 873 K–1223 K and 1.0 GPa–3.0 GPa in a frequency range of 10-1 Hz–106 Hz. The measured electrical conductivity along the ⊥ [001] axis direction decreases with increasing pressure, and the activation energy and activation volume of charge carriers are determined to be 1.04 ± 0.06 e V and 2.51 ± 0.19 cm~3/mole, respectively. The electrical conductivity of K-feldspar is highly anisotropic, and its value along the⊥ [001] axis is approximately three times higher than that along the ⊥ [100] axis. At 2.0 GPa, the diffusion coefficient of ionic potassium is obtained from the electrical conductivity data using the Nernst–Einstein equation. The measured electrical conductivity and calculated diffusion coefficient of potassium suggest that the main conduction mechanism is of ionic conduction, therefore the dominant charge carrier is transferred between normal lattice potassium positions and adjacent interstitial sites along the thermally activated electric field. 展开更多
关键词 electrical conductivity and diffusion coefficient K-feldspar anisotropy conduction mechanism
原文传递
Kinetics and mechanism of adsorptive removal of copper from aqueous solution with poly(vinyl alcohol) hydrogel 被引量:2
9
作者 Tongsai JAMNONGKAN Krittiya KANTAROT +2 位作者 Kitiya NIEMTANG P.Pungboon PANSILA Amnuay WATTANAKORNSIRI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3386-3393,共8页
Recently, a renewed interest in techniques for heavy metal removal of wastewater has been growing because of embarking opportunities for industrial applications. We investigated the adsorption capacity of the copper o... Recently, a renewed interest in techniques for heavy metal removal of wastewater has been growing because of embarking opportunities for industrial applications. We investigated the adsorption capacity of the copper on the poly(vinyl alcohol) hydrogel from the aqueous solution. Chemical structure and water absorption of the hydrogel were studied using FTIR and water uptake measurement, respectively. The results showed that the poly(vinyl alcohol) was crosslinked with glutaraldehyde, and the hydrogel highly exhibited the equilibrium swelling ratio because of its hydrophilicity property. Additionally, it was found that the adsorption process followed the pseudo-second-order kinetics and the mechanism diffusion was controlled by particle and film diffusions. 展开更多
关键词 heavy metals removal HYDROGEL WASTEWATER ADSORPTION diffusion mechanism
在线阅读 下载PDF
Modes of multi-mechanistic gas diffusion in shale matrix at varied effective stresses:Observations and analysis 被引量:1
10
作者 Tian-Yu Chen Yan-Yu Hao +3 位作者 Derek Elsworth Hong-Ming Zhang Zhi-Ming Hu Guang-Lei Cui 《Petroleum Science》 SCIE EI CSCD 2023年第5期2908-2920,共13页
Gas diffusion in the shale matrix has a dominant effect on late-stage production from shale gas reservoirs.However,adequate research on the mechanisms and contributions of gas diffusion for varied pore size population... Gas diffusion in the shale matrix has a dominant effect on late-stage production from shale gas reservoirs.However,adequate research on the mechanisms and contributions of gas diffusion for varied pore size populations in shale matrix under recreated in situ stress is lacking.We report gas-diffusion measurements under constant in situ stress but variable gas pressures for contrasting non-adsorbent(helium(He))and adsorbed(methane(CH_(4)))gases to investigate the impact of effective stress on the evolution of dominant mechanisms of diffusion.An intact sample replicates true pore-network topology and diffusion paths.An integrated diffusion model is proposed that combines the effects of slip flow,Knudsen flow,and surface diffusion to constrain the evolution of these flow regimes and their respective contributions to the observational data.Finally,a probability density function(PDF)is employed to separate the gas content distributions of macropores and micropores from the total gas content and to investigate gas contributions in various pores.The results reveal that the diffusion coefficients of both He and CH_(4)in macropores and micropores increase with gas pressure but decrease with increasing effective stress.The diffusion coefficients of He and CH_(4)are different in macropores but remain nearly the same in micropores.The diffusion coefficients of slip flow and surface diffusion increase with decreasing effective stress except for CH_(4)diffusion in the micropores,while the evolution of Knudsen diffusion shows the opposite trend.Slip flow plays a dominant role in He and CH_(4)diffusion within macropores(pore size 45 nm).Knudsen diffusion gradually becomes significant for He diffusion in the micropores(pore size 4 nm),conversely,for CH_(4)diffusion in the micropores,surface diffusion becomes significant.Related to gas production from reservoirs,the contributions of the micropores will increase gradually with the duration of gas recovery,indicating the significant role of gas diffusion in micropores to steady supply during latestage production. 展开更多
