Silicon(Si)is regarded as a promising anode material for next-generation lithium-ion batteries due to its ultrahigh theoretical capacity.However,the drastic volume change and the continuous solid electrolyte interphas...Silicon(Si)is regarded as a promising anode material for next-generation lithium-ion batteries due to its ultrahigh theoretical capacity.However,the drastic volume change and the continuous solid electrolyte interphase(SEI)formation during the lithiation/delithiation process seriously hinder its practical application as commercial anodes.Herein,macrocyclic betacyclodextrin(β-CD)has been designed as the diffusion channel for lithium ions at the molecular scale.The diameter of molecular channel is approximately comparable with the solvated lithium ions,which enables the transport of lithium ions and prevents the penetration of solvent molecules.Moreover,the addition ofβ-CD changes the formation behavior of SEI layer and stabilizes the Si nanoparticles.The enhanced electrochemical performances in terms of fast kinetics and improved stability have been achieved.The Si anode with the particularly selected lithium-ion diffusion channel and stabilized SEI layer exhibits a high reversible capability of 2562 m Ah g-1 after 50 cycles at the current density of 500 m A g-1,1944 m Ah g-1 after 200 cycles at the current density of 1 A g-1,and high rate performance.The novel strategy of molecular channel for lithium-ion diffusion offers new insights into the design of alloy-typed anode electrodes with high capacity for lithium-ion batteries.展开更多
Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum rep...Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum representation ofits analytical solution. we find that the pure coherent states evolve into the new mixed thermal superposed states in thediffusion channel. Also, we investigate the statistical properties of the initial coherent states and their entropy evolutions inthe diffusion channel, and find that the entropy evolutions are only related to the decay time and without the amplitudes ofthe initial coherent states.展开更多
We explore the time evolution law of a two-mode squeezed light field(pure state)passing through twin diffusion channels,and we find that the final state is a squeezed chaotic light field(mixed state)with entanglement,...We explore the time evolution law of a two-mode squeezed light field(pure state)passing through twin diffusion channels,and we find that the final state is a squeezed chaotic light field(mixed state)with entanglement,which shows that even though the two channels are independent of each other,since the two modes of the initial state are entangled with each other,the final state remains entangled.Nevertheless,although the squeezing(entanglement)between the two modes is weakened after the diffusion,it is not completely removed.We also highlight the law of photon number evolution.In the calculation process used in this paper,we make full use of the summation method within the ordered product of operators and the generating function formula for two-variable Hermite polynomials.展开更多
We find the time evolution law of a negative binomial optical field in a diffusion channel. We reveal that by adjusting the diffusion parameter, the photon number can be controlled. Therefore, the diffusion process ca...We find the time evolution law of a negative binomial optical field in a diffusion channel. We reveal that by adjusting the diffusion parameter, the photon number can be controlled. Therefore, the diffusion process can be considered a quantum controlling scheme through photon addition.展开更多
In this paper,a microscopic phase-field model was used to investigate the effect of the oriented diffusion channel and the phases' effect mechanism for the Ni75Al6.0V19.0 alloy during a phase transformation proces...In this paper,a microscopic phase-field model was used to investigate the effect of the oriented diffusion channel and the phases' effect mechanism for the Ni75Al6.0V19.0 alloy during a phase transformation process.A diffusion channel of V was formed in the [100] direction.The oriented growth of DO22 in this direction,when an elastic misfit stress field existed,forced Al to form a diffusion channel next to DO22,resulting in L12-oriented growth.With an increase in stress,the oriented growth increased initially and then decreased.At a higher stress,the average values of the occupation probability for V atoms became constant later while Al atoms earlier.展开更多
Based on the Kraus operator-sum representation of the analytical solution of the diffusion equation,we obtain the evolution of a general linear state in the diffusion channel.Also,we study the quantum statistical prop...Based on the Kraus operator-sum representation of the analytical solution of the diffusion equation,we obtain the evolution of a general linear state in the diffusion channel.Also,we study the quantum statistical properties of the initial general linear state and its von-Neumann entropy evolution in the diffusion channel,especially find that the entropy evolution is influenced by the diffusion noise and the thermal parameter but without the displacement.展开更多
This work was attempted to modify the current technology for thermal barrier coatings(TBCs) by adding an additional step of surface modification,namely,supersonic fine particles bombarding(SFPB) process,on bond co...This work was attempted to modify the current technology for thermal barrier coatings(TBCs) by adding an additional step of surface modification,namely,supersonic fine particles bombarding(SFPB) process,on bond coat before applying the topcoat.After isothermal oxidation at 1000 °C for different time,the surface state of the bond coat and its phase transformation were investigated using X-ray diffraction(XRD),scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectrometry(EDS),transmission electron microscopy(TEM) and Cr3+ luminescence spectroscopy.The dislocation density significantly increases after SFPB process,which can generate a large number of diffusion channels in the area of the surface of the bond coat.At the initial stage of isothermal oxidation,the diffusion velocity of Al in the bond coat significantly increases,leading to the formation of a layer of stable α-Al2O3 phase.A great number of Cr3+ positive ions can diffuse via diffusion channels during the transient state of isothermal oxidation,which can lead to the presence of(Al0.9Cr0.1)2O3 phase and accelerate the γ→θ→α phase transformation.Cr3+ luminescence spectroscopy measurement shows that the residual stress increases at the initial stage of isothermal oxidation and then decreases.The residual stress after isothermal oxidation for 310 h reduces to 0.63 GPa compared with 0.93 GPa after isothermal oxidation for 26 h.In order to prolong the lifespan of TBCs,a layer of continuous,dense and pure α-Al2O3 with high oxidation resistance at the interface between topcoat and bond coat can be obtained due to additional SFPB process.展开更多
Based on the diffusion channel,the influence of Si content on the microstructure evolution of iron-based hot-dip Al-χSi coating was analyzed(χ=0,1.5 wt%,3.0 wt% and 7.0 wt%).The results show that the introduction of...Based on the diffusion channel,the influence of Si content on the microstructure evolution of iron-based hot-dip Al-χSi coating was analyzed(χ=0,1.5 wt%,3.0 wt% and 7.0 wt%).The results show that the introduction of Si makes the reaction interface change from the lingual-tooth interface of hot-dip Al to the flat interface of hot-dip Al-Si.It also reduces the thickness of the alloy layer in the coating,especially the Fe_(2)Al_(5) layer.When the Si content is 1.5 wt%or 3.0 wt%,the diffusion channel crosses the conjugate line of the two-phase region(FeAl_(3)+liquid phase)into the FeAl_(3) single-phase region,and then moves to the region with higher Si content.Next,the diffusion channel cuts off the conjugate line of FeAl_(3)phase,τ_(1)/τ_(9) phase,and Fe_(2)Al_(5)phase,which promotes the form ofτ_(1)/τ_(9) phase.The formedτ_(1)/τ_(9) phase inhibits the diffusion between Fe and Al atoms.When the Si content is 7.0 wt%,the diffusion channel passes through the two-phase region(liquid phase+τ_(5))and enters theτ_(5) single-phase region.The form ofτ_(5) single-phase region has a strong inhibitory effect on the interatomic diffusion of Fe and Al,thereby reducing the thickness of the coating,especially the Fe_(2)Al_(5)layer.展开更多