关键词 diffusion coefficient In situ stress Varied pore types diffusion mechanisms Gas-content contributions
原文传递
Effect of plastic deformation on diffusion-rolling bonding of steel sandwich plates 被引量:1
11
作者 Hong Li Jingtao Han 《Journal of University of Science and Technology Beijing》 CSCD 2006年第6期532-537,共6页
Diffusion bonding is one of the most important techniques for composite materials, while bonding temperature, holding time,and rolling reduction are the key parameters that affect the bonding strength of sandwich plat... Diffusion bonding is one of the most important techniques for composite materials, while bonding temperature, holding time,and rolling reduction are the key parameters that affect the bonding strength of sandwich plates. To study the effect of plastic deformation on the bonding strength, laboratory experiments were carried on a Gleeble Thermal Simulator to imitate the diffusion-rolling bonding under different reductions for steel sandwich plates. The bonding strength and interlayer film thickness were measured, and the element diffusion was analyzed using line scanning. The relationship between the bonding strength and “diffused interlayer” thickness was investigated. It has been found that the bonding strength increases with reduction, whereas the interlayer film thickness decreases gradually as the reduction increases. The diffusion under plastic deformation is obviously enhanced in comparison with that of nil reduction. The mechanism of plastic deformation effect on the diffusion bonding and related models have been discussed. 展开更多
关键词 steel sandwich plate diffusion-bonding plastic deformation bonding strength interlayer film thickness diffusion mechanism models
在线阅读 下载PDF
Multi-electron reaction and fast Al ion diffusion of δ-MnO_(2) cathode materials in rechargeable aluminum batteries via first-principle calculations
12
作者 Lumin Zheng Ying Bai Chuan Wu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期248-254,共7页
Rechargeable aluminum batteries with multi-electron reaction have a high theoretical capacity for next generation of energy storage devices. However, the diffusion mechanism and intrinsic property of Al insertion into... Rechargeable aluminum batteries with multi-electron reaction have a high theoretical capacity for next generation of energy storage devices. However, the diffusion mechanism and intrinsic property of Al insertion into MnO_(2) are not clear. Hence, based on the first-principles calculations, key influencing factors of slow Al-ions diffusion are narrow pathways, unstable Al-O bonds and Mn^(3+) type polaron have been identified by investigating four types of δ-MnO_(2)(O3, O'3, P2 and T1). Although Al insert into δ-MnO_(2) leads to a decrease in the spacing of the Mn-Mn layer, P2 type MnO_(2) keeps the long(spacious pathways)and stable(2.007–2.030 A) Al-O bonds resulting in the lower energy barrier of Al diffusion of 0.56 e V. By eliminated the influence of Mn^(3+)(low concentration of Al insertion), the energy barrier of Al migration achieves 0.19 e V in P2 type, confirming the obviously effect of Mn^(3+) polaron. On the contrary, although the T1 type MnO_(2) has the sluggish of Al-ions diffusion, the larger interlayer spacing of Mn-Mn layer,causing by H_(2)O could assist Al-ions diffusion. Furthermore, it is worth to notice that the multilayer δ-MnO_(2) achieves multi-electron reaction of 3|e|. Considering the requirement of high energy density, the average voltage of P2(1.76 V) is not an obstacle for application as cathode in RABs. These discover suggest that layered MnO_(2) should keep more P2-type structure in the synthesis of materials and increase the interlayer spacing of Mn-Mn layer for providing technical support of RABs in large-scale energy storage. 展开更多
关键词 Rechargeable aluminum batteries δ-MnO_(2) First-principles calculations Multi-electron reaction diffusion mechanism
原文传递
Lithium-ion diffusion path of tetragonal tungsten bronze(TTB)phase Nb_(18)W_(16)O_(93)
13
作者 Chao SHEN Sai-nan JIANG +2 位作者 Cui-min DING Wei-shun XUE Ke-yu XIE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第11期3679-3686,共8页