The sluggish redox kinetics of polysulfides in lithium-sulfur(Li-S)batteries are a significant obstacle to their widespread adoption as energy storage devices.However,recent studies have shown that tungsten oxide(WO_(...The sluggish redox kinetics of polysulfides in lithium-sulfur(Li-S)batteries are a significant obstacle to their widespread adoption as energy storage devices.However,recent studies have shown that tungsten oxide(WO_(3))can facilitate the conversion kinetics of polysulfides in Li-S batteries.Herein,we fabricated host materials for sulfur using nitrogen-doped carbon nanotubes(N-CNTs)and WO_(3).We used low-cost components and simple procedures to overcome the poor electrical conductivity that is a disadvantage of metal oxides.The composites of WO_(3) and N-CNTs(WO_(3)/N-CNTs)create a stable framework structure,fast ion diffusion channels,and a 3D electron transport network during electrochemical reaction processes.As a result,the WO_(3)/N-CNT-Li2S6 cathode demonstrates high initial capacity(1162 mA·h·g^(-1) at 0.5℃),excellent rate performance(618 mA·h·g^(-1) at 5.5℃),and a low capacity decay rate(0.093%up to 600 cycles at 2℃).This work presents a novel approach for preparing tungsten oxide/carbon composite catalysts that facilitate the redox kinetics of polysulfide conversion.展开更多
Visible light positioning becomes popular recently. However, its performance is degraded by the indoor diffuse optical channel. An artificial neural-network-based visible light positioning algorithm is proposed in thi...Visible light positioning becomes popular recently. However, its performance is degraded by the indoor diffuse optical channel. An artificial neural-network-based visible light positioning algorithm is proposed in this Letter, and a trained neural network is used to achieve positioning with a diffuse channel. Simulations are made to evaluate the proposed positioning algorithm. Results show that the average positioning error is reduced about 13 times, and the positioning time is reduced about two magnitudes. Moreover, the proposed algorithm is robust with a different field-of-view of the receiver and the refiectivity of the wall, which is suitable for various position- ing applications.展开更多
基金financial support by the National Natural Science Foundation of China(51874357,51872333)Innovative Research Group of Hunan Provincial Natural Science Foundation of China(2019JJ10006)+3 种基金the support from the 100 Talented Program of Hunan Province“Huxiang high-level talents”program(2019RS1007)support from Shenghua Scholar Program of Central South Universitysupport from JSPS KAKENNHI(18H03869)
文摘Silicon(Si)is regarded as a promising anode material for next-generation lithium-ion batteries due to its ultrahigh theoretical capacity.However,the drastic volume change and the continuous solid electrolyte interphase(SEI)formation during the lithiation/delithiation process seriously hinder its practical application as commercial anodes.Herein,macrocyclic betacyclodextrin(β-CD)has been designed as the diffusion channel for lithium ions at the molecular scale.The diameter of molecular channel is approximately comparable with the solvated lithium ions,which enables the transport of lithium ions and prevents the penetration of solvent molecules.Moreover,the addition ofβ-CD changes the formation behavior of SEI layer and stabilizes the Si nanoparticles.The enhanced electrochemical performances in terms of fast kinetics and improved stability have been achieved.The Si anode with the particularly selected lithium-ion diffusion channel and stabilized SEI layer exhibits a high reversible capability of 2562 m Ah g-1 after 50 cycles at the current density of 500 m A g-1,1944 m Ah g-1 after 200 cycles at the current density of 1 A g-1,and high rate performance.The novel strategy of molecular channel for lithium-ion diffusion offers new insights into the design of alloy-typed anode electrodes with high capacity for lithium-ion batteries.
基金Collaborative Innovation Project of University,Anhui Province(Grant No.GXXT-2022-088).
文摘Using the operator correspondence of the real and fictious modes in the thermo entangled state representation, wesolve the quantum master equation describing the diffusion channel and obtain the Kraus operator-sum representation ofits analytical solution. we find that the pure coherent states evolve into the new mixed thermal superposed states in thediffusion channel. Also, we investigate the statistical properties of the initial coherent states and their entropy evolutions inthe diffusion channel, and find that the entropy evolutions are only related to the decay time and without the amplitudes ofthe initial coherent states.
基金supported by the National Natural Science Foundation of China(Grant No.11775208)the Foundation for Young Talents in College of Anhui Province,China(Grant No.gxyq2019077)the Natural Science Foundation of the Anhui Higher Education Institutions of China(Grant Nos.KJ2019A0688 and KJ2020A0638)。
文摘We explore the time evolution law of a two-mode squeezed light field(pure state)passing through twin diffusion channels,and we find that the final state is a squeezed chaotic light field(mixed state)with entanglement,which shows that even though the two channels are independent of each other,since the two modes of the initial state are entangled with each other,the final state remains entangled.Nevertheless,although the squeezing(entanglement)between the two modes is weakened after the diffusion,it is not completely removed.We also highlight the law of photon number evolution.In the calculation process used in this paper,we make full use of the summation method within the ordered product of operators and the generating function formula for two-variable Hermite polynomials.
基金Project supported by the National Basic Research Program of China(Grant No.2012CB922103)the National Natural Science Foundation of China(Grant Nos.11175113,11274104,and 11404108)the Natural Science Foundation of Hubei Province,China(Grant No.2011CDA021)
文摘We find the time evolution law of a negative binomial optical field in a diffusion channel. We reveal that by adjusting the diffusion parameter, the photon number can be controlled. Therefore, the diffusion process can be considered a quantum controlling scheme through photon addition.
基金supported by the National Natural Science Foundation of China (Grant Nos. 51075335, 10902086, 50875217)the NPU Foundation for Fundamental Research (Grant No. JC201005)the Doctorate Foundation of Northwestern Polytechnical University (Grant No.CX201007)
文摘In this paper,a microscopic phase-field model was used to investigate the effect of the oriented diffusion channel and the phases' effect mechanism for the Ni75Al6.0V19.0 alloy during a phase transformation process.A diffusion channel of V was formed in the [100] direction.The oriented growth of DO22 in this direction,when an elastic misfit stress field existed,forced Al to form a diffusion channel next to DO22,resulting in L12-oriented growth.With an increase in stress,the oriented growth increased initially and then decreased.At a higher stress,the average values of the occupation probability for V atoms became constant later while Al atoms earlier.
基金Project supported by the Natural Science Foundation of Hainan Province,China(Grant Nos.621RC741 and 622RC668)。
文摘Based on the Kraus operator-sum representation of the analytical solution of the diffusion equation,we obtain the evolution of a general linear state in the diffusion channel.Also,we study the quantum statistical properties of the initial general linear state and its von-Neumann entropy evolution in the diffusion channel,especially find that the entropy evolution is influenced by the diffusion noise and the thermal parameter but without the displacement.
基金Foundation item: Project (50575220) supported by the National Natural Science Foundation of ChinaProject supported by State Key Laboratory of Engines,China
文摘This work was attempted to modify the current technology for thermal barrier coatings(TBCs) by adding an additional step of surface modification,namely,supersonic fine particles bombarding(SFPB) process,on bond coat before applying the topcoat.After isothermal oxidation at 1000 °C for different time,the surface state of the bond coat and its phase transformation were investigated using X-ray diffraction(XRD),scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectrometry(EDS),transmission electron microscopy(TEM) and Cr3+ luminescence spectroscopy.The dislocation density significantly increases after SFPB process,which can generate a large number of diffusion channels in the area of the surface of the bond coat.At the initial stage of isothermal oxidation,the diffusion velocity of Al in the bond coat significantly increases,leading to the formation of a layer of stable α-Al2O3 phase.A great number of Cr3+ positive ions can diffuse via diffusion channels during the transient state of isothermal oxidation,which can lead to the presence of(Al0.9Cr0.1)2O3 phase and accelerate the γ→θ→α phase transformation.Cr3+ luminescence spectroscopy measurement shows that the residual stress increases at the initial stage of isothermal oxidation and then decreases.The residual stress after isothermal oxidation for 310 h reduces to 0.63 GPa compared with 0.93 GPa after isothermal oxidation for 26 h.In order to prolong the lifespan of TBCs,a layer of continuous,dense and pure α-Al2O3 with high oxidation resistance at the interface between topcoat and bond coat can be obtained due to additional SFPB process.