By taking tetragonal tungsten bronze(TTB)phase Nb_(18)W_(16)O_(93)as an example,an improved solid-state sintering method at lower temperature of 1000℃for 36 h was proposed via applying nanoscale raw materials.XRD,SEM... By taking tetragonal tungsten bronze(TTB)phase Nb_(18)W_(16)O_(93)as an example,an improved solid-state sintering method at lower temperature of 1000℃for 36 h was proposed via applying nanoscale raw materials.XRD,SEM and XPS confirm that the expected sample was produced.GITT results show that the lithium-ion diffusion coefficient of Nb_(18)W_(16)O_(93)(10−12 cm^(2)/s)is higher than that of the conventional titanium-based anode,ensuring a relatively superior electrochemical performance.The lithium-ion diffusion mechanism was thoroughly revealed by using density functional theory simulation.There are three diffusion paths in TTB phase,among which the interlayer diffusion with the smallest diffusion barrier(0.46 eV)has more advantages than other typical anodes(such as graphite,0.56 eV).The relatively smaller lithium-ion diffusion barrier makes TTB phase Nb_(18)W_(16)O_(93)become a potential highspecific-power anode material. 展开更多
关键词 lithium-ion battery niobium tungsten oxide tetragonal tungsten bronze(TTB)phase lithium-ion diffusion mechanism diffusion path
在线阅读 下载PDF
Simplification and Application of Boyd Membrane-diffusion Equation
14
作者 甄捷 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2004年第2期214-217,共4页
The having-been-used-for-50-year Boyd membrane diffusion Equation-In(1 - F) = R t can be deduced into F = kt through using Maclanrin expansion equation and the Lagerange remainders. The latter is a simple membrane dif... The having-been-used-for-50-year Boyd membrane diffusion Equation-In(1 - F) = R t can be deduced into F = kt through using Maclanrin expansion equation and the Lagerange remainders. The latter is a simple membrane diffusion equation, which is available to judge if the exchanging course of the resin obeys the rules of membrane-diffusion mechanism more conveniently. 展开更多
关键词 the First diffusion Law of Fick membrane-diffusion equation diffusion mechanism
在线阅读 下载PDF
Mn Diffusion at Early Stage of Intercritical Annealing of 5Mn Steel
15
作者 Xi-nan LUO Xiao-yan ZHONG +3 位作者 Hai-wen LUO Hui-hua ZHOU Cun-yu WANG Jie SHI 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2015年第11期1015-1019,共5页
Mn distribution and austenite morphology at the early stage of intercritical annealing of 5Mn steel were investigated. It was experimentally demonstrated that a newly formed 20 nm-thick austenite was formed without th... Mn distribution and austenite morphology at the early stage of intercritical annealing of 5Mn steel were investigated. It was experimentally demonstrated that a newly formed 20 nm-thick austenite was formed without the partitioning of Mn. The elemental analysis confirmed that the growth of austenite should be controlled by the diffusion of C prior to the diffusion of Mn at a low heating rate. The austenite growth started under negligible-partitioning local equilibrium mode and then switched to partitioning local equilibrium mode. Mn segregation at the γ/α interface suggested that the collector plate mechanism was the essential way of Mn partitioning at the early stage of austenite growth. 展开更多
关键词 Mn diffusion austenite nucleation intercritical annealing negligible-partitioning local equilibrium diffusion mechanism
原文传递
Effect of heating time on bonding interface, atom diffusion and mechanical properties of dissimilar titanium joints produced by thermal self-compressing bonding 被引量:7
16
作者 Yun-hua DENG Qiao GUAN Jun TAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第4期662-668,共7页
Solid-state bonding between pure titanium and Ti6Al4V(TC4)alloy was conducted by a new bonding method named as rigid restraint thermal self-compressing bonding.Effects of heating time on bonding interface,atom diffusi... Solid-state bonding between pure titanium and Ti6Al4V(TC4)alloy was conducted by a new bonding method named as rigid restraint thermal self-compressing bonding.Effects of heating time on bonding interface,atom diffusion and mechanical properties of the joints were studied.Results show that atom diffusion between pure titanium and TC4 alloy significantly takes place during bonding.The diffusion depths of Al and V in pure titanium side are increased with increasing heating time.Due to the enhancement of atom diffusion,bond quality of the bonding interface is improved along with the increase of heating time.The heating time seems to have little effect on microhardness distribution across the joint.However,the tensile strength and ductility of the joint have close relation to heating time.Prolonging heating time can improve the tensile strength and ductility of the joint,especially the latter.When the heating time increases to 450 s,solid-state joint with good combination of strength and ductility is attained. 展开更多