基金Projects(51971039,51671037)supported by the National Natural Science Foundation of ChinaProject(19KJA530001)supported by the Natural Science Research Project of Higher Education of Jiangsu,ChinaProject(KYCX21_2868)supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,China。
文摘Based on the diffusion channel,the influence of Si content on the microstructure evolution of iron-based hot-dip Al-χSi coating was analyzed(χ=0,1.5 wt%,3.0 wt% and 7.0 wt%).The results show that the introduction of Si makes the reaction interface change from the lingual-tooth interface of hot-dip Al to the flat interface of hot-dip Al-Si.It also reduces the thickness of the alloy layer in the coating,especially the Fe_(2)Al_(5) layer.When the Si content is 1.5 wt%or 3.0 wt%,the diffusion channel crosses the conjugate line of the two-phase region(FeAl_(3)+liquid phase)into the FeAl_(3) single-phase region,and then moves to the region with higher Si content.Next,the diffusion channel cuts off the conjugate line of FeAl_(3)phase,τ_(1)/τ_(9) phase,and Fe_(2)Al_(5)phase,which promotes the form ofτ_(1)/τ_(9) phase.The formedτ_(1)/τ_(9) phase inhibits the diffusion between Fe and Al atoms.When the Si content is 7.0 wt%,the diffusion channel passes through the two-phase region(liquid phase+τ_(5))and enters theτ_(5) single-phase region.The form ofτ_(5) single-phase region has a strong inhibitory effect on the interatomic diffusion of Fe and Al,thereby reducing the thickness of the coating,especially the Fe_(2)Al_(5)layer.
基金supported by the Open Project Program of the State Key Laboratory of Materials-Oriented Chemical Engineering(KL21-05)the support of the Instrumental Analysis Center,Jiangsu University of Science and Technology.
文摘The sluggish redox kinetics of polysulfides in lithium-sulfur(Li-S)batteries are a significant obstacle to their widespread adoption as energy storage devices.However,recent studies have shown that tungsten oxide(WO_(3))can facilitate the conversion kinetics of polysulfides in Li-S batteries.Herein,we fabricated host materials for sulfur using nitrogen-doped carbon nanotubes(N-CNTs)and WO_(3).We used low-cost components and simple procedures to overcome the poor electrical conductivity that is a disadvantage of metal oxides.The composites of WO_(3) and N-CNTs(WO_(3)/N-CNTs)create a stable framework structure,fast ion diffusion channels,and a 3D electron transport network during electrochemical reaction processes.As a result,the WO_(3)/N-CNT-Li2S6 cathode demonstrates high initial capacity(1162 mA·h·g^(-1) at 0.5℃),excellent rate performance(618 mA·h·g^(-1) at 5.5℃),and a low capacity decay rate(0.093%up to 600 cycles at 2℃).This work presents a novel approach for preparing tungsten oxide/carbon composite catalysts that facilitate the redox kinetics of polysulfide conversion.
基金supported by the National Natural Science Foundation of China(Nos.61475094 and61675025)the National 973 Program of China(No.2013CB329202)
文摘Visible light positioning becomes popular recently. However, its performance is degraded by the indoor diffuse optical channel. An artificial neural-network-based visible light positioning algorithm is proposed in this Letter, and a trained neural network is used to achieve positioning with a diffuse channel. Simulations are made to evaluate the proposed positioning algorithm. Results show that the average positioning error is reduced about 13 times, and the positioning time is reduced about two magnitudes. Moreover, the proposed algorithm is robust with a different field-of-view of the receiver and the refiectivity of the wall, which is suitable for various position- ing applications.