关键词 dissimilar titanium alloys joining rigid restraint thermal self-compressing bonding atom diffusion mechanical properties
在线阅读 下载PDF
Low-field, high-gradient NMR shows diffusion contrast consistent with localization or motional averaging of water near surfaces 被引量:1
17
作者 Nathan H.Williamson Velencia J.Witherspoon +3 位作者 Teddy X.Cai Rea Ravin Ferenc Horkay Peter J.Basser 《Magnetic Resonance Letters》 2023年第2期90-107,I0003,共19页
Nuclear magnetic resonance(NMR)measurements of water diffusion have been extensively used to probe microstructure in porous materials,such as biological tissue,however primarily using pulsed gradient spin echo(PGSE)me... Nuclear magnetic resonance(NMR)measurements of water diffusion have been extensively used to probe microstructure in porous materials,such as biological tissue,however primarily using pulsed gradient spin echo(PGSE)methods.Low-field single-sided NMR systems have built-in static gradients(SG)much stronger than typical PGSE maximum gradient strengths,which allows for the signal attenuation at extremely high b-values to be explored.Here,we perform SG spin echo(SGSE)and SG stimulated echo(SGSTE)diffusion measurements on biological cells,tissues,and gels.Measurements on fixed and live neonatal mouse spinal cord,lobster ventral nerve cord,and starved yeast cells all show multiexponential signal attenuation on a scale of b with significant signal fractions observed at b×Do>1 with b as high as 400 ms/um2.These persistent signal fractions trend with surface-to-volume ratios for these systems,as expected from porous media theory.An exception found for the case of fixed vs.live spinal cords was attributed to faster exchange or permeability in live spinal cords than in fixed spinal cords on the millisecond timescale.Data suggests the existence of multiple exchange processes in neural tissue,which may be relevant to the modeling of time-dependent diffusion in gray matter.The observed multi-exponential attenuation is from protons on water and not macromolecules because it remains proportional to the normalized signal when a specimen is washed with D20.The signal that persists to b×Do>1 is also drastically reduced after delipidation,indicating that it originates from lipid membranes that restrict water diffusion.The multiexponential or stretched exponential character of the signal attenuation at b×Do>1 appears mono-exponential when viewed on a scale of(b×Do)/3,suggesting it may originate from localization or motional averaging of water near membranes on sub-micron length scales.To try to disambiguate these two contributions,signal attenuation curves were compared at varying temperatures.While the curves align when normalizing them using the localization length scale,they separate on a motional averaging length scale.This supports localization as the source of non-Gaussian displacements,but this interpretation is still provisional due to the possible confounds of heterogeneity,exchange,and relaxation.Measurements on two types of gel phantoms designed to mimic extracellular matrix.one with charged functional groups synthesized from polyacrylic acid(PAC)and another with uncharged functional groups synthesized from polyacrylamide(PAM),both exhibit signal at b×Do>1,potentially due to water interacting with macromolecules.These preliminary finding motivate future research into contrast and attenuation mechanisms in tissue with low-field,high-gradient NMR。 展开更多
关键词 Magnetic resonance in porous media Single-sided NMR-MOUSE Microstructure High b-values Short diffusion time Stretched exponential diffusion MRI contrast mechanisms
在线阅读 下载PDF
Prussian blue analogue-derived porous nanocages with hollow(Co,Fe)O nanoparticles as anodes for lithium ion batteries
18
作者 Jae Seob Lee Kun Woo Baek +2 位作者 Narasimharao Kitchamsetti Hyun Woo Kim Jung Sang Cho 《Journal of Materials Science & Technology》 2025年第20期76-90,共15页
CoFe-Prussian blue analog(CoFe-PBA)template derived porous nanocages comprising hollow(Co,Fe)O nanoparticles are introduced as a highly efficient anode for lithium-ion batteries(LIBs)by integrat-ing the co-precipitati... CoFe-Prussian blue analog(CoFe-PBA)template derived porous nanocages comprising hollow(Co,Fe)O nanoparticles are introduced as a highly efficient anode for lithium-ion batteries(LIBs)by integrat-ing the co-precipitation and nanoscale Kirkendall diffusion processes.This strategic approach employs a solution-based facile polydopamine(PDA)-derived carbon coating process to control the oxidation rate of nanoparticles during subsequent heat treatment to achieve the hollow structure by the nanoscale Kirk-endall diffusion effect.The application of different concentrations of PDA to the nanocages resulted in the formation of porous nanocages of three types,such as(Co,Fe)O@PDA-C-20,(Co,Fe)O@PDA-C-100,and(Co,Fe)O@PDA-C-200.Notably,(Co,Fe)O@PDA-C-100 porous nanocages exhibit remarkable cycling stability by the hollow structured(Co,Fe)O nanoparticles.Additionally,the hollow and porous structures facilitate rapid charge species diffusion,efficient electrolyte infiltration,and effective management of volumetric changes.When used as anodes for LIBs,the hollow(Co,Fe)O@PDA-C-100 anodes demonstrate impressive structural robustness and high-rate performance.They exhibit remarkable structural integrity,demon-strating stable cycling performance for up to 300 cycles at 0.5 and 1.0 A g^(-1)(capacity retentions of 99.3%and 97.2%,respectively).In terms of rate capability,the hollow(Co,Fe)O@PDA-C-100 porous nanocages exhibit a high discharge capacity of 284 mA h g^(-1) at 10 A g^(-1).Moreover,the practical application po-tential of the prepared hollow(Co,Fe)O@PDA-C-100 anode is demonstrated by a full-cell test paired with and Li(Ni0.8Co0.1Mn0.1)O2 cathode under the condition of practical application.This clearly highlights the structural advantages of the prepared hollow(Co,Fe)O@PDA-C-100 porous nanocages. 展开更多
关键词 CoFe-Prussian blue analogue Polydopamine-derived carbon Porous nanocages Hollow(CoFe)O nanoparticles Kirkendall diffusion mechanism Lithium-ion batteries
原文传递
Growth kinetics for intermetallic compound layer between molten In-Sn alloy and CuZr-based bulk metallic glass 被引量:1
19
作者 马国峰 张波 +1 位作者 张海峰 胡壮麒 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第4期837-841,共5页
The growth kinetics of intermetallic compound layer between molten In-Sn alloy and Cu40Zr44Al8Ag8 bulk metallic glass substrate was examined by solid state isothermal aging at the temperature range between 333 and 393... The growth kinetics of intermetallic compound layer between molten In-Sn alloy and Cu40Zr44Al8Ag8 bulk metallic glass substrate was examined by solid state isothermal aging at the temperature range between 333 and 393 K.The aged samples were characterized by scanning electron microscopy and energy dispersive spectrometry.It is found that the intermetallic compound layer is composed of Zr,Cu and Sn.The layer growth of the intermetallic compound is mainly controlled by a diffusion mechanism over the temperature range and the value of the time exponent is approximately 0.5.The apparent activation energy for the growth of total intermetallic compound layers is 98.35 kJ /mol calculated by the Arrhenius equation. 展开更多
关键词 bulk metallic glass compound layer KINETICS diffusion mechanism
在线阅读 下载PDF
Microwave sintering of Mo nanopowder and its densification behavior 被引量:7
20
作者 Bo-hua DUAN Zhao ZHANG +1 位作者 De-zhi WANG Tao ZHOU 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第8期1705-1713,共9页
In order to prepare high-performance Mo with fine and homogeneous microstructure to meet the demand of high-technology applications such as metallurgical,mechanical,national defense,aerospace and electronics applicati... In order to prepare high-performance Mo with fine and homogeneous microstructure to meet the demand of high-technology applications such as metallurgical,mechanical,national defense,aerospace and electronics applications,the microwave sintering process and densification mechanism of Mo nanopowder were studied.In this experiment,Mo nanopowder and micropowder were used for conventional sintering and microwave sintering at different sintering temperatures and sintering time,respectively.The results showed that with the increase in the sintering temperature,the increase rates of the relative density and hardness increased rapidly at first and then slowed down.The relative density rapidly reached 95%,followed by a small change.Mo nanopowder with a relative density of 98.03% and average grain size of 3.6 μm was prepared by microwave sintering at 1873 K for30 min.According to the analysis of the sintering kinetics,its densification is attributed to the combination of volumetric diffusion and grain boundary diffusion mechanisms.The calculated sintering activation energy of Mo nanopowder was 203.65 kJ/mol,which was considerably lower than that in the conventional sintering,suggesting that the microwave sintering was beneficial to the enhancement in the atom diffusion and densification for the powder.The results confirm that the microwave sintering is a promising method to economically prepare molybdenum with high properties. 展开更多
关键词 MOLYBDENUM microwave sintering NANOPOWDER densification kinetics diffusion mechanism
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